EOS Workshop 2018

EOS status of IHEP site

Haibo Li
On behalf of Computer Center, IHEP
2018-02-05

Contents

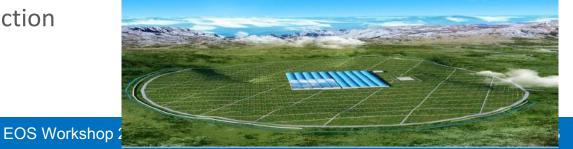
- IHEP Introduction
- EOS at IHEP
- Issues encountered
- Future Plan
- Summary

Large science facilities

- IHEP: The largest fundamental research center in China
- IHEP serves as the backbone of China's large science facilities
 - Beijing Electron Positron Collider (BEPCII/BESIII)
 - Yangbajing Cosmic Ray Observatory (ASg & ARGO)
 - Daya Bay Neutrino Experiment
 - China Spallation Neutron Source (CSNS)
 - Hard X-ray Modulation Telescope (HXMT)
 - Accelerator-driven Sub-critical System (ADS)
 - Jiangmen Neutrino Underground Observatory (JUNO)
 - Large High Altitude Air Shower Observatory (LHAASO)
 - High Energy Photon Source (HEPS)
 - Under planning: XTP, HERD,CEPC ...

Major Experiments at IHEP

- BEPCII/BESIII
 5PB data in 5 years
 DYB
 400TB per year data collected
 JUNO
 - ~2PB raw data per year
- LHAASO
 ~2PB raw data per year
 accumulate 20PB in 10 years
 HMXT
- Atlas and CMS Tier2 site
 - 940TB disk, 1088 CPU cores


LHAASO: Large High Altitude Air Shower Observatory

- Mt. Haizi (4410 m a.s.l., 29°21′ 27.6″ N, 100°08′19.6″ E), Sichuan, China
- LHAASO Scientific Goals
 - Origin of GCRs
 - Gamma ray astronomy
 - New physics frontier (dark matter, Lorentz invariance...)

LHAASO Computing requirements

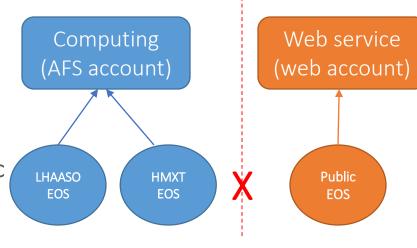
- ~2 Petabytes (2 million Gigabytes) of data annually generated by the LHAASO detectors
 - 1.7 PB of raw data, and >200TB of reconstruction data
 - Totally >20PB for ten years
 - Start taking data in 2018, and the data increased gradually
 - Fully completed in 2020
- >2 Petabytes of data generated by MC simulation
- To build one distributed computing system containing about
 6000 CPU cores to process the data
 - ~ 4500 CPU cores for reconstruction, analysis, ...
 - ~ 1500 cores for production


Contents

- IHEP Introduction
- EOS at IHEP
- Issues encountered
- Future Plan
- Summary

Storage resources at IHEP

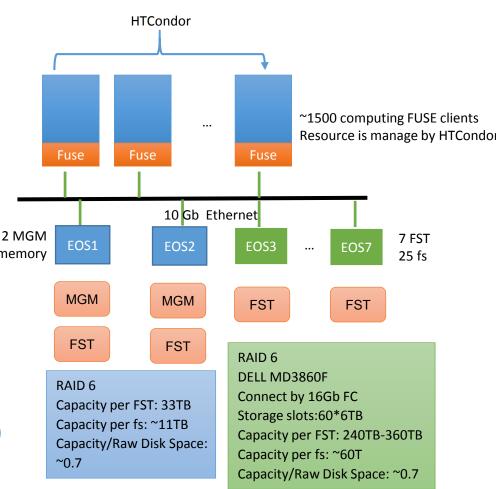
- Local cluster
 - 11 PB+ disk storage
 - Lustre:8.5PB
 - EOS:1.7PB
 - Other:1.5PB
 - 5 PB tape storage:
 - Modified Castor 1.7.1.5
- Grid site
 - DPM:400TB
 - dCache:540TB



EOS at IHEP

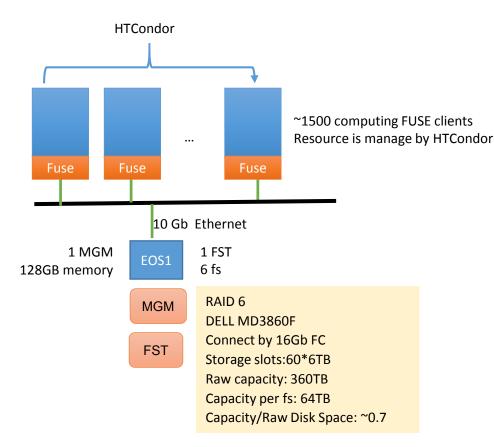
3 instances

- 2 for experiment data storage providing computing service
 - ~1.7 PB capacity
 - ~60 million files
 - ~1.2 million directories
- 1 for user data providing web and public services
 - Support for IHEPBox
 - ~160 TB capacity
 - ~7.4 million files
 - ~1 million directories

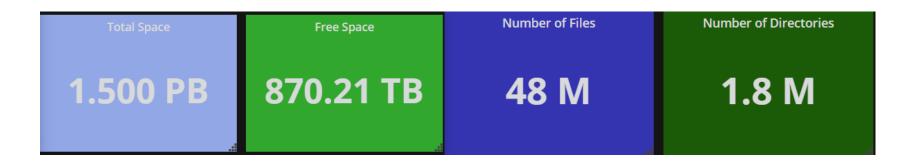


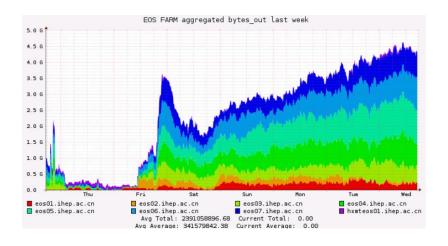
Two separate cluster, based on different account system

Experiment data storage


LHAASO EOS instance

- Used for LHAASO experiment
- Running for 2 years
- 0.8PB -> 1.34PB
- server version: 0.3.195
- 7 dell disk array box (raid6)^{128GB memory}
 - Dell MD3860F
 - 60*6TB
- 10Gb network link
- Plain mode(single replication)
- Fuse access




Experiment data storage

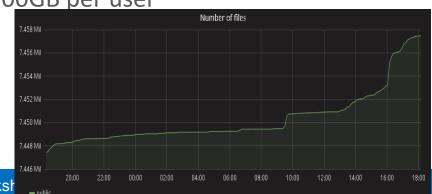
- HXMT EOS instance
 - New built for HXMT experiment in Dec 2017
 - 330TB capacity, 64TB used
 - Server version 4.2.7
 - 1 dell disk array box(raid6)
 - 10Gb network link
- Plain mode(single replication)
- FUSE access
- Many small files
 - ~4 KB per file

EOS running status

- Read peak: 4.5GB/s
- Peak values allowed by the environment (mainly 5 FST each has 10Gb Ethernet)

User data storage

IHEPBox use-case


- IHEPBox is based on owncloud integrated with EOS
- Fast growing service

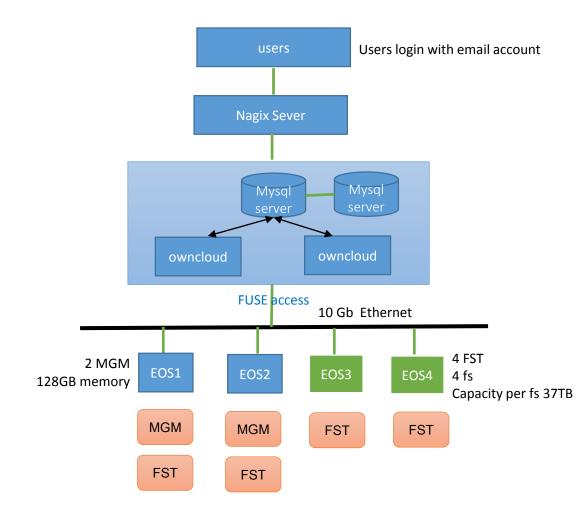
- Integrate some plug-in to interact with IHEPBox, such as documents\galleries\calendar\activity...
- Large and growing user base

4K+ users, 1K+ active users, 100GB per user

160 TB ,used 21TB7M+ files

IHEPBox

Users


- IHEP LDAP users
- Local users

Application Service

- 1 * Nginx
- 2 * IHEPBOX Servers

Data Storage

- 4 * fst
- Two replicates
- 2 * Mysql servers

IHEPBox demands from users

- Demand for supporting more office documents online editing, such as .docx \ .ppt \.excel
- Demand for supporting one-way synchronization rules, which means files don't delete on client while the delete operation is initially by server.

Contents

- IHEP Introduction
- EOS at IHEP
- Issues encountered
- Future Plan
- Summary

Issues encountered

- Most issues are related to fuse.
- Some of them has been solved with the help of EOS team.

Fuse crash

 "transport endpoint is not connected" error happens frequently on client.

Eosd Client :4.1.27

• Server:0.3.195

• Solution: the eosd client plans to update to 4.2.12

Nodes Held

- When a large number of jobs (using fuse to access data in eos) are submitted, the nodes managed by HTCondor sometimes become Held state.
- The possible reason is HTCondor detected the /eos is unavailable in that situation.

Next: Do more stress tests.

Concurrent reading error in Fuse client

- When the number of jobs exceed 11 in one node (16 cores),
 the job will fail with "bus error" or "segment fault". While it runs well in lustre.
- Job type: software repository, read data
- Server version: 4.2.7
- Client version: 4.1.27

The reason is unknown now. Next we will do more tests.

Output file synchronization problem

- When a file is being written on node1, the other node
 cannot read the data until the file is closed on node1.
- As a result
 - The parallel computing jobs will not run correctly.
 - Users can not read the output files until the jobs complete, which will mistaken users that the job did not run or failed
- The problem exists in all versions of EOS eosd.
- FUSEX will fix this bug, expecting.

Atime lost

- Access time (atime) is not recorded in namespace
- The latest access time cannot be found.
- It is needed in some cases, such as statistic the access frequency of the files.

RAIN issue

- In the rain mode, if a data block is damaged, the block can not be repaired automatically.
- The needs for using it as RAID6.
- The recommended configuration now uses the replica pattern with JBOD.

Large-small sites in storage federation

- If the master site has a large capacity, while the slave site has a small capacity, how to use EOS build storage federation?
- The replication mode may not suitable, because what data the remote site need may be uncertain.

Is there similar needs on other sites?

Contents

- IHEP Introduction
- EOS at IHEP
- Issues encountered
- Future Plan
- Summary

Future plan

- Add 1 PB capacity this year
- The OS of computing node will migrate to Centos 7
- Provide SWAN for IHEP users based on EOS in 2018
- Use EOS to build Storage federation between
 Beijing and Chengdu, the distance is ~2000 km and network latency is about 60ms.

Contents

- IHEP Introduction
- EOS at IHEP
- Issues encountered
- Future Plan
- Summary

Summary

- EOS has been deployed for 2 years in IHEP.
- LHAASO mainly use EOS as storage systems, 1PB capacity will be increased in 2018.
- We will support more experiments in IHEP, but have to do more performance stress tests.
- The functionality and stability of FUSE are critical.
- More manpower on the monitoring and operation.
- More attempts will be conducted based on EOS, such as storage federation, supporting more applications.

Thanks for your attentions!

谢谢!