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TASI 2013: FeynRules/MadGraph tutorial

Celine Degrande, Olivier Mattelaer

Abstract: We present a simple example of how to make a simulation of LHC events for

BSM signals and the corresponding background using a fully integrated chain of tools,

including FeynRules, MadGraph 5, and aMC@NLO. A simplified model that features

new heavy fermionic (triplet and singlet in color) and two neutral scalar states is first im-

plemented in FeynRules. The output is passed to MadGraph 5 for process simulations,

determination of the cross section and signature identification at the parton level. A few

representative parameter benchmark points for the most promising signatures are identi-

fied. MadAnalysis 5is used as a flexible framework to analyse events at different steps

of the simulations. The cross section for the relevant signal cross sections is automatically

calculated at NLO. A search strategy is then formulated based on the characteristics of the

main backgrounds that are automatically simulated at LO and also at NLO through the

most advanced techniques, i.e. multi-parton merging and aMC@NLO, respectively. Ob-

servables that are sensitive to the signal are identified and finally compared to two sets of

pseudo LHC8 data. Advanced analysis techniques are briefly presented and MadWeight

applied to a selected scenario.

Keywords: Monte Carlo simulations, LHC, Standard Model, Beyond the standard

model.
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1. Introduction

2. The model

We add two real scalar fields, φ1 and φ2. They are singlets under all SM gauge groups.

Their mass terms are1:

Lkin,scalar =
1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 −
m2

1

2
φ2
1 −

m2
2

2
φ2
2 −m2

12φ1φ2 . (2.1)

We will call mass eigenstates Φ1 and Φ2, and their masses M1 and M2, respectively, and

we will assume M1 < M2.

We add two Dirac fermion fields, U and E. Their SM quantum numbers are those of

the SM uR and eR, respectively. These fields have mass terms

Ldirac,mass = MUUU +MEEE (2.2)

They interact with scalars via

LFFS = λ1,i φ1 UPRui + λ2,i φ2 UPRui + λ′
1,i φ1 EPRli + λ′

2 φ2EPRli + h.c. , (2.3)

where ui and li are the SM up-type quark and charged lepton fields. Note that there is

a Z2 symmetry under which all fields we added (φ1,2, U,E) flip sign, while all SM fields

do not, so the new particles must be pair-produced and the lightest new particle (LNP)

is stable. This same Z2 also forbids U − ui and E − li mixing via Yukawas with the SM

Higgs.

3. The FeynRules implementation

3.1 Preparation of the model file

As the model we are going to implement is a simple extension of the SM, it is not necessary

to start from scratch, but we can use the implementation of the SM included in the folder

/Models/SM. We therefore start by making a copy of this folder, in order to keep a clean

version of the SM. To do so, change directory to the Models subdirectory and make a copy

of the SM folder, before going into the new directory

cd Models

cp -r SM Tutorial

cd Tutorial

Even though the implementation is based on the model file SM.fr for the Standard Model,

the SM sector of the model will be implemented into a separate file that will simply be

loaded on top of SM.fr. We therefore start by opening a blank text file called Tutorial.fr.

You can start by personalizing the model file by including a name for you model, the name

of the author, etc.,

1All Lagrangian parameters, here and below, are assumed to be real
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M$ModelName = "Tutorial";

M$Information = {Authors -> {"C. Duhr"},

Version -> "1.0",

Date -> "27. 02. 2012",

Institutions -> {"ETH Zurich"},

Emails -> {"duhrc@itp.phys.ethz.ch"}

};

Note that his information is purely optional and could be omitted.

3.2 Implementation of the new parameters

We start by implementing the new parameters. The model we are considering depends on

9 new parameters, which we assume to be real in the following. FeynRules distinguishes

between two types of parameters, the so-called external parameters given as numerical

inputs and the internal parameters, related to other external and/or internal parameters

via algebraic expressions. All the parameters of the model, both external and internal, are

given in the FeynRules model file as a list named M$Parameters. Note that if an internal

parameter x depends on some other parameter y, then y should appear in M$Parameters

before the internal parameter x.

The new external parameters of the model are

• 5 mass parameters: m1, m2, m12, MU , ME .

• 4 vectors of coupling constants: λ1,i, λ2,i, λ
′
1,i, λ

′
2,i.

Note however that there is a difference between the mass parameters in the scalar and

fermionic sectors: while the masses in fermionic sector are physical masses, the mass matrix

in the scalar sector is not diagonal. For this reason, we will not discuss in the following

the fermion masses MU and ME, as they will be defined together with the particles rather

than as parameters of the model.

Let us now turn to the definition of the mass parameters in the scalar sector. The

masses m1, m2 and m12 will be denoted in the FeynRules model file by MM1, MM2 and MM12.

In the following we only show how to implement MM1, all other cases being similar. MM1

corresponds to the following entry in the list M$Parameters,

M$Parameters = {

...

MM1 == {

ParameterType -> External,

Value -> 200

},

...

}
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The first option tags MM1 as an external parameter, while the second option assign a value

of 200GeV to m1. We stress that this numerical value can be changed later on in the

matrix element generators.

The masses in the scalar sector are not the physical masses, because the mass matrix

is not diagonal. In order to obtain the physical masses, we need to diagonalize the mass

matrix
(

m2
1 m2

12

m2
12 m2

2

)

. (3.1)

In the following, we denote the eigenvalues by MPe1 and MPe2. In addition, we need to

introduce a mixing angle θ (th) relating the fields φi to the mass eigenstates Φi by,
(

φ1

φ2

)

=

(

− sin θ cos θ

cos θ sin θ

) (

Φ1

Φ2

)

. (3.2)

As in this case the mass matrix is only two-dimensional, we can compute the eigenvalues and

the mixing angle analytically, and simply implement the analytical formulas into FeynRules.

The implementation follows exactly the same lines as for the masses m1, m2, m12, with

the only differences that

1. the ParameterType is Internal (as these parameters are dependent on the external

mass parameters,

2. the Value is given by an analytical expression (in Mathematica syntax).

Next we turn to the implementation of the (vectors of) new coupling constants, which

we will call lam1, lam2, lam1p, lam2p. They are all external parameters, and thus the im-

plementation follows exactly the same lines as the implementation of the mass parameters,

with two modifications: First, we have to deal with vectors in flavor space, i.e., objects

carrying a single flavor index. The fermion fields implemented in SM.fr carry an index

called Generation which labels the flavor of a given field. We can in the same way assign

an index of this type to parameters via

Indices -> { Index[Generation] }

Second, some matrix element generators, like for example MadGraph, keep track of the

types of couplings that enter a process. This allows for example to generate a process by

only taking into account QCD-type vertices, and to neglect all QED-type vertices. For

this reason, it is mandatory to tell the matrix element generator how the new coupling

constants should be counted. As in this case we are dealing with new classes of couplings

which are a priori independent of QCD or QED interactions, we simply assign a new tag,

called interaction order, to the coupling via the option

InteractionOrder -> {NP, 1}

The name of the tag (NP for “new physics” in this case) can be chosen freely. The above

option instructs the matrix element generator to count one unit of “NP” for each new

coupling.
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3.3 Implementation of the fields

In this section we discuss the implementation of the new fields. The implementation is

similar to the implementation of the parameters, i.e., all the fields are entries of a list

called M$ClassesDescription. In Tab. 1 we show the names of the fields used in the

implementation2.

U E φ1 φ2 Φ1 Φ2

uv ev pi1 pi2 p1 p2

Table 1: Symbols used for the fields in the FeynRules implementation.

We illustrate the implementation of a new field on the example of the particle U (uv).

The definition of the particle corresponds to an entry in M$ClassesDescription of the

following form

M$ClassesDescription = {

...

F[100] == {

ClassName -> uv,

SelfConjugate -> False,

Indices -> {Index[Colour]},

QuantumNumbers -> {Y -> 2/3, Q -> 2/3},

Mass -> {Muv, 500},

Width -> {Wuv,1}

},

...

}

The meaning of this definition is as follows: each particle class has a name of the form

X[i], where X is related to the spin of the field (See Tab. 2), and i is an integer that

labels the classes. Note that i can be chosen freely, as long as there is no name clash with

an already existing class (in this case, there could be a name clash with the SM particles

already defined in SM.fr). Each class has a series of options

1. ClassName: the symbol by which the particle will be represented in the Lagrangian.

2. SelfConjugate: a boolean variable, indicating whether the particle has an antiparti-

cle (False) or not (True). If the field is not selfconjugate, a symbol for the antiparticle

is automatically defined by appending “bar” to the name of the particle. In the above

example the antiparticle associated to uv will be denoted by uvbar. Note that in the

case of fermions the symbol for the antiparticle refers to the quantity Ū rather than

U †.

2Note that the symbol u, e and phi are already in use in the SM implementation. We also avoid using

simply uppercase letters, as some matrix element generators are case insensitive.
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3. Indices: All indices carried by the field. The available types of indices from the SM

implementation are

• Generation: fermion flavor index ranging from 1 to 3,

• Colour: fundamental color index ranging from 1 to 3,

• Gluon: adjoint color index ranging from 1 to 8,

• SU2W: adjoint SU(2)L index ranging from 1 to 3.

4. QuantumNumbers: a list of all U(1) charges carried by the field. In the SM implemen-

tation the following U(1) charges are already defined

• Y: weak hypercharge,

• Q: electric charge.

5. Mass: the mass of the particle. It is a list of two elements, the first being the symbol

used to represent the mass, and the second its value (in GeV). If the value of the

mass is obtained from some analytic expression defined as an internal parameter with

the same symbol (as is the case for example in the scalar sector of the model), the

value is set to Internal.

6. Width: the width of the particle. The definition is similar to Mass. Note that as we

do not yet know the widths of the new particles, we simply set it for now to 1GeV,

and will determine its exact value later using one of the matrix element generators.

The implementation of the other mass eigenstates (ev, p1, p2) is similar, so we do not

discuss it here.

Spin 0 1/2 1 2 ghost

Symbol S F V T U

Table 2: Available particle classes in FeynRules.

Let us comment on the implementation of the interaction eigenstates φi. Indeed, while

the matrix element generators work exclusively at the level of the mass eigenstates, the

interaction eigenstates are in general useful to write the Lagrangian in a compact form. It

is therefore useful to define also the fields for the interaction eigenstates φi. The definition

of these fields is similar to the mass eigenstates, e.g.,

S[100] == {

ClassName -> pi1,

SelfConjugate -> True,

Indices -> {},

Unphysical -> True,

Definitions -> {pi1 -> - Sin[th] p1 + Cos[th] p2}

},

– 6 –



First, note that the Mass and Width options are omitted3, as these fields are not mass

eigenstates. This last fact is made explicit by the option

Unphysical -> True,

which instruct FeynRules not to output this field to a matrix element generator. Finally,

the relation of the field pi1 to the mass eigenstates is simply given as a Mathematica

replacement rule in the Definitions option.

3.4 Implementation of the Lagrangian

The definitions in the model file being complete, we now turn to the implementation of

the Lagrangian. This can be done either in the model file, or directly in a Mathematica

notebook. Here we use the latter approach, and we start by opening a new notebook and

load the FeynRules package (see the preinstallation instructions). Next we have to load

the model files, both for the SM and for the new sector,

LoadModel["SM.fr", "Tutorial.fr"]

Note that the new model file should be loaded after SM.fr. Furthermore, we also load

two additional files, which restrict the first two fermion generations to be massless and the

CKM matrix to be diagonal,

LoadRestriction["DiagonalCKM.rst", "Massless.rst"]

The new Lagrangian consists of three parts,

L = Lscalar,kin + Lfermion,kin + LY uk . (3.3)

The kinetic terms for the new scalars can easily be implemented by using the symbols for

the gauge eigenstates and the mass parameters defined in the model file, as well as the

symbol for the space-time derivative ∂µ in FeynRules, del[ ..., mu]. As an example, we

have

1

2
∂µφ1 + ∂µφ1 −

1

2
m2

1φ
2
1

1/2 del[p1, mu] del[p1, mu] - 1/2 MM1^2 p1^2

The kinetic terms for the fermions can be implemented in a similar way. However, as the

fermions are charged under the SM gauge group, we have to use the covariant derivative

DC rather than the space-time derivative del. Furthermore, we have to use a “.” instead

of an ordinary multiplication in order to take the non-commuting nature of the fermions

into account. As an example, we have

i ŪγµDµU −MU ŪU

I uvbar.Ga[mu].DC[uv, mu] - Muv uvbar.uv

3The QuantumNumbers option is also omitted, but for the simple reason that the fields φi do not carry

any U(1) charges.
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where Ga[mu] is the FeynRules symbol for the Dirac matrix γµ. Finally, the Yukawa

interactions can be implemented in the same way as the kinetic terms for the fermions,

e.g.,

λ1 φ1 ŪP+u

lam1[f] pi1 ProjP[s1,s2] uvbar[s1,i].uq[s2, f, i]

where u denotes the u quark field defined in SM.fr and ProjP denotes the right chiral

projector (the left projector is denoted by ProjM). Note that FeynRules contains a function

HC[ ] which allows to obtain the hermitian conjugate of an expression in an automated

way.

3.5 Computing the Feynman rules and running the interfaces

Our model implementation is now complete, and so we can compute the Feynman rules.

The Feynman rules of the new sector can be obtained by issuing the command

FeynmanRules[ LNew ]

where LNew is the name of the variable that contains the new Lagrangian.

The Feynman rules can be written to file in a format suitable to various matrix element

generators by using the FeynRules interfaces. In this tutorial, we will use the interfaces to

the UFO, and thus to MadGraph 5, which can be called via

WriteUFO[ LSM + LNew ];

where LSM is the SM Lagrangian implemented in SM.fr. Note that the SM implementation

is available in both Feynman gauge and unitary gauge. A boolean variable FeynmanGauge

allows to switch between both gauges.

3.6 Exporting the model into MadGraph 5

After successfully running the UFO interface, a directory Tutorial_UFO has been created

in the /Models/Tutorial/ directory. This directory contains all the UFO files needed to

run the model in MadGraph 5. To import the model into MadGraph it is enough to copy

the UFO directory into the /models/ subdirectory of MadGraph 5,

cp -r Tutorial_UFO <your MadGraph directory>/models/

The MadGraph 5 shell the new model can now be called in the same way as any other

built in model,

mg5> import model Tutorial_UFO

More information on MadGraph 5 will be presented in the next section
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4. Compute cross-section and generate events with MadGraph 5

MadGraph5 can be run on a local computer or via the web at one of the following website:

• http://madgraph.hep.uiuc.edu

• http://madgraph.phys.ucl.ac.be

The registration is straightforward, and you can instantly creates optimized code for

the computation of the cross-section of any processes. That code can be run directly on the

web or downloaded and run locally. However, for security reason, generating events on the

web is allowed only after that you have sent an email to one of the authors of MadGraph5.

Since most of the functions are available on the internet, most users will not need to install

MadGraph5.

The MadGraph5 collaboration plans to continue to improve this code both by adding

new functionalities and by making the code easier to use. New tutorials and updates on

this tutorial can be found at the following link:

https://server06.fynu.ucl.ac.be/projects/madgraph/wiki/MGTutorial

In this part of the tutorial, we will study a full example on how to generate events for

BSM theories. We will assume that you have your own UFO model create accordingly to

the previous section. If you don’t, you can download the associated model at the following

address:

http://feynrules.irmp.ucl.ac.be/attachment/wiki/WikiStart/TASI 2013 UFO.tgz

We will split this into three sections. First we will explain in detail how to install the

code, Then we will show how you can test the validity of the model. And finally we will

present how you can generate BSM events, both with and without the associated decays.

4.1 Instalation of MadGraph5

4.1.1 Installation on Windows

MadGraph5 and the associated programs are designed and tested on Linux and MacOs

operating systems. The windows compatibility via cygwin is currently not supported. For

Windows user, we advise they install Linux in dual boot. Virtual machines are another

possibility. Note that some virtualbox packages do not include the library readline. This

library is not mandatory but enables the auto-completion (See the paragraph associated to

python installation to learn how to solve this). For this tutorial session, we have a virtual

box ready to use on usb stick please ask If you need it.

4.1.2 Installation on Linux / MacOs

MadGraph5 The last version of MadGraph5 can be found at the following page:

https://launchpad.net/madgraph5. This website is also the place, where you can ask ques-
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tion, make suggestions or report a bug. The installation is straightforward since you have

only to untar it

tar -xzpvf MadGraph5_v1.X.Y.tgz

No compilation are required for MadGraph5, you can just launch it.

./MadGraph5_v1.X.Y/bin/mg5

If you don’t have a valid python version, MadGraph 5 will crash directly with an explicit

message. In this case, you will need to install Python2.7.

If you have admin rights on your system, you can run the following command:

sudo ln -s MadGraph5_v1.X.Y/bin/mg5 /usr/local/bin

such that MadGraph5 can be launched from any directory.

Python The only requirement forMadGraph5 is to have a current version of Python (ver-

sion 2.6 or 2.7). In most cases, it can be installed via your favorite repository manager.

However, some of the linux repository distributes python 2.5. In that case, you will need

to download python at the following link: http://www.python.org/download/ and follows

the associate instructions.

Note that for some linux versions (especially in virtual machine), the library readline

is not present on the system. This will disable the auto-completion. If you care about that

point, you will should first install that library (via your repository) and then to recompile

python from the source code. Python version shipped with mac are compatible but the

auto-completion features are not optimal. If you want optimal auto-completion please

install a clean python version.

Optional package Various optional packages can be linked to MadGraph5 in order to

customize the output, create plots, ... The installation of those packages is easy since you

can install them by launching mg5 and typing

mg5> install NAME

Where NAME is one of the following package name:

• MadAnalysis: A package to draw automatically various histogram linked to the event

generation.

• ExRootAnalysis : A package to convert the various output in a ROOT format.

• pythia-pgs: A package containing Pythia6 and PGS. Pythia6 is able to shower and

to hadronize your events and is able to perform the matching for multi-jet production.

PGS is a fast detector simultation package.
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• Delphes: A package allowing to have a fast detector simulation, in replacement of

PGS.

Note that some of those programs might have some extra-dependencies (especially in Root).

Additional instructions for MacOs Compared to Linux the installation on MacOS

might be more complex since MacOS doesn’t provide various set of default programs present

on Linux. Two important programs which are not present by default are gmake and

gfortran4.x. We advise you to first check if those program are install via the commands.

$> make --version

$> gfortran --version

In order to install gmake it is easiest to install xcode (free but requiring an apple developer

account)

• MacOs 10.5: https://connect.apple.com/cgi-bin/WebObjects/

MemberSite.woa/wa/getSoftware?bundleID=20414

• MacOs 10.6: http://connect.apple.com/cgi-bin/WebObjects/

MemberSite.woa/wa/getSoftware?bundleID=20792

• MacOs 10.7: http://itunes.apple.com/us/app/xcode/id448457090?mt=12

• MacOs 10.8: use the app store.

Note that you need to enable the command line tools (in the download section of the

preference of Xcode)

Concerning gfortran you can download it (with gcc) from the following link:

• MacOs 10.5: http://sourceforge.net/projects/hpc/files/hpc/gcc/

gcc-leopard-intel-bin.tar.gz/download

• MacOs 10.6: http://prdownloads.sourceforge.net/hpc/

gcc-snwleo-intel-bin.tar.gz?download

• MacOs 10.7: http://prdownloads.sourceforge.net/hpc/

gcc-lion.tar.gz?download

• MacOs 10.8: http://prdownloads.sourceforge.net/hpc/gcc-mlion.tar.gz?download

4.2 Testing the installation and Learning the syntax

MadGraph5 includes a build-in tutorial.

$> ./bin/mg5

mg5> tutorial

Then just follow the instructions on the screen and you will learn the basic command/usage

of MadGraph5. This takes around 15-20 minutes.
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4.3 Importing and checking the model

The simplest way to have access to a model in MG5 is to put it in the directory: MG5 DIR/models

after that you can simply import it by typing

mg5> import model MC4BSM_2012_UFO

or

mg5> import model MC4BSM_2012_UFO --modelname

The option –modelname tells MG5 to use the name of the particles defines in the UFO

model, and not the usual MG5 conventions for the particles of the SM/MSSM. For this

particular model, this changes only the name associated to τ lepton (ta- and tt- respec-

tively).

If you have developed your own model following the FeynRules tutorial, this will

be the first time that you are going to use this model. It is therefore crucial to start by

checking the model. MadGraph5 performs some sanity checks the first time that you load

the model, but those test are quite weak. We therefore suggest to test, three properties for

on a series of processes.

• The gauge invariance, by testing the Ward identities.

• The Lorentz invariance.

• The Aloha consistency, by evaluating the same square matrix element by different

set of Helicity amplitudes.

For instance, we present how to check those properties for all the 2 → 2 BSM particles

productions:

mg5> import model MC4BSM_2012_UFO

mg5> define new = uv uv~ ev ev~ p1 p2

mg5> check p p > new new

which results in the following output:

Gauge results:

Process matrix BRS ratio Result

g g > uv uv~ 7.4113020914e-01 1.0055761722e-31 1.3568144434e-31 Passed

g u > uv p1 3.8373877873e-02 6.1629758220e-33 1.6060341471e-31 Passed

g u > uv p2 2.5726129500e-02 4.4176419953e-33 1.7171809678e-31 Passed

g u~ > uv~ p1 2.0117011717e-01 8.3456964257e-34 4.1485766093e-33 Passed

g u~ > uv~ p2 1.9705216573e-01 1.8809915790e-32 9.5456529090e-32 Passed

Summary: 5/5 passed, 0/5 failed

Lorentz invariance results:

Process Min element Max element Relative diff. Result

g g > uv uv~ 4.8743514998e-01 4.8743514998e-01 1.1388417769e-16 Passed
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g u > uv p1 1.3897148577e-01 1.3897148577e-01 1.1983282238e-15 Passed

g u > uv p2 5.7988729593e-02 5.7988729593e-02 5.9829676840e-16 Passed

g u~ > uv~ p1 8.8655875905e-03 8.8655875905e-03 1.7610238605e-15 Passed

g u~ > uv~ p2 1.0373598029e-01 1.0373598029e-01 8.0267932700e-16 Passed

u u > uv uv 2.1536620557e+00 2.1536620557e+00 1.8558171084e-15 Passed

u u~ > uv uv~ 8.4033626775e-01 8.4033626775e-01 2.1138643036e-15 Passed

u u~ > p1 p1 7.6001259005e-03 7.6001259005e-03 2.9672410014e-15 Passed

u u~ > p1 p2 9.5102790993e-05 9.5102790993e-05 2.7645774018e-14 Passed

u u~ > p2 p2 4.6427735529e-04 4.6427735529e-04 8.6404128750e-15 Passed

u u~ > ev ev~ 2.3919237366e-03 2.3919237366e-03 2.7196573767e-15 Passed

c c~ > uv uv~ 8.5752329113e-01 8.5752329113e-01 2.3304340127e-15 Passed

d d~ > uv uv~ 8.9275046680e-01 8.9275046680e-01 3.2333557600e-15 Passed

d d~ > ev ev~ 4.8145327614e-04 4.8145327614e-04 5.6298410782e-16 Passed

s s~ > uv uv~ 8.8941849408e-01 8.8941849408e-01 3.6199458330e-15 Passed

u~ u~ > uv~ uv~ 2.3800428911e+00 2.3800428911e+00 1.8658874237e-15 Passed

Summary: 16/16 passed, 0/16 failed

Not checked processes: c c~ > ev ev~, s s~ > ev ev~

Process permutation results:

Process Min element Max element Relative diff. Result

g g > uv uv~ 4.9184278197e-01 4.9184278197e-01 2.2572721717e-16 Passed

g u > uv p1 4.1859552985e-02 4.1859552985e-02 3.3153215498e-16 Passed

g u > uv p2 2.0129184319e-01 2.0129184319e-01 1.1030978772e-15 Passed

g u~ > uv~ p1 9.5566536137e-02 9.5566536137e-02 5.8086390357e-16 Passed

g u~ > uv~ p2 3.6165811126e-03 3.6165811126e-03 3.8372671248e-15 Passed

u u > uv uv 2.1101603787e+00 2.1101603787e+00 2.1045282356e-15 Passed

u u~ > uv uv~ 1.3549964258e+00 1.3549964258e+00 1.1470969258e-15 Passed

u u~ > p1 p1 4.9555140623e-03 4.9555140623e-03 1.4002369515e-15 Passed

u u~ > p1 p2 2.0863569608e-02 2.0863569608e-02 6.6516842845e-16 Passed

u u~ > p2 p2 1.2914424155e-03 1.2914424155e-03 4.7013572521e-15 Passed

u u~ > ev ev~ 1.7823584674e-03 1.7823584674e-03 0.0000000000e+00 Passed

c c~ > uv uv~ 9.2608997797e-01 9.2608997797e-01 1.0789456164e-15 Passed

d d~ > uv uv~ 8.3532448258e-01 8.3532448258e-01 1.3290919251e-16 Passed

d d~ > ev ev~ 5.8126525280e-04 5.8126525280e-04 9.3262255680e-16 Passed

u~ u~ > uv~ uv~ 2.1759606129e+00 2.1759606129e+00 2.0408880897e-16 Passed

Summary: 15/15 passed, 0/15 failed

More informations about these checks (like the values of the random phase-space

points) can be obtained via the commands:

mg5> display checks

The display commands is very useful in order to obtained information on the particles,

couplings, interactions, ... For example4

4Note that the spin is written in the 2S + 1 convention.
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mg5>display particles

Current model contains 21 particles:

ve/ve~ vm/vm~ vt/vt~ e-/e+ m-/m+ tt-/tt+ u/u~ c/c~ t/t~ d/d~ s/s~ b/b~ w+/w- uv/uv~

a z g h p1 p2

mg5>display particles p1

Particle p1 has the following properties:

{

’name’: ’p1’,

’antiname’: ’p1’,

’spin’: 1,

’color’: 1,

’charge’: 0.00,

’mass’: ’MPe1’,

’width’: ’Wpe1’,

’pdg_code’: 9000006,

’texname’: ’p1’,

’antitexname’: ’p1’,

’line’: ’dashed’,

’propagating’: True,

’is_part’: True,

’self_antipart’: True

}

mg5>

4.4 Generation of events

4.4.1 Generation of events with no decay

In this section, we start the computation of the cross-sections and the generation of events

for the proposed process of interest:

pp → UŪ

First we will generate this exact process, Pythia being in charge of the decays. Note that

in this way, you lose the full spin-correlations.

import model MODELNAME

generate p p > uv uv~

output

launch

If you have install the pythia-pgs/Delphes package, you will be asked if you want to run

the package (here for pythia-pgs installed but not Delphes):

Which programs do you want to run?

0 / auto : running existing card
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1 / parton : Madevent

2 / pythia : MadEvent + Pythia.

3 / pgs : MadEvent + Pythia + PGS.

[0, 1, 2, 3, auto, parton, pythia, pgs][60s to answer]

>

Enter your choice (A meaningful choice here is ”pythia”). Note that you have 60 second

to answer, if you want to have more time, you can press enter to stop the timer or change

your configuration file to change the value of the timer. When a correct answer have been

given, you will have a second question:

Do you want to edit one cards (press enter to bypass editing)?

1 / param : param\_card.dat (be carefull about parameter consistency, especially widths)

2 / run : run\_card.dat

3 / pythia : pythia_card.dat

9 / plot : plot_card.dat

you can also

- enter the path to a valid card or banner.

- use the ’set’ command to modify a parameter directly.

The set option works only for param\_card and run\_card.

Type ’help set’ for more information on this command.

[0, done, 1, param, 2, run, 3, pythia, 9, enter path, ... ][60s to answer]

>

Let’s discuss here what those card are.

param card The param card contains all the external parameter of your model. If you

enter ”1” or ”param” to the last question you will open that card in a text editor (vi or

emacs by default) This one should looks like this (Note that I put only a part of the Card):

###################################

## INFORMATION FOR FRBLOCK

###################################

Block frblock

1 2.000000e+02 # MM1

2 3.000000e+02 # MM2

3 5.000000e+01 # MM12

4 1.000000e+00 # lam1

5 1.000000e+00 # lam2

6 1.000000e+00 # lam1p

7 1.000000e+00 # lam2p

Block mass

5 4.700000e+00 # MB

6 1.720000e+02 # MT
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15 1.777000e+00 # MTA

23 9.118760e+01 # MZ

25 1.200000e+02 # MH

9000008 5.000000e+02 # Muv

9000009 2.500000e+02 # Mev

## Not dependent paramater.

## Those values should be edited following the

## analytical expression. MG5 ignore those values

## but they are important for interfacing the output of MG5

## to external program such as Pythia.

12 0.000000 # ve : 0.0

14 0.000000 # vm : 0.0

16 0.000000 # vt : 0.0

As it is clearly stated, some of the value of the param card are not used By MG since

those are in fact fixed by the UFO model. Those information are nonetheless important

for shower program (like Pythia).

Note that in general the entry for the param card are not independent one of each

other. One example is the fact that some matrix need to be unitary. A more annoying

case is the the width of the particles which are correlated to the mass spectrum in a non

trivial way.

The last version of FeynRules partly solves this problem by including in the UFO

model a module able to compute all the two body decay partial. (Work to automate the

partial width for three and four body decay inside MG is on his way). For the case of

this tutorial model, you can easily convince yourself that this module is sufficient for the

computation of the width of the BSM particles. In order to use this module, you just have

to replace the width value by ”Auto”.

###################################

## INFORMATION FOR DECAY

###################################

DECAY 6 1.508336e+00 # WT

DECAY 23 2.495200e+00 # WZ

DECAY 24 2.085000e+00 # WW

DECAY 25 5.753088e-03 # WH

DECAY 9000006 Auto # Wpe1

DECAY 9000007 Auto # Wpe2

DECAY 9000008 Auto # Wuv

DECAY 9000009 Auto # Wev

After closing and reopen the param card you should see that the param card has been

modified and that the decay information looks like this:

# PDG Width

DECAY 9000006 0.000000e+00
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#

# PDG Width

DECAY 9000007 1.233920e+00

# BR NDA ID1 ID2 ...

5.000000e-01 2 9000009 -11 # 0.61696

5.000000e-01 2 -9000009 11 # 0.61696

#

# PDG Width

DECAY 9000008 5.400300e+00

# BR NDA ID1 ID2 ...

5.858749e-01 2 2 9000006 # 3.1639

4.141251e-01 2 2 9000007 # 2.2364

#

# PDG Width

DECAY 9000009 2.934500e-01

# BR NDA ID1 ID2 ...

1.000000e+00 2 11 9000006 # 0.29345

With older version of MadGraph/Feynrules or if you need to have three (or more)

body decay, You are force to create your param card in advance. This is the way of doing

it:

mg5> import model MC4BSM_2012_UFO

mg5> generate uv > u p1

mg5> add process uv > u p2

mg5> add process p2 > ev e+

mg5> add process p2 > ev~ e-

mg5> add process ev > e- p1

mg5> output

mg5> launch

Again, the last command will ask you if you want to change the mass spectrum and/or

the cuts. In principle all cuts should be set to zero for width computation. Then your

browser will automatically open an html page with the results.5 One of the results will be

the new param card.dat. Note that this script modified only the width of the particles

present in the initial states of the generated processes. This means that the width of p1
is not modified and therefore is still has it default value (1.0) which is not correct. You

have to modify this card manually before using it for an event generation.

run card The run card contains all the parameter which are not model dependent. This

include

• The parameter of the beam (energy, type, pdf, polarization)

5You can de-activated this behavior by modifying the configuration files present at the following path:

./input/mg5 configuration.txt
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• How to treat the scale.

• If and how to run matching (see the associate lectures)

• All the cuts that you want to perform at the parton level

Most of those are self-explanatory but few of them needs some explanation. Informa-

tion about those parameter can be found here: https://answers.launchpad.net/madgraph5/+faq/2014

4.4.2 Generation of events with decay

In this case, the number of decay channels is quite limited, it’s therefore possible to pre-

scribe all the steps of the decay chain. The syntax for the decay chains is the following:

the production first, then the decays of the final states separate by a comma. To avoid

ambiguity parenthesis should be present in the case of sub-decay.

import model MC4BSM_2012_UFO

generate p p > uv uv~ , uv > u p1, uv~ > u~ p1

define l = e+ e-

define lv = ev ev~

add process p p > uv uv~, uv > u p1, \

(uv~ > u~ p2, (p2 > l lv, lv > l p2))

add process p p > uv uv~, uv~ > u~ p1,\

(uv > u p2, (p2 > l lv, lv > l p2))

add process p p > uv uv~, (uv > u p2, (p2 > l lv, lv > l p2)), \

(uv~ > u~ p2, (p2 > l lv, lv > l p2))

output

launch

The validity of this calculation must be considered, since specifying the decay sequence

means the contribution of non-resonance Feynman diagram have been neglected. This is

however valid since the interferences with those diagrams are negligible if the intermediate

particles are on-shell. In order to ensure such a condition, we have associate to each of the

decaying particles an additional cuts called BW cut :

|mvirt −m0| < BWcut ∗ Γ

This cut can be specified in the run card.dat.

If you have installed the MadAnalysis package, you should have automatically dis-

tributions created at parton level, after Pythia and at the reconstructed level –if runned–.

Those one can be used to check the sanity of the productions but also to search the potential

observables of this production.

5. Phenomenological analyses with MadGraph 5 and MadAnalysis 5

In this section, we present in details how to use MadGraph 5 and MadAnalysis 5 to

investigate the properties of a Z+jets event sample. For the setup of the collisions, we

– 18 –



choose the LHC collider running at a center-of-mass energy of 8 TeV. We focus on events

where the Z-boson decays leptonically but we neglect, for the sake of the example, the

τ+τ− channel. We also include virtual photon exchange diagrams as the related effects

cannot be neglected.

5.1 Event generation with MadGraph 5

Matrix-element generator based event samples are accurate enough for describing hard and

widely separated parton emissions. In contrast, it is known that this method breaks down

in the soft and collinear limit. In this case, parton showering algorithms must be used for

a proper description of the properties of the process under consideration. In the sequel, we

therefore employ the MLM matching procedure, based on event rejection, to combine the

strengths of matrix elements and the ones of parton showering in a consistent way.

As stated above, we focus on the generation of events related to a final state containing

a pair of charged leptons, together with possible additional jets. In order to appropriately

describe the kinematical properties of these jets, we merge matrix elements containing up

to two additional hard jets to parton showering by employing the MLM matching scheme

as implemented in MadGraph 5.

Z+jets events can be efficiently generated in MadGraph 5 by means of multiparticles.

Employing the two predefined symbols l+ and l- that represent electrons and muons, the

computation of the relevant matrix element is performed by typing in the command line

interface of MadGraph 5

generate p p > l+ l-

add process p p > l+ l- j

add process p p > l+ l- j j

output FRMGSchool

launch -m

Let us note that writing the process in such a way allows to consistently include virtual

photon contributions, in contrast to generate p p > Z, Z > l+ l- where the Z-boson is

produced on-shell, the invariant mass of the lepton pair being always equal to the Z-mass.

MadGraph 5 then asks to configure the cards with the setup for event generation. The

file param card.dat containing the model parameters does not have to be modified, since

we are using the default settings for the Standard Model. The latter can be inspected by

browsing the built-in model library of MadGraph 5. In a second step, the run card.dat

file must be edited so that the following information are provided to MadGraph:

• For the sake of the example, we ask to generate 25000 events. The nevents parameter

of the run card must be updated accordingly.

• The beam energy has to be fixed to 4000 GeV (for each beam). The parameters

ebeam1 and ebeam2 have to be updated.

• The MLM matching procedure must be switched on (1 = ickkw).
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• Since the cuts on the jets are automatically handled by MadGraph 5, the parameter

auto pt mjj being set to true, all pT -cuts can be safely removed.

• For the same reasons, cuts on the angular distance ∆R between jets can also be

removed from the run card.

• The Drell-Yan cross section explodes at low lepton-pair invariant mass. Therefore, a

cut on the corresponding parameter must be added. We choose 50 = mmll.

• The matching control parameter xqcut must be set. We choose to fix it to 10 GeV.

The consistency of such a choice will have to be verified after event generation (by

investigating the smoothness of the differential jet rate distributions). This will be

performed below.

Finally, the file controlling Pythia, pythia card.dat, contains default values (see the

directory Cards and the file pythia card default.dat).

The event generation process leads to the creation of a collection of event files. We

focus in the analysis on two of them all stored in the directory

<path-to-MadGraph>/FRMGSchool/Events/run 01:

• The hadron-level event file, including parton showering, hadronization and matching,

fermi pythia events.hep.gz,

• The reconstructed-level event file, including parton showering, hadronization and

matching, fermi pythia events.lhe.gz. In contrast to the hep file above, jet clus-

tering has been performed by means of the program FastJet called by the Hep2Lhe

routine. It consequently produces a simplified lhe file, with reconstructed objects,

such as electrons, muons, photons, jets or missing energy, instead of tons of hadrons.

5.2 Installation of MadAnalysis 5

In order to install the latest stable version of the MadAnalysis 5 package, one has two

options:

• A tarball can be downloaded from the website

http://madanalysis.irmp.ucl.ac.be

and be subsequently unpacked by issuing in a shell

mkdir MadAnalysis5

cd MadAnalysis 5

/tar -xvf ma5_xxxx.tgz

where xxxx stands for a version number.

• Alternatively, MadAnalysis 5 can be directly obtained from the public branch of

our SVN (SubVersion) by issuing in a shell
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svn checkout \

https://cp3.irmp.ucl.ac.be/sources/madanalysis/branches/madanalysis-current

cd madanalysis-current

MadAnalysis 5 requires several external dependencies in order to properly run:

• Python 2.6 or a more recent version (but not the 3.X series) that can be downloaded

from the website

http://www.python.org/

This requirement is common with those needed by the MadGraph 5 package.

• The GNU GCC compiler. Note that MadAnalysis 5 has been validated with the

versions 4.3.X and 4.4.X. The GCC compiler can be downloaded from

http://gcc.gnu.org/

• ROOT v5.27 or a more recent version that can be downloaded from

http://root.cern.ch/

We remind that checking the version of ROOT installed on a system, it is sufficient

to type in a shell

root-config --version

Moreover, the Python libraries generated by ROOT must be present. To install

them, it is necessary to first install the Linux package python-devel on the system.

Next, before generating the ROOT makefile, the ROOT configuration script has to

be run as

./configure --with-python

Let us note that the Python version employed when starting MadAnalysis 5 has

to be the same as the one used for the compilation of ROOT.

To benefit from all options coming with the MadAnalysis 5 program, we also recommend

to install Zlib headers and libraries. The latter can be downloaded from

http://zlib.net/

Once properly installed, MadAnalysis 5 can be launched by issuing

bin/ma5

When started, MadAnalysis 5 first checks that all the dependencies (gcc, Python,

ROOT, Zlib) are present on the system and that compatibility is ensured with the installed

versions. In the case of any problem, a message is printed to the screen and the code

exists in the case it cannot properly run. On the first session of MadAnalysis 5, the

SampleAnalyzer core is compiled behind the scene as a static library stored in the

directory tools/SampleAnalyzer/Lib. For the next sessions, the kernel is only recompiled

if the configuration of the system changes (new version of the dependencies or of the main

program).
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5.3 Analyzing reconstructed events with MadAnalysis 5

In this section, we show how to investigate the properties of the event file fermi pythia

events.lhe.gz. This file contains events where jets have been, internally to MadGraph,

clustered by means of a kT -clustering algorithm.

5.3.1 Getting started

First, MadAnalysis 5 has to be launched by issuing in a shell

bin/ma5

from the directory where MadAnalysis 5 has been installed (see above). On start-up,

two lists of labels corresponding to standard definitions of particles and multiparticles are

loaded into the memory of the current session of the program. Among these, one finds labels

for the charged leptons l+ and l-, for the jets j, for the invisible particles invisible and

for the particles taking part to the hadronic activity of the event hadronic.

Next, the generated event sample has to be loaded inside the current session of Mad-

Analysis. This is achieved by typing in the command line interpreter

import <path-to-the-event-file>/fermi_pythia_events.lhe.gz as zjets

where zjets is a user-defined label for the dataset containing the sample. MadGraph 5

being a leading-order Monte Carlo generator, the returned value for the cross section is

given at the leading-order accuracy. However, the cross section for the Drell-Yan process

is known at the next-to-next-to-leading order. Employing the Fewz program, one obtains

σDY = 2263 pb. This information can be passed to MadAnalysis 5 for a more precise

normalization of the distributions,

set zjets.xsection = 2263

We are now ready to investigate the properties of our event sample.

As a first example, we would like to get an idea of the particle content of the events.

To this aim, it is sufficient to type in the command line interpreter of MadAnalysis 5

plot NAPID

submit zjets

generate_html zjets_html

where we map particles and antiparticles (otherwise, the corresponding command would be

plot NPID). The initial and intermediate particles present in the event file are automati-

cally ignored by MadAnalysis 5, even if this default behavior can be modified by the user

if necessary (we refer to the manual for more information). The result can be displayed

by typing open zjets_html. The corresponding histogram is presented on Figure 1. One

observes the presence of 4 types of particles:

• electrons,

• muons,
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Figure 1: Particle content of the Z+jets event sample.

N [ e ] 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 )
-1

 =
 1

0 
fb

in
t

E
ve

nt
s 

 (
 L

0

2000

4000

6000

8000

10000

310×

N [ mu ] 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 )
-1

 =
 1

0 
fb

in
t

E
ve

nt
s 

 (
 L

0

2000

4000

6000

8000

10000

310×

N [ l ] 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 )
-1

 =
 1

0 
fb

in
t

E
ve

nt
s 

 (
 L

0

2

4

6

8

10

12

14

16

18

20

22

610×

Figure 2: Lepton multiplicity of the Z+jets event sample.

• missing energy (which is assigned the PDG code of the electronic neutrino according

to the simplified lhe format used by MadGraph). Let us note that the computation

of the missing energy is always based on the visible particles of the event and that

care must be taken to the employed definition. The latter can indeed differ among

the different available Monte Carlo and analysis tools.

• jets (which are assigned the PDG code of the gluon according to the simplified lhe

format used by MadGraph).

One can also note that MadAnalysis 5 indicates on the webpage that the event weight is

too large (∼ 1800) and that additional events should be generated. This weight has been

computed according to the entered value for the cross section and the integrated luminosity

(that can be change via set main.lumi = ...). By default, MadAnalysis 5 assumes an

integrated luminosity of 10 fb−1.

5.3.2 Lepton properties - a few examples

From Figure 1, we know that our event sample contains (among others) electrons and

muons and we now study their kinematical properties. The set of commands
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Figure 3: Dilepton invariant mass for a Z+jets event sample.

define e = e+ e-

define mu = mu+ mu-

define l = l+ l-

plot N(l) 5 0 5

plot N(e) 5 0 5

plot N(mu) 5 0 5

resubmit

generate_html zjets_html

allows, in a first stage, to define three multiparticle labels. While e and mu refer to electrons

and muons, respectively, l refers to any type of charged leptons of the first two generations.

Each of the next three commands ask for the production of one histogram. The layout of

those histograms is such that they contain 5 bins on the x-axis ranging from 0 to 5. One

observes the results on Figure 2. As expected, each event contains thus either two electrons

or two muons, both issued from the decay of the Z-boson. This can be also illustrated by

computing the dilepton invariant-mass distribution,

plot M(l+ l-) 50 0 200 [logY]

resubmit

generate_html zjets_html

where we ask for 50 bins ranging from 0 to 200 GeV and a logarithmic scale for the y-axis.

We obtain the results of Figure 3. We have several entries in the bins related to the region

mll < 50 GeV. Those are pure effects of the parton showering, hadronization and object

reconstruction since we remind our parton-level cut enforcing mll > 50 GeV. To achieve our

investigation of the lepton properties, let us generate a selection of additional histograms

illustrating some of the possibilities of MadAnalysis 5

– 24 –



N [ j ] 
0 1 2 3 4 5 6 7 8 9 10

 )
-1

 =
 1

0 
fb

in
t

E
ve

nt
s 

 (
 L

410

510

610

710

Figure 4: Jet multiplicity in a Z+jets event sample.

plot PT(l[1]) 30 0 250 [logY]

plot ETA(l[2]) 30 -5.5 5.5 [logY]

plot DELTAR(l[1],l[2]) 30 0 6 [logY]

resubmit

generate_html zjets_html

The first command addresses the transverse-momentum distribution of the leading lepton,

the second one the pseudo-rapidity distribution of the next-to-leading lepton and the third

one the angular distance in the η − ϕ plane between the two leptons. The number of bin

and the values for the lowest and highest bins are indicated for each case, and we employ

a logarithmic scale for the y-axis. We leave this exercise to the reader and do not show the

results in the present manuscript.

5.3.3 Jet properties - a few examples

The same exercise as in the previous section can be performed with the jets. Issuing

plot N(j) 10 0 10 [logY]

resubmit

generate_html zjets_html

leads to the results of Figure 4 which shows that after parton showering, one has much

more than two jets in the events. For some rare events, one even has up to eight jets.

At the matrix-element level, we have accounted for up to two extra hard jets. As shown

in Figure 4, parton showering yields much more (soft) jets in the final state. Jet hardness

(and softness) can be checked by investigating the transverse-momentum distributions of,

e.g., the four leading jets. This is achieved by issuing in the interpreter the commands

plot PT(j[1]) 30 0 200 [logY]
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Figure 5: Transverse-momentum distributions of the four leading jets for a Z+jets event sample.

plot PT(j[2]) 30 0 200 [logY]

plot PT(j[3]) 30 0 200 [logY]

plot PT(j[4]) 30 0 200 [logY]

resubmit

generate_html zjets_html

One gets the results of Figure 5. As expected, the two leading jets are indeed much harder

than the others, since these two jets can be described already by the matrix-elements, in

contrast to all the other jets. Inspecting the left part of the four figures, one observes a

cut on jet transverse-momentum which has been automatically assigned by the matching

algorithm implemented in MadGraph 5.

The matching procedure also impose a cut on the angular distance among the jets. To

illustrate this effect, we choose to represent by an histogram this observable,

plot DELTAR(j[1],j[2]) 30 0 10

plot DELTAR(j,j) 30 0 10 [logY]

resubmit

generate_html zjets_html

With the first command, we focus on the ∆R between the two leading jets, whilst while

with the second command, we add one entry in the histogram for each different dijet

combination that can be formed from the event particle content. The results are shown on

Figure 6. The effect of the matching corresponds to the drop between zero and one, since
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Figure 6: Distribution of the angular distance among the jets for a Z+jets event sample.
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Figure 7: Distribution of the jet multiplicity and of the angular distance among the jets for a

Z+jets event sample, after only considering jets with a transverse momentum harder than 70 GeV.

a cut on the angular distance between jets is internally applied. Moreover, the shape of

the distributions in the right panel comes mainly from the softer jets.

It could be useful (as it is the case for most phenomenological analyses), to consider

as jets only jet candidates whose the transverse momentum is harder than some threshold.

From Figure 5, one observes that setting this threshold to 70 GeV allows to get rid of most

of the soft jets. Only the leading and possibly the next-to-leading jets remain. In some

rare cases, we also have a three-jet configuration.

Such a cut and its effects can be studied by issuing

select (j) PT>70

plot N(j) 10 0 10 [logY]

plot DELTAR(j,j) 30 0 10 [logY]

resubmit

generate_html zjets_html

The selection cut imposed by means of the command select does not reject any event

at all. It only removes one or several objects from the analysis. In this case, jets with a

transverse momentum smaller than 70 GeV are ignored. In order to reject or select entire

events according to some criterion, we refer to the next section. The results are shown on
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Figure 8: Missing transverse energy distribution for a Z+jets event sample.

Figure 7. One observes that the maximum jet multiplicity reaches the value of 3, whilst

the considered (harder) jets are rather well separated.

As an exercise, it is left to the reader to probe various angular distances or invariant-

mass distributions among jet and lepton combinations. Transverse-momentum distribu-

tions associated to the combination of different particle can also be probed.

5.3.4 The missing energy

To achieve our illustration of the properties of our event sample, we know tackle the missing

energy distribution. The latter is hard-coded in MadAnalysis 5, and it is enough to type

plot MET 30 0 50 [logY]

resubmit

generate_html zjets_html

The results are presented in Figure 8. In the case one is only interested in events with a

missing energy smaller than a given value, the selection cut

select MET<25

resubmit

generate_html zjets_html

allows to reject any event that the missing energy is larger than 25 GeV. MadAnalysis 5

automatically compute the cut-flow chart for the user. In the case there are several samples

and in particular background and signal samples, the signal over background ratio and the

related uncertainty are automatically calculated.

5.4 Controlling the matching procedure with MadAnalysis 5

In order to control that the matching procedure and in particular our choice for the match-

ing parameters (in other words, the xqcut parameter of the run card), the best way is to

check differential jet rate distributions. These observables allow to measure how smooth

the transition from a N -jet configuration to a N + 1-jet configuration can be and are thus

directly sensitive to the matching procedure. In the case of the transition N → N +1, the
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Figure 9: Differential jet rate distributions allowing to control the matching procedure.

differential jet rate variable is defined as the scale at which an event passes from a N -jet

to a N + 1-jet configuration, after clustering the showered partons into jets (but before

hadronization).

MadAnalysis 5 allows to generate histograms representing differential jet rate dis-

tributions related to a given event sample. In order to test if the matching procedure has

been correctly performed, it is necessary to start from an event file containing showered

events that have not passed through an hadronization algorithm. Unfortunately, we do not

have such a file. However, the StdHep sample that has been generated at the time of the

Monte Carlo simulation contains the necessary information. MadAnalysis 5 is capable

of automatically distinguishing the parton showering phase from the hadronization stage

and can thus generate the relevant histograms allowing to check the matching procedure.

Jet clustering is performed with the help of FastJet, a kT jet-algorithm being em-

ployed with a radius parameter set to R = 1.0. Since the matching procedure performed at

the time of event generation is based on an earlier version of FastJet with respect to the

one included in MadAnalysis 5, some minor issues can be expected, as it will be shown

below. However, the latter are statistically negligible and do not alter the smoothness of

the curves which prove the goodness of the matching.

First, as hadron-level events are about to be imported, MadAnalysis 5 must be run

in the hadron-level mode,

bin/ma5 -H
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Next, FastJet must be installed and linked to MadAnalysis 5. This procedure is auto-

mated and it is sufficient to type in the command line interface

install fastjet

Events can then be loaded as illustrated in the previous subsection and the cross section

set according to next-to-next-to-leading order results

import <path-to-the-event-file>/fermi_pythia_events.hep.gz as zjets

set zjets.xsection = 2263

We are now ready to ask MadAnalysis 5 to generate the histograms allowing to check

that the matched event sample behaves correctly. To this aim, it is enough to type in the

interpreter,

set main.matching.check = true

submit matching_check

generate_html matching_check_html

open matching_check_html

The histograms created by MadAnalysis 5 are presented on the four panels of Figure 9.

They illustrate a transition from 0 to 1 jet (top, left), 1 to 2 jets (top, right), 2 to 3 jets

(bottom, left) and 3 to 4 jets (bottom, right). One observes that a choice of xqcut equal to

10 GeV is a good choice, all the four summed curves being smooth enough. One also notes

that the matching scale cannot be perfectly read from the figures (Qmatch ≈ 20 GeV), in

contrast to the matching plots generated by the MatchChecker package of MadGraph

5. This is related to the version issues of FastJet above-mentioned. One can however

check that only a statistically small number of events are concerned and are irrelevant with

respect to the smoothness of the summed curves.

Let us note that by default, MadAnalysis 5 generates four histograms, but histograms

representing differential jet rate distributions associated to higher jet multiplicities can be

created by typing in the interpreter

set main.matching.njets = <N>

where <N> is an integer number to be chosen by the user.

5.5 Jet clustering and hadron-level analysis with MadAnalysis 5

To achieve this section on the possibilities of MadAnalysis 5, we now focus on the analysis

of the StdHep file generated by Pythia, after parton showering and hadronization. For

comparison purposes, the same analysis as in Section 5.3 will be performed. However,

before moving on, let us comment briefly on the expected differences between the analysis

of the Lhe file and the one of the Hep file.

First of all, the Hep file contains tons of hadrons that must be clustered into jets. Since

the jet clustering algorithm that we will adopt is different as the one internally employed

in the Hep2Lhe routine of MadGraph 5, differences in jet-related distributions can be
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expected. For the sake of the example, we choose to use an anti-kT algorithm with a radius

parameter set to R = 1.0 and a minimum transverse-momentum of 5 GeV. This is achieved

by first starting MadAnalysis 5 in the reconstructed-level mode,

bin/ma5 -R

and then typing the commands

set main.clustering.algorithm = antikt

set main.clustering.ptmin = 5

set main.clustering.radius = 1

import <path-to-the-event-file>/frmg.hep.gz as zjets

set zjets.xsection = 2263

set main.normalize = lumi

where the two last command lines ensure a correct normalization of the histograms to be

generated. We recall that by default, in the reconstructed-level mode, the histograms are

not normalized at all and each event has a weight of one. In order to remove the very soft

jets issued from parton showering and hadronization, we decide to only keep in the analysis

jets with a transverse-momentum higher than 10 GeV,

reject (j) PT < 10

Moreover, the Hep2Lhe routine also contains a rough detector simulation, in contrast

to MadAnalysis 5 which does not alter the reconstructed objects as this task is left for

a fast detector simulation program possibly employed by the user. On the same lines,

non-isolated leptons generated by the hadronization procedure are kept in MadAnalysis

5 while they are removed by the Hep2Lhe routine. Since those leptons are usually soft,

they can be rejected from the analysis by employing a cut on their transverse momentum

that can be implemented as

reject (l) PT < 5

We are now ready to perform the same study as in Section 5.3 and try to understand

the differences between the results. This task is left as an exercise. In particular, attention

should be paid to the missing energy distributions and the particle content of the clustered

events.

6. The simulation session

Once the model has been exported to MadGraph a first elementary phenomenological study

can be performed. Schematically this session proceeds as follows:

• Benchmark parameter setting

• Signal identification, simulation, and study

• Background identification, simulation and study
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• Signal vs Background study

• Comparison with pseudo-experimental data.

To begin with let us assume that

MU > M2 > ME > M1 , (6.1)

provides a reasonable mass hierarchy and therefore Φ1 is the LNP. For U we consider three

scenarios, mU = 200, 400, 800 GeV, while we always take M2 = 100 GeV and ME = 50GeV

and M1 = 1 GeV.

Given that U is the only strongly interacting NP particle, this will be the one most

copiously produced at the LHC, via the same subprocesses as top-anti-top are produced:

p p → U U . (6.2)

Exercise 1: Generate the process at LO with MadGraph 5, and determine the cross section

at the LHC 8 TeV for the three benchmark values of the U mass. Optional: generate the

procecess at NLO with MadGraph 5 and find the K-factor for each of the three masses

above. To this aim, use the Tutorial NLO UFO model as provided in the Wiki page.

Next we consider the possible decay chains given the hierarchy of Eq. (6.1):

U →{u, c, t}Φ1 ,

U →{u, c, t}Φ2 , Φ2 → ℓE , E → ℓΦ1 ⇒ U → {u, c, t} ℓ+ℓ−Φ1 .
(6.3)

ℓ being a label that includes all flavor, ℓ = e, µ, τ . Obviously having the U decaying to a

light quark or a top gives very different final state signatures.

Exercise 2: First classify all possible final states in terms of the number of tops, jets

(j = u, c) and charged leptons. Then consider the two possible decay modes for the W in

the top decays, i.e. hadronically or leptonically.

For the sake of simplicity, in the following we will focus on the following simple signa-

tures:

I. pp → (U → jΦ1)(Ū → jΦ1) , i.e., pp → 2 jets + missing ET .

II. pp → (U → tΦ1)(Ū → t̄Φ1) , i.e., pp → tt̄ + missing ET .

III. pp → (U → jΦ1)(Ū → j ℓ+ℓ′−Φ1)+h.c , i.e., pp → ℓ+ℓ−+ 2 jets + missing ET .

IV. pp → (U → j ℓ+ℓ′−Φ1)(Ū → j ℓ+ℓ−Φ1) + h.c , i.e., pp → ℓ+ℓ−ℓ+ℓ−+ 2 jets +

missing ET .

Exercise 3: Pick one of the processes/signatures above, allowing yourself to select a

specific flavor assignment for the final state leptons. Calculate the corresponding rates

with MadGraph at LO. (You can proceed in various ways). Possibly, identify the cross

section corresponding to a simplified detector acceptance.

Exercise 4: Identify the dominant reducible and irreducible SM backgrounds to the signa-

tures above. Generate them with MadGraph, calculate the corresponding rates and order

them in importance. Justify the following choices for the dominant backgrounds:
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I. pp → (Z → νν̄)+2 jets.

II. pp → tt̄

III. pp → tt̄ → ℓ+ℓ−+ 2 b-jets + missing ET

IV. pp → tt̄Z

Exercise 5: Depending on the chosen final state signature create the codes and do event

generation for the most relevant backgrounds:

I. pp → (Z → νν̄)+2 jets with the ME/PS merging of Z + 0, 1, 2 partons.

II. pp → tt̄ with aMC@NLO and the decays with the DecayPackage.

III. pp → tt̄ → ℓ+ℓ−+ 2 b-jets + missing ET with MC@NLO and the decays with the

DecayPackage.

IV. pp → tt̄Z → ℓ+ℓ−ℓ+ℓ− + 2 b-jets + missing ET with MadGraph 5 and the decays

with the DecayPackage.

Exercise 6: Study the distributions of the signal and the background in the acceptance

region and identify simple cuts to enhance S/
√
B keeping S/B as large as possible. Do

this via MadAnalysis 5.

Exercise 7: Compare your predictions with two sets (A and B) of pseudo LHC data. Set

limits or establish evidence of new physics in the data.
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