Symbolic Programming by Example

Thomas Hohn

Max-Planck-Institut für Physik München

http://wwwth.mpp.mpg.de/members/hahn/sym.pdf
http://wwwth.mpp.mpg.de/members/hahn/sym.tar.gz

- Antisymmetric Tensor Built-in in FORM, easy in Mathematica.
- Application of Momentum Conservation Easy in Mathematica, complicated in FORM.
- Abbreviationing

Easy in Mathematica, new in FORM.

- Simplification of Color Structures Different approaches.
- Calculation of a Fermion Trace Built-in in FORM, complicated in Mathematica.
- Tensor Reduction
- V.I. Borodulin et al. CORE (Compendium of Relations) hep-ph/9507456.
- Herbert Pietschmann Formulae and Results in Weak Interactions Springer (Austria) 2nd ed., 1983.
- Andrei Grozin Using REDUCE in High-Energy Physics Cambridge University Press, 1997.

The Antisymmetric Tensor in n dimensions is denoted by $\varepsilon_{i_{1} i_{2} . . . i_{n}}$. You can think of it as a matrix-like object which has either $-1,0$, or 1 at each position.

For example, the Determinant of a matrix, being a completely antisymmetric object, can be written with the ε-tensor:

$$
\operatorname{det} A=\sum_{i_{1}, \ldots, i_{n}=1}^{n} \varepsilon_{i_{1} i_{2} \ldots i_{n}} A_{i_{1} 1} A_{i_{2} 2} \cdots A_{i_{n} n}
$$

In practice, the ε-tensor is usually contracted, e.g. with vectors. We will adopt the following notation to avoid dummy indices:

$$
\varepsilon_{\mu \nu \rho \sigma} p^{\mu} q^{v} r^{\rho} S^{\sigma}=\varepsilon(p, q, r, s) .
$$

Eps [_---, p-, ---, p_, ---] := 0
(* implement linearity: *)
Eps [a---, p_Plus, b---] := Eps [a, \#, b] \&/@ p
Eps[a_--, $\left.\mathrm{n}_{-} ? \mathrm{NumberQ} \mathrm{r}_{-}, \mathrm{b}_{---}\right]:=\mathrm{n} \operatorname{Eps}[\mathrm{a}, \mathrm{r}, \mathrm{b}]$
(* otherwise sort the arguments into canonical order: *)
Eps[args_-_] := Signature[\{args\}] Eps@@ Sort[\{args\}] /;
! OrderedQ [\{args\}]

Problem: Proliferation of terms in expressions such as

$$
\begin{aligned}
d & =\frac{1}{\left(p_{1}+p_{2}-p_{3}\right)^{2}+m^{2}} \\
& =\frac{1}{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+2 p_{1} p_{2}-2 p_{2} p_{3}-2 p_{1} p_{3}+m^{2}}
\end{aligned}
$$

whereas if $p_{1}+p_{2}=p_{3}+p_{4}$ we could have instead

$$
d=\frac{1}{p_{4}^{2}+m^{2}}
$$

In Mathematica: just do d /. p1 + p2 - p3 -> p4. Problem: FORM cannot replace sums.

Idea: for each expression x, add and subtract a zero, i.e. form $\{x, y=x+0, z=x-0\}$, where e.g. $0=p_{1}+p_{2}-p_{3}-p_{4}$, then select the shortest expression. But: how to select the shortest expression (in FORM)?
Solution: add the number of terms of each argument, i.e.

$$
\{x, y, z\} \rightarrow\left\{x, y, z, n_{x}, n_{y}, n_{z}\right\} .
$$

Then sort n_{x}, n_{y}, n_{z}, but when exchanging n_{a} and n_{b}, exchange also a and b :

$$
\text { symm 'foo' }(4,1)(5,2)(6,3) \text {; }
$$

This unconventional sort statement is rather typical for FORM.
\#procedure Shortest(foo)
id 'foo' $([x] ?)=$ 'foo' $([x],[x]+$ 'MomSum', $[x]-$ 'MomSum');

* add number-of-terms arguments
id 'foo'([x]?, [y]?, [z]?) = 'foo'([x], [y], [z], nterms_([x]), nterms_([y]), nterms_([z]));
* order according to the nterms symm 'foo' $(4,1)(5,2)(6,3)$;
* choose shortest argument
id 'foo' $([x] ?, ? a)=$ ' $f o o$ ' $([x])$;
\#endprocedure

One of the most powerful tricks to both reduce the size of an expression and reveal its structure is to substitute subexpressions by new variables.

The essential function here is Unique with which new symbols are introduced. For example,

Unique ["test"]

generates e.g. the symbol test1, which is guaranteed not to be in use so far.

The Module function which implements lexical scoping in fact uses Unique to rename the symbols internally because Mathematica can really do dynamical scoping only.

```
$AbbrPrefix = "c"
abbr[expr_] := abbr[expr] = Unique[$AbbrPrefix]
    (* abbreviate function *)
Structure[expr_, x_] := Collect[expr, x, abbr]
    (* get list of abbreviations *)
AbbrList[] := Cases[DownValues[abbr],
    _[_[_[f_]], S_Symbol] -> s -> f]
    (* restore full expression *)
Restore[expr_] := expr /. AbbrList[]
```

* collect w.r.t. some function
b Den;
.sort
collect acc;
* introduce abbreviations for prefactors
toPolynomial onlyfunctions acc;
.sort
* print abbreviations \& abbreviated expr
\#write "\%X"
print +s;

In Feynman diagrams four types of Color structures appear:

The SUNF's can be converted to SUNT's via

$$
f^{a b c}=2 \mathrm{i}\left[\operatorname{Tr}\left(T^{c} T^{b} T^{a}\right)-\operatorname{Tr}\left(T^{a} T^{b} T^{c}\right)\right] .
$$

We can now represent all color objects by just SuNT:

- $\operatorname{SUNT}[i, j]=\delta_{i j}$
- $\operatorname{SUNT}[a, b, \ldots, i, j]=\left(T^{a} T^{b} \cdots\right)_{i j}$
- $\operatorname{SUNT}[a, b, \ldots, 0,0]=\operatorname{Tr}\left(T^{a} T^{b} \ldots\right)$

This notation again avoids unnecessary dummy indices. (Mainly namespace problem.)

For purposes such as the "large- N_{c} limit" people like to use SU(N) rather than an explicit SU(3).

The Fierz Identities relate expressions with different orderings of external particles. The Fierz identities essentially express completeness of the underlying matrix space.

They were originally found by Markus Fierz in the context of Dirac spinors, but can be generalized to any finite-dimensional matrix space [hep-ph/0412245].

For SU(N) (color) reordering, we need

$$
T_{i j}^{a} T_{k \ell}^{a}=\frac{1}{2}\left(\delta_{i \ell} \delta_{k j}-\frac{1}{N} \delta_{i j} \delta_{k \ell}\right) .
$$

For an Amplitude:

- convert all color structures to (generalized) SUNT objects,
- simplify: apply Fierz identity on all internal gluon lines,
- expect SUNT with indices of external particles to remain.

For a Squared Amplitude:

- use the Fierz identity to get rid of all SUNT objects,
- expect SUNT to vanish, color factors (numbers) only.

For "hand" calculations, a pictorial version of this algorithm exists in the literature.

* introduce dummy indices for the traces
repeat;
once SUNT (?a, 0, 0) = SUNT (?a, DUMMY, DUMMY);
sum DUMMY; endrepeat;
* take apart SUNTs with more than one T repeat;
once SUNT(?a, [a]?, [b]?, [i]?, [j]?) = SUNT(?a, [a], [i], DUMMY) * SUNT([b], DUMMY, [j]);
sum DUMMY;
endrepeat;
* apply the Fierz identity
id SUNT([a]?, [i]?, [j]?) * SUNT([a]?, [k]?, [l]?) = 1/2 * SUNT([i], [l]) * SUNT([j], [k]) 1/2/('SUNN') * SUNT([i], [j]) * SUNT([k], [l]);

In color-chain notation we can distinguish two cases:
a) Contraction of different chains:
$\langle A| T^{a}|B\rangle\langle C| T^{a}|D\rangle=\frac{1}{2}\left(\langle A \mid D\rangle\langle C \mid B\rangle-\frac{1}{N}\langle A \mid B\rangle\langle C \mid D\rangle\right)$,
b) Contraction on the same chain:

$$
\langle A| T^{a}|B| T^{a}|C\rangle=\frac{1}{2}\left(\langle A \mid C\rangle \operatorname{Tr} B-\frac{1}{N}\langle A| B|C\rangle\right) .
$$

(* same-chain version *)
sunT[t1_--- $\left.a_{-S y m b o l, ~ t 2 ~}^{\text {_-- }}, a_{-}, t 3_{---}, i_{-}, j_{-}\right]:=$
(sunT[t1, t3, i, j] sunTrace[t2] sunT[t1, t2, t3, i, j]/SUNN)/2
(* different-chain version *)
sunT[t1__, a_{-S} Symbol, t2_-_, $\left.i_{-}, j_{-}\right] *$
sunT[t3_--, $\left.a_{-}, t 4_{-\ldots-}, k_{-}, l_{-}\right]$^:=
(sunT[t1, t4, i, l] sunT[t3, t2, k, j] sunT[t1, t2, i, j] sunT[t3, t4, k, l]/SUNN)/2
(* introduce dummy indices for the traces *) sunTrace[a_-] := sunT[a, \#, \#]\&[Unique["col"]]

Leaving apart problems due to γ_{5} in d dimensions, we have as the main algorithm for the 4 d case:

$$
\begin{aligned}
\operatorname{Tr} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \cdots= & +g_{\mu \nu} \operatorname{Tr} \gamma_{\rho} \gamma_{\sigma} \cdots \\
& -g_{\mu \rho} \operatorname{Tr} \gamma_{\nu} \gamma_{\sigma} \cdots \\
& +g_{\mu \sigma} \operatorname{Tr} \gamma_{\nu} \gamma_{\rho} \cdots
\end{aligned}
$$

This algorithm is recursive in nature, and we are ultimately left with

$$
\operatorname{Tr} \mathbb{1}=4
$$

(Note that this 4 is not the space-time dimension, but the dimension of spinor space.)

```
Trace4[mu_, g__] :=
Block[ {Trace4, s = -1},
    Plus@@ MapIndexed[
        ((s = -s) Pair [mu, #1] Drop [Trace4 [g], #2])&,
        {g} ]
]
Trace4[] = 4
```

The loop integrals corresponding to closed loops in a Feynman integral in general have a tensor structure due to integration momenta in the numerator. For example,

$$
B_{\mu \nu}(p)=\int \mathrm{d}^{d} q \frac{q_{\mu} q_{v}}{\left(q^{2}-m_{1}^{2}\right)\left((q-p)^{2}-m_{2}^{2}\right)} .
$$

Such tensorial integrals are rather unwieldy in practice, therefore they are reduced to linear combinations of Lorentz-covariant tensors, e.g.

$$
B_{\mu \nu}(p)=B_{00}(p) g_{\mu \nu}+B_{11}(p) p_{\mu} p_{\nu} .
$$

It is the coefficient functions B_{00} and B_{11} which are implemented in a library like LoopTools.

The first step is to convert the integration momenta in the numerator to an actual tensor, e.g. $q_{\mu} q_{\nu} \rightarrow N_{\mu v}$. FORM has the special command totensor for this:

totensor q1, NUM;

The next step is to take out $g_{\mu \nu}$'s in all possible ways. We do this in form of a sum:

$$
N_{\mu_{1} \ldots \mu_{n}}=\sum_{i=0,2,4, \ldots}^{n} \pi(0)^{i} \sum_{\substack{\text { all } \\ \in\left\{v_{1}, \ldots, v_{i}\right\}}} g v_{1} v_{2} \cdots g v_{i-1} v_{i} N_{\mu_{1} \ldots \mu_{n} \backslash v_{1} \ldots v_{i}}
$$

The $\pi(0)^{i}$ keeps track of the indices of the tensor coefficients, i.e. it later provides the two zeros for every $g_{\mu \nu}$ in the index, as in D_{0012}.

To fill in the remaining $\pi(i)$'s, we start off by tagging the arguments of the loop function, which are just the momenta. For example:

$$
C\left(p_{1}, p_{2}, \ldots\right) \rightarrow \tau\left(\pi(1) p_{1}+\pi(2) p_{2}\right) C\left(p_{1}, p_{2}, \ldots\right)
$$

The temporary function τ keeps its argument, the 'tagged' momentum p, separate from the rest of the amplitude.

Now add the indices of $N_{\mu_{1} \ldots \mu_{n}}$ to the momentum in τ :

$$
\tau(p) N_{\mu_{i} \ldots \mu_{n}}=p_{\mu_{i}} \cdots p_{\mu_{n}} .
$$

Finally, collect all π 's into the tensor-coefficient index.
totensor q1, NUM;

* take out 0, 2, 4... indices for g_\{mu nu\}
id NUM (?b) = sum_(DUMMY, 0, nargs_(?b), 2, pave(0)^DUMMY * distrib_(1, DUMMY, dd_, NUM, ?b));
* construct tagged momentum in TMP
id C0i([p1]?, [p2]?, ?a) = TMP(pave(1)*[p1] + pave(2)*[p2]) * COi(MOM([p1]), MOM([p2] - [p1]), MOM([p2]), ?a);
* expand momentum
repeat id $\operatorname{TMP}([p 1] ?) * \operatorname{NUM}([\mathrm{mu}] ?, \quad ? a)=$ d_([p1], [mu]) * NUM(?a) * TMP ([p1]);
* collect the indices
chainin pave;

```
tens[i_, p_][mu_, nu_--] :=
Block[ {tens},
        (* take out g *)
    { MapIndexed[g[mu, #1] Drop[tens[{i, 0,0}, p][nu], #2]&, {nu}],
        (* take out p *)
    (#1[mu] tens[{i,#2}, p] [nu]) &@@@ p }
]
tens[i_, _][] := C@@ Sort[Flatten[i]]
```

FindTensors [mu_, p_] :=
Block[\{tenslist\},
tenslist $=$ tens[\{\}, MapIndexed[List, p]]@@ mu;
Collect[Plus@@ Flatten[tenslist], _C]
]

Often special requirements:

- Resummations (e.g. $h b b$ in MSSM),
- Approximations (e.g. gaugeless limit),
- K-factors,
- Nontrivial renormalization.

Software design so far:

- Mostly 'monolithic' (one package does everything).
- Often controlled by parameter cards, not easy to use beyond intended purpose.
- May want to/must use other packages.

Shopping List for the Diagrammatic Calculation:

(1) Unrenormalized 2 L self-energies
$\Sigma_{h h}^{(2)}, \Sigma_{h H}^{(2)}, \Sigma_{h A}^{(2)}, \Sigma_{H H}^{(2)}, \Sigma_{H A}^{(2)}, \Sigma_{A A}^{(2)}, \Sigma_{H^{+} H^{-}}^{(2)}$ in gaugeless approximation at $p^{2}=0$ at $\mathcal{O}\left(\alpha_{t}^{2}\right)$.
(2) $\mathbb{I L}$ diagrams with insertions of $\mathbb{I L}$ counterterms.
(3) 2 L counterterms for (1).
(4) $\mathbf{2 L}$ tadpoles $T_{h}^{(2)}, T_{H}^{(2)}, T_{A}^{(2)}$ at $\mathcal{O}\left(\alpha_{t}^{2}\right)$ appearing in (3).

- Break calculation into several steps.
- Implement each step as independent program (invoked from command line).
- In lieu of 'in vivo' debugging keep detailed logs.
- Coordinate everything through a makefile.

Calculation split into 7 (8) steps:

- Shell scripts (/bin/sh), run from command line as e.g.
./1-amps arg1 arg2
- arg1 = h0h0, h0HH, h0AO, HHHH, HHAO, AOAO, HmHp (self-energies), h0, HH, A0 (tadpoles).
- $\arg 2=0$ for virtual 2L diagrams, 1 for IL diagrams with IL counterterms.
- Inputs/outputs defined in first few lines, e.g.

$$
\begin{aligned}
& \text { in=m } / \$ 1 / 2 \text {-prep. } \$ 2 \\
& \text { out=m } / \$ 1 / 3 \text {-calc. } \$ 2
\end{aligned}
$$

- Symbolic output + log files go to 'm' subdirectory. Log file = Output file + .log.gz
- Fortran code goes to 'f' subdirectory.

Gaugeless approximation:

(1) Set gauge couplings $g, g^{\prime}=0 \Rightarrow M_{W}, M_{Z}=0$.
(2) Keep finite weak mixing angle.
(3) Keep $\frac{\delta M_{N}^{2}}{M_{W}^{2}}$ and $\frac{\delta M_{Z}^{2}}{M_{Z}^{2}}$ finite.

Must set $m_{b}=0$ so that $\mathcal{O}\left(\alpha_{t}^{2}\right)$ corrections form supersymmetric and gauge-invariant subset.

Most efficient to modify Feynman rules (not © , though):

- Load MSSMCT.mod model file.
- Modify couplings, remove zero ones.
- Write out MSSMCTgl.mod model file.
- Generate 2L virtual and 1L+counterterm diagrams using wrappers for FeynArts functions.

Simple diagram selection functions, e.g.

```
sel[0][S[_] -> S[_]] = {
    t[3] && htb[6],
    t[3] && tb[6],
    t[3] && tb[6],
    t[3] && t [4] && htb [5],
    t[3] && htb[5|6],
    t[3] && htb[5],
    t[3] && t[5],
    t[5] && ht[3|4],
    t[3|4|5] && ht[3|4|5] }
\(\mathrm{t}[3]\) \&\& \(\mathrm{tb}[6]\),
\(\mathrm{t}[3]\) \&\& \(\mathrm{t}[4]\) \&\& \(h t b[5]\),
\(\mathrm{t}[3]\) \&\& htb[5|6],
\(\mathrm{t}[3]\) \&\& htb[5],
\(t[3]\) \&\& \(t[5]\),
\(\mathrm{t}[5]\) \&\& ht[3|4],
\(\mathrm{t}[3|4| 5]\) \&\& ht [3|4|5] \}
```


- Take $p^{2} \rightarrow 0$ limit.
- Simplify ubiquitous sfermion mixing matrices $U_{i j}$, mostly by exploiting unitarity ($\sim 50 \%$ size reduction).

Unitarity of 2×2 matrix: $U U^{\dagger}=U^{\dagger} U=\mathbb{1}$, i.e.

$$
\begin{array}{ll}
U_{11} U_{11}^{*}+U_{12} U_{12}^{*}=1, & U_{11} U_{21}^{*}+U_{12} U_{22}^{*}=0, \\
U_{21} U_{21}^{*}+U_{22} U_{22}^{*}=1, & U_{21} U_{11}^{*}+U_{22} U_{12}^{*}=0, \\
U_{11} U_{11}^{*}+U_{21} U_{21}^{*}=1, & U_{11} U_{12}^{*}+U_{21} U_{22}^{*}=0, \\
U_{12} U_{12}^{*}+U_{22} U_{22}^{*}=1, & U_{12} U_{11}^{*}+U_{22} U_{21}^{*}=0 .
\end{array}
$$

Problem: Simplify will rarely arrange the U 's in just the way that these rules can be applied directly.
Solution: Introduce auxiliary symbols which immediately deliver the r.h.s. once Simplify considers the I.h.s., i.e. increase the 'incentive' for Simplify to use the r.h.s.
But: Upvalues work only one level deep.

Introduce

$$
\begin{aligned}
& \operatorname{USf}[1, j] \operatorname{USfC}[1, j] \rightarrow \operatorname{UCSf}[1, j], \\
& \operatorname{USf}[2, j] \operatorname{USfC}[2, j] \rightarrow \operatorname{UCSf}[2, j], \\
& \operatorname{USf}[1, j] \operatorname{USfC}[2, j] \rightarrow \operatorname{UCSf}[3, j], \quad+\text { ditto for } 1^{\text {st }} \text { index }
\end{aligned}
$$

and formulate unitarity for the UCSf:

$$
\begin{array}{ll}
\operatorname{UCSf}[2,1]=\operatorname{UCSf}[1,2] ; & \operatorname{UCSf}[3,2]=-\operatorname{UCSf}[3,1] ; \\
\operatorname{UCSf}[2,2]=\operatorname{UCSf}[1,1] ; & \operatorname{UCSfC}[3,2]=-\operatorname{UCSfC}[3,1] ; \\
& \operatorname{UCSf}[2,3]=-\operatorname{UCSf}[1,3] ; \\
& \\
& \operatorname{UCSfC}[2,3]=-\operatorname{UCSfC}[1,3] ;
\end{array}
$$

- Relatively straightforward application of TwoCalc and FormCalc for tensor reduction.
- Observe: Need two Mathematica sessions since TwoCalc and FormCalc cannot be loaded into one session, easily accomodated in shell script.
- Tensor reduction traditionally increases \# of terms most.
- Step 4 reduces size before combination of results.
- Empirical simplification recipe.
- 'DiagMark' trick (D. Stöckinger):
- Introduce DiagMark $\left[m_{i}\right.$] where $m_{i}=$ masses in loop in FeynArts output.
- Few simplifications can be made between parts with different DiagMark \Rightarrow Can apply simplification as Collect[amp, _DiagMark, simpfunc]
- Much faster.
- Compute IL renormalization constants (RC) with FormCalc.
- Substitute explicit mass dependence in

$$
\text { dMVsq1 } \rightarrow \text { MV2 dMVsq1MV2 } \quad(V=W, Z)
$$

such that gaugeless limit can be taken safely.

- Expand in ε, collect powers for easier handling later, e.g.

$$
\begin{gathered}
\{\operatorname{dMf1[3,3]\rightarrow } \operatorname{RC[-1,\operatorname {dMf}1[-1,3,3]]+} \text { expansion } \\
\quad \operatorname{RC}[0, \operatorname{dMf} 1[0,3,3]],
\end{gathered}
$$

- Expand amplitude in ε (similar as RC).
- Insert RCs.
- Add genuine 2L counterterms (hand-coded).
- Pick only ε^{0} term (unless debug flag set).
- Perform final simplification.
- Introduce abbreviations to shorten code.
- Write out Fortran code using FormCalc's code-generation functions.
- Add static code which computes e.g. the necessary parameters for the generated code.
- Total final code size: 350 kBytes.

More details in arXiv:1508.00562.

Devise programs in Mathematica and FORM which apply the Dirac equation to a suitably defined spinor, i.e.

$$
\begin{aligned}
\not p_{i}\left|u_{i}\right\rangle & =m_{i}\left|u_{i}\right\rangle \\
\not p_{i}\left|v_{i}\right\rangle & =-m_{i}\left|v_{i}\right\rangle
\end{aligned}
$$

http://wwwth.mpp.mpg.de/members/hahn/sym.pdf
http://wwwth.mpp.mpg.de/members/hahn/sym.tar.gz

