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Outline

In this session we want to obtain analytical information about a
given model using SARAH and Mathematica, i.e.

Tree-level masses and tadpoles
Tree-level vertices
RGEs

It is shown how the information is exported into LATEX

We use as showcase the SMSSM which we have ’implemented’ in the
previous session.
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Loading and running SARAH

SARAH can easily be loaded in Mathematica

Mathematica

<<"SARAH-4.12.2/SARAH.m";
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Loading and running SARAH

A model is initialised afterwards via Start["MODEL"]

Mathematica

Start["SMSSM"];
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Loading and running SARAH

A model is initialised afterwards via Start["MODEL"]

Mathematica

Start["SMSSM"];

. . .
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Loading and running SARAH

During the initialisation, the following happens automatically:

The model is checked for anomalies, charge conservation, etc.

All gauge interactions are derived

The Lagrangian for component fields is derived from superpotential

The soft-breaking terms are added

All field rotations are performed

The gauge fixing terms are derived, ghost interactions are calculated

The mass matrices and tadpole equations are derived
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Loading and running SARAH

During the initialisation, the following happens automatically:

The model is checked for anomalies, charge conservation, etc.

All gauge interactions are derived

The Lagrangian for component fields is derived from superpotential

The soft-breaking terms are added

All field rotations are performed

The gauge fixing terms are derived, ghost interactions are calculated

The mass matrices and tadpole equations are derived

It takes less than a minute before the model is ready and we can start
playing
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Particles
In order to see all particles of the current model for a given set of eigenstates, use

Mathematica

Particles[ STATES ]

STATES is the name of the eigenstates.

For each fields the given information is

{Field, First Generation, Last Generation, Indices }
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Particles
In order to see all particles of the current model for a given set of eigenstates, use

Mathematica

Particles[ STATES ]

STATES is the name of the eigenstates.

For each fields the given information is
{Field, First Generation, Last Generation, Indices }

Example:

. . .
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Parameters
In order to see all parameter of the current model, use

Mathematica

parameters

For each parameter the given information is

{Parameter, Indices, Index Ranges }
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Parameters
In order to see all parameter of the current model, use

Mathematica

parameters

For each parameter the given information is
{Parameter, Indices, Index Ranges }

Example:

. . .
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Mass Matrices and Tadpoles

Masses and Tadpoles
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Mass Matrix

The tree-level mass matrix is given by

Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Masses and Tadpoles
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Mass Matrix

The tree-level mass matrix is given by

Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

The mass matrix of the CP-even Higgs states is given by:

. . .
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Mass Matrix

The tree-level mass matrix is given by

Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

The down-quark mass matrix is given by:

For fermions names of Weyl or Dirac spinors can be used, i.e.
MassMatrix[FDL] or MassMatrix[FDR] give the same output.
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Mass Matrix

The tree-level mass matrix is given by

Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

The neutralino and chargino mass matrices are given by:

Masses and Tadpoles
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Mass Matrix

The tree-level mass matrix is given by

Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

Mass matrices involving Goldstone bosons come with RXi what denotes the
gauge dependent part from the gauge fixing Lagrangian.

RXi[_] -> 0 corresponds to Landau gauge

RXi[_] -> 1 corresponds to Feynman gauge
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Mass Matrix

The tree-level mass matrix is given by
Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

Mass matrices involving Goldstone bosons come with RXi what denotes the
gauge dependent part from the gauge fixing Lagrangian.

RXi[_] -> 0 corresponds to Landau gauge

RXi[_] -> 1 corresponds to Feynman gauge

For instance, the CP-odd Higgs mass matrix reads

. . .
Masses and Tadpoles
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Mass Matrix

The tree-level mass matrix is given by

Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

For vector bosons the name of one of the mass eigenstate can be used, i.e.
MassMatrix[VP] and MassMatrix[VZ] give the same result:
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Mass Matrix

The tree-level mass matrix is given by
Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

For vector bosons the name of one of the mass eigenstate can be used, i.e.
MassMatrix[VP] and MassMatrix[VZ] give the same result:

one can check immediately that one state is massless

Masses and Tadpoles
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Mass Matrix

The tree-level mass matrix is given by

Mathematica

MassMatrix[ FIELD ];

with FIELD is the name of the mass eigenstates.

Examples:

The sfermion mass matrices are general 6×6 matrices which are a bit lengthy,
i.e. the down squark matrix reads

. . .
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Tadpole Equations I

The tadpole equations corresponding to a scalar or VEV is returned by

Mathematica

TadpoleEquation[ X ];

with X is the name of VEV (or the corresponding field).

Masses and Tadpoles
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Tadpole Equations I

The tadpole equations corresponding to a scalar or VEV is returned by

Mathematica

TadpoleEquation[ X ];

with X is the name of VEV (or the corresponding field).

Examples:

The three tadpole equations in the SMSSM read:
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Tadpole Equations I

The tadpole equations corresponding to a scalar or VEV is returned by

Mathematica

TadpoleEquation[ X ];

with X is the name of VEV (or the corresponding field).

Examples:

The three tadpole equations in the SMSSM read:

The same results are obtained from

TadpoleEquation[phid]

TadpoleEquation[phiu]

TadpoleEquation[phiS]

Masses and Tadpoles
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Tadpole Equations II

A list with all tadpole equations for a given set of eigenstates is stored in

Mathematica

TadpoleEquations[ STATES ];

with STATES is the name of eigenstates.

Masses and Tadpoles
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Tadpole Equations II

A list with all tadpole equations for a given set of eigenstates is stored in
Mathematica

TadpoleEquations[ STATES ];

with STATES is the name of eigenstates.
Example: The three tadpole equations after EWSB are stored in:

Masses and Tadpoles
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Application: Pseudo-Scalar Mass

One can combine the information of the mass matrix with the tadpole
equations to check the masses of the Goldstones:

Masses and Tadpoles
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Application: Pseudo-Scalar Mass

One can combine the information of the mass matrix with the tadpole
equations to check the masses of the Goldstones:

Mathematica

solTadpoles = Solve[TadpoleEquations[EWSB] == 0, {mHd2, mHu2, ms2}][[1]];

Simplify[ Eigenvalues[MassMatrix[Ah] /. solTadpoles]]

1 We use the Solve command of Mathematica to get the solutions of
the tadpole equations for m2

Hd
, m2

Hu
, m2

S
2 We insert the solutions in the pseudo-scalar mass matrix
3 We use Eigenvalues to get CP odd masses

Masses and Tadpoles
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Application: Pseudo-Scalar Mass

One can combine the information of the mass matrix with the tadpole
equations to check the masses of the Goldstones:

→ The Goldstone mass squared is RξM2
Z

Masses and Tadpoles
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Vertices

Vertices
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Vertex command

A vertex for a given set of particles is calculated via

Mathematica

Vertex[{Field 1, Field 2, ...}, Options]

Vertices
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Vertex command

A vertex for a given set of particles is calculated via

Mathematica

Vertex[{Field 1, Field 2, ...}, Options]

Possible options are

Eigenstates -> STATES: for which set of states the vertices shall
be calculated

UseDependences -> True/False: shall dependencies defined in
parameters.m be applied
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Vertex command

A vertex for a given set of particles is calculated via
Mathematica

Vertex[{Field 1, Field 2, ...}, Options]

Examples:

The down-quark Higgs vertex is given by

The indices to external states are added

For each vertex the Lorentz dependent and independent parts are
separated (PL, PR are projection operators)

Delta[i,j] is the Kronecker Delta
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Vertex command

A vertex for a given set of particles is calculated via

Mathematica

Vertex[{Field 1, Field 2, ...}, Options]

Examples:

The down-quark Higgs vertex for third generation quarks and without flavour
violation is given by
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Vertex command

A vertex for a given set of particles is calculated via

Mathematica

Vertex[{Field 1, Field 2, ...}, Options]

Examples:

The squark-quark gluon vertex is calculated via

Lam are the Gell-Mann matrices (fSU3 would be the structure constants)
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Vertex command

A vertex for a given set of particles is calculated via

Mathematica

Vertex[{Field 1, Field 2, ...}, Options]

Examples:

The quark-gluon vertex is calculated via

gamma[x] is γx

LorentzProduct defines a non-commutative product
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Dependencies I

SARAH usually expresses the vertices in fundamental quantities.

Relations can be defined in parameters.m and used via
UseDependences->True

Vertices
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Dependencies I

SARAH usually expresses the vertices in fundamental quantities.

Relations can be defined in parameters.m and used via
UseDependences->True

Example:

The standard form of the quark-photon vertex is
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Dependencies I

SARAH usually expresses the vertices in fundamental quantities.

Relations can be defined in parameters.m and used via
UseDependences->True

Example:

One can use e,ΘW instead of g1, g2 via
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Dependencies II

All dependencies are stored in the list subDependences

This list can be applied also after calculating vertices

Vertices
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Dependencies II

All dependencies are stored in the list subDependences

This list can be applied also after calculating vertices

Example:

For the SMSSM the defined dependencies are

Vertices
Florian Staub – SARAH (part II): Working in Mathematica (Tools Bootcamp, 23.10.17) 14/26



Dependencies II

All dependencies are stored in the list subDependences

This list can be applied also after calculating vertices

Example:

The standard form of the four charged Higgs vertex is
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Dependencies II

All dependencies are stored in the list subDependences

This list can be applied also after calculating vertices

Example:

One can fix the generation indices and replace afterwards the rotation
matrix by the defined angle

Vertices
Florian Staub – SARAH (part II): Working in Mathematica (Tools Bootcamp, 23.10.17) 14/26



All vertices at once

It is possible to calculate all vertices at once using

Mathematica

MakeVertexList[ STATES, Options]

with

STATES: the eigenstates for which all vertices shall be calculated

One can define a subset of generic classes which should be
considered, e.g. GenericClasses->{FFS,FFV}
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All vertices at once

It is possible to calculate all vertices at once using

Mathematica

MakeVertexList[ STATES, Options]

with

STATES: the eigenstates for which all vertices shall be calculated

One can define a subset of generic classes which should be
considered, e.g. GenericClasses->{FFS,FFV}

Output:

The results are lists SA‘VertexList[TYPE] for each generic class:
{FFS, FFV, SSS, SSV, SVV, SSVV, VVV, VVVV, GGS, GGV}

The results are stored in the output directory of the model

The content of these lists are the information which gets exported into FeynArts, CalcHep or UFO files
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Example:
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Example:

the FFS vertices are stored in SA‘VertexList[FFS]:

. . .
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Example:

Mathematica commands can be used to filter & select subgroups of vertices,
e.g. all FFS vertices with a pseudo-scalar are returned by

. . .
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Renormalisation Group Equations

RGEs
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RGE calculation

The one- and two-loop RGEs for a model are calculated via

Mathematica

CalcRGES[ Options]

The possible options are

TwoLoop -> True/False

ReadLists -> True/False (reading previous results)

VariableGenerations -> FIELDS (consider number of
generations as free variable)

NoMatrixMultiplication -> True/False (use explicit sums
instead of matrix multiplication)

IgnoreAt2Loop -> PARAMETERS (ignore some parameters at
two-loop)

WriteFunctionsToRun->True/False (write a file to evaluate the
RGEs numerically in Mathematica)

RGEs
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. . .

RGEs
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Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

RGEs
Florian Staub – SARAH (part II): Working in Mathematica (Tools Bootcamp, 23.10.17) 20/26



Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

The names of the arrays for SUSY models are
Gij: Anomalous dimensions of all chiral superfields
BetaWijkl: Quartic superpotential parameters
BetaYijk: Trilinear superpotential parameters
BetaMuij: Bilinear superpotential parameters
BetaLi: Linear superpotential parameters
BetaQijkl: Quartic soft-breaking parameters
BetaTijk: Trilinear soft-breaking parameters
BetaBij: Bilinear soft-breaking parameters
BetaSLi: Linear soft-breaking parameters
Betam2ij: Scalar squared masses
BetaMi: Majorana Gaugino masses
BetaGauge: Gauge couplings
BetaVEVs: VEVs
BetaDGi: Dirac gaugino mass terms
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Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

The names of the arrays for non-SUSY models are

Gij: Anomalous dimensions of all fermions and scalars

BetaGauge: Gauge couplings

BetaLijkl: Quartic scalar couplings

BetaYijk: Interactions between two fermions and one scalar

BetaTijk: Cubic scalar interactions

BetaMuij: Bilinear fermion term

BetaBij: Bilinear scalar term

BetaVEVs: Vacuum expectation values
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Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

Example:

The β-functions of the gauge couplings are

Coefficients 1/16π2, 1/(16π2)2 are dropped

1-loop, 2-loop
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Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

Example:

The β-functions of the gauge couplings are

Coefficients 1/16π2, 1/(16π2)2 are dropped
1-loop, 2-loop
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Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

Example:

The β-functions of Tκ are
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Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

Example:

For soft masses often traces TrX[Y] appear, e.g. for m2
Hu

. . .
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Results

The results are stored in three dimensional arrays containing

{Parameter, 1-loop Beta-Fkt., 2-loop Beta-Fkt}

Example:

The expressions for the traces are given in TraceAbbr
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Running in Mathematica

SARAH writes the RGEs also in a format which can be used directly
with Mathematica

This format is saved in the file RunRGEs.m

Also a function RunRGEs to run the RGEs is provided in this file.
The syntax is

Mathematica

RunRGEs[ input, scale1, scale2, Options]

non-vanishing boundary conditions at the scale where the running
starts

log of the scale where the running starts

log of the scale where the running stops

option to turn off two-loop running (TwoLoop->False)

RGEs
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Running in Mathematica
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Running in Mathematica

SARAH writes the RGEs also in a format which can be used directly
with Mathematica

This format is saved in the file RunRGEs.m

Also a function RunRGEs to run the RGEs is provided in this file.
The syntax is

Mathematica

RunRGEs[ input, scale1, scale2, Options]

non-vanishing boundary conditions at the scale where the running
starts

log of the scale where the running starts

log of the scale where the running stops

option to turn off two-loop running (TwoLoop->False)
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Examples:

RGEs
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Examples:

Loading RunRGEs.m

Running the gauge couplings as well as Yt & λ from 103 to 1017 GeV

→ the results are stored as interpolating function

These functions are used as

Mathematica

PARAMTER[SCALE] /. InterpolatingFunction

to get the value of a parameter at any scale
RGEs
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Examples:

One can use the function to get values of the running gauge couplings at the
GUT scale:

RGEs
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Examples:

One can use the function to get values of the running gauge couplings at the
GUT scale:

One can also make plots to show the running:

RGEs
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Examples:

SUSY boundary conditions at the GUT scale can be set:

RGEs
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Examples:

SUSY boundary conditions at the GUT scale can be set:

. . . and the running of the masses can be plotted:
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Examples:

Also one- and two-loop running can be compared, e.g. for the gauginos:
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LATEX Output

LATEX Output
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LATEX Output

All information which we have obtained so far can be exported into
LATEXusing

Mathematica

MakeTeX[ Options]

The possible options are

FeynmanDiagrams -> True/False (feynman diagrams for all
vertices?)

ShortForm -> True/False (write vertices in a more compact form)

WriteSARAH -> True/False (write information about the model
implementation in SARAH)

About Feynman diagrams:

To draw Feynman diagrams, the package FeynMF must be installed

A batch script is provided to compile all diagrams automatically

LATEX Output
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Example

Generate the LATEXfiles
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Example

make the script executable and run it

. . .
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Example
Take a look . . .
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Example
Fields and superpotential . . .
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Example
RGEs . . .
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Example
Mass matrices . . .
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Example
Vertices . . .
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Summary

SARAH makes it easy to get analytical information about a given
model

RGE running can easily be performed within Mathematica at the
two-loop level

The LATEX output provides many information in a human readible form
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