New results on parton densities of nucleons and nuclei

Stefan Schmitt DESY

XXVI International Workshop on Deep Inelastic Scattering and Related Subjects

16-20 April 2018 Kobe, Japan

Outline

- Introduction
- Low-x gluon
- Fitted and perturbative charm
- High-x gluon and valence
- Flavour separation, strangeness
- Nuclear PDFs

Disclaimer:

This talk is covering only unpolarized, collinear PDFs.

Many results had to be left out.

The emphasis is on new experimental results and their PDF interpretation.

I made choices based on personal biases. The selection is not complete and I would like to ask your apologies for missing out many important results. Spin: next plenary talk by Hayan Gao

Parallel session on Proton structure and PDF: WG1 [Valerio Bertone, Mario Campanelli, Paolo Gunnellini]

PDFs and QCD factorisation

Factorisation is proven in pp only for a subset of processes, such as Drell-Yan, jet or heavy quark production

- PDF $f_{a}(x,\mu)$: probability to find parton of flavour q in the proton
- Factorisation theorem: hard partonic matrix elements factorize from PDFs
- Higher twist terms are suppressed by powers of the factorisation scale μ

PDF evolution

- PDFs evolve with the scale: DGLAP equations
 - \rightarrow given the x-dependence at a fixed scale μ_0 , DGLAP predicts the x-dependence at another scale
- Ingredients: splitting functions and running strong coupling

PDF set

parametrisation of PDFs [u(x),d(x),s(x),g(x),...] at a starting scale μ_0 and a choice of $\alpha_s(m_z)$. Using DGLAP, this predicts the PDF for any flavour at any scale and any x

PDF fit

- PDF fit: determine a PDF set from data using NLO or (where possible) NNLO theory
- Requirements:
 - Data
 - Predictions for the reactions of interest
 - PDF Parametrisation at starting scale μ_0
 - Fitting framework
- Result: "central" PDF set +uncertainties
- PDF uncertainties are often expressed by publishing several PDF sets

- xFitter: open-source tool to do PDF fits
- Global fitting groups: NNPDF, ABM, CTEQ, MMHT, ...

See parallel session talks: MMHT,CTEQ-TEA,NNPDF: WG1 17.4. 14:20-15:20 xFitter: WG1(212) 18.4. 16:30

Example PDF set

S.Schmitt, Parton density results

6

DIS conference, April 2018

- Uncertain
- Valence quarks, gluon, seaquarks

Shown here: result of

NNPDF3.1 analysis

- Uncertainties are encoded in the widths of the bands
- DGLAP evolution to high scales causes steep rise of gluon and sea at low-x
- Charm and beauty quark PDFs are non-zero at scales μ>M_Q
 (variable-flavour-number)
- Alternative: fixed-flavour number schemes, N_f={3,4,5}

Relevance of PDF uncertainties

DESY

- The PDFs seem to be rather well known, so why care about precision?
- Example: recent highprecision W-mass determination by ATLAS
 - \rightarrow PDF is the dominating uncertainty
- The same is true for many other LHC results

Combined	Value [MeV]	Stat.	Muon	Elec.	Recoil	Bckg.	QCD Unc	EW	PDF	Total Unc	χ^2/dof
categories		one.	One.	one.	one.	one.	one.	one.	one.	one.	or como.
$m_{\rm T}, W^+, e^-\mu$	80370.0	12.3	8.3	6.7	14.5	9.7	9.4	3.4	16.9	30.9	2/6
$m_{\rm T}, W^-, e$ - μ	80381.1	13.9	8.8	6.6	11.8	10.2	9.7	3.4	16.2	30.5	7/6
$m_{\rm T}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13
$p_{\mathrm{T}}^{\ell}, W^+, e$ - μ	80352.0	9.6	6.5	8.4	2.5	5.2	8.3	5.7	14.5	23.5	5/6
$p_{\mathrm{T}}^{\ell}, W^{-}, e^{-\mu}$	80383.4	10.8	7.0	8.1	2.5	6.1	8.1	5.7	13.5	23.6	10/6
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - μ	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$p_{\mathrm{T}}^{\ell}, W^{\pm}, e$	80347.2	9.9	0.0	14.8	2.6	5.7	8.2	5.3	8.9	23.1	4/5
$m_{\rm T}, W^{\pm}, e$	80364.6	13.5	0.0	14.4	13.2	12.8	9.5	3.4	10.2	30.8	8/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, e$	80345.4	11.7	0.0	16.0	3.8	7.4	8.3	5.0	13.7	27.4	1/5
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^-, e$	80359.4	12.9	0.0	15.1	3.9	8.5	8.4	4.9	13.4	27.6	8/5
$m_{\rm T}$ - $p_{\rm T}^l$, W^{\pm} , e	80349.8	9.0	0.0	14.7	3.3	6.1	8.3	5.1	9.0	22.9	12/11
$p_{\mathrm{T}}^{\ell}, W^{\pm}, \mu$	80382.3	10.1	10.7	0.0	2.5	3.9	8.4	6.0	10.7	21.4	7/7
$m_{\rm T}, W^{\pm}, \mu$	80381.5	13.0	11.6	0.0	13.0	6.0	9.6	3.4	11.2	27.2	3/7
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^+, \mu$	80364.1	11.4	12.4	0.0	4.0	4.7	8.8	5.4	17.6	27.2	5/7
$m_{\rm T}$ - $p_{\rm T}^{\ell}, W^{-}, \mu$	80398.6	12.0	13.0	0.0	4.1	5.7	8.4	5.3	16.8	27.4	3/7
m_{T} - p_{T}^{ℓ} , W^{\pm} , μ	80382.0	8.6	10.7	0.0	3.7	4.3	8.6	5.4	10.9	21.0	10/15
m_{T} - p_{T}^{ℓ} , W^+ , e - μ	80352.7	8.9	6.6	8.2	3.1	5.5	8.4	5.4	14.6	23.4	7/13
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^- , e - μ	80383.6	9.7	7.2	7.8	3.3	6.6	8.3	5.3	13.6	23.4	15/13
$m_{\rm T}$ - $p_{\rm T}^{\ell}$, W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

ATLAS W-mass: EPJ C78 (2018) 110 [arXiv:1701.07240]

PDF fits: many possible input datasets

DIS conference, April 2018

Low-x gluon

DIS conference, April 2018

HERA data and low-x

Low-x resummation

- Resum leading logs in 1/x: **BFKL-type gluon ladders**
- Code for resummed splitting ٠ kernels and resummed DIS coefficient functions available in the package "HELL2.0"

HELL2.0: JHEP 1712 (2017) 117 [arXiv:1708.07510]

DIS conference, April 2018

Low-x resummation and HERA data

- Recent PDF fits with low-x
 resummation
 - NNPDF group
 - xFitter group
- Fits include HERA inclusive data and HERA charm (2012) data
- NNPDF3.1sx also includes non-ep datasets, with restricted x-range (resummed coefficient functions available only for DIS)
- Result: better description of HERA
 low-x data and of HERA charm data

IOW-X data and of HERA charm data NNPDF+resummation: arXiv:1710.05935 xFitter+resummation: arXiv:1802.00064; WG1(213) 19.4. 10:00

DIS conference, April 2018

New HERA c and b combination

- New H1+ZEUS data combination of charm and beauty cross sections, supersedes 2012 charm combination
- Main result of the paper: extract charm and beauty quark masses

 $m_c(m_c) = 1.290^{+0.077}_{-0.053}$ and $m_b(m_b) = 4.049^{+0.138}_{-0.118}$

- Here: focus on comparisons of charm data to QCD predictions
 - NLO+HERAPDF2.0 FF3A Fixed-flavour
 - NNPDF31sx (NNLO+NLLX) Variable-flavour +low-x resummation

Shown here: ratios to HERAPDF2.0 FF3A

Data have x-slope different from fixedflavour NLO HERAPDF2.0 FF3A

x-slope described better for variableflavour+NLLX NNPDF3.1 but Q² dependence is not correct

Valuable input for future PDF fits and QCD studies: low-x resummation, flavour thresholds, ...

HERA jets and PDF+ α_s fit

WG1(6) 17.4. 9:00

DIS conference, April 2018

S.Schmitt, Parton density results

use in global fits

Fitted and perturbative charm

Charm in the PDF

Perturbative charm

Fitted charm

Fitted charm +FMC data

(Charm in DIS, high-x)

Variable flavour number scheme: "perturbative charm" from gluon splitting

NNPDF3.1 and CTEQ-TEA: additional "fitted" charm contribution, onset at $\mu_0 > M_c$

LHC Z+c is sensitive to fitted charm at large transverse momentum BHPS: valence-like charm SEA: sea-like charm

NNPDF3.1 NNLO, Q = M

Fitted charn

ed charm + EMC

erturbative charr

Q²) [ref]

× •

NNPDF3.1 NNLO, Q=1.51 GeV

Fitted charm

ted charm + EMC

Perturbative cha

NNPDF3.1: EPJ C77 (2017) 663 [arXiv:1706.00428]; WG1(252) 17.4. 15:00 CTEQ-TEA: JHEP 1802 (2018) 059 [arVix:1707.00657]; WG1(236) 17.4. 14:40

DIS conference, April 2018

Fitted charm: new LHC data

High-x gluon and valence

DESY

Double-differential jet data at the LHC

- ATLAS double-differential cross sections
- Inclusive jets $\sqrt{s}=8$ and 13 TeV $\frac{d}{dp}$
- Dijets $\sqrt{s=13 \text{ TeV}} \quad \frac{d^2\sigma}{dm_{ii} dy^*}$, where $y^* = |(y_1 y_2)/2|$

ATLAS: 8 TeV inclusive jets: JHEP 1709 (2017) 020 [arXiv:1706.03192]

(only the newer (\sqrt{s} =13 TeV) data are shown here)

ATLAS: 13 TeV inclusive jets and dijets: arXiv:1711.02692; WG1(59) 18.4. 10:25

Theory/Data 1.4 1.5 1.7 1.6 0.0 0.0 ATLAS Theory/Data .6E lvl<0.5 1.5≤lvl<2.0 L=81 nb⁻¹ - 3.2 fb⁻¹ 1s = 13 TeV 0.8 0.6 anti-k, R=0.4 0.5≤lyl<1.0 2.0≤lyl<2.5 1.6 Data NLO QCD ⊗ K_{EW} ⊗ K_{NP} 0.8 0.8 0.6 $\mu_{p} = \mu_{r} = p_{T}^{max}$ 2.5≤lyl<3.0 1.0≤lyl<1.5 2.5 CT14 HERAPDF 2.0 0.9 ABMP16 0.5 $10^2 2 \times 10^2$ $10^3 2 \times 10^3$ 10² 10^{3} 2×10³ 2×10² p_ [GeV] p_ [GeV]

- Data uncertainties similar in size to predictions from global PDF fits
- Shape differences NLO \leftrightarrow data
- Data to be used in future PDF fits

Quantitative comparisons: backup

DIS conference, April 2018

Triple-differential jet data at the LHC

Jet production at RHIC

- Main measurement: polarisation asymmetry A
- Add-on: unpolarized cross sections
- Explores regions of very large x, at lower scales than LHC
- Data uncertainties are much smaller than predictions → possible constraints on PDFs

STAR jets: Phys.Rev. D95 (2017) 071103 [arXiv:1610.06616]; WG6(126) 18.4. 11:30

Global fits with LHC jet data

DESY

- NNLO calc. available
- MMHT study, including only √s=7 TeV jet data at NNLO
- Difficulties to fit ⁰ the ATLAS data ⁻⁵ → change syst. ⁻¹⁰ correlations ⁻¹⁵

	NLO theory	NNLO	NNLO (no errors)
ATLAS, R_{low}	215.3	172.3	179.1
ATLAS, R_{high}	159.2	149.8	153.5
CMS, $R_{\rm low}$	194.2	177.8	182.8
CMS, R_{high}	198.5	182.3	188.8

 X^2 for NLO and NNLO fits

Gluon (NNLO), $Q^2 = 10^4 \,\mathrm{GeV}^2$

- NNLO describes the data better than NLO
- LHC data do improve gluon in global fits, in particular at large-x

NNLO jets,V+jets calculations: **WG4(165) 18.4. 9:00** MMHT+jets: EPJ C78 (2018) 248 [arXiv:1711.05757]; **WG1(250) 17.4. 14:20** CMS 7 TeV: Phys.Rev. D90 (2014) 072006 [arXiv:1406.0324] ATLAS 7 TeV: JHEP 1502 (2015) 153 [arXiv:1410.8857], Erratum JHEP 1509 (2015) 141

DIS conference, April 2018

DIS conference, April 2018

) -23

LHCb 13 TeV: arXiv:1803.05188; **WG1(220) 17.4. 11:50** CMS 5 TeV: JHEP 1803 (2018) 115 [arXiv:1711.03143]; **WG1(30) 17.4. 15:40** CMS 13 TeV: JHEP 1709 (2017) 051 [arXiv:1701.06228]

section (pb) CMS eµ/µµ/l+jets 5.02 TeV (L = 27.4 pb⁻¹) CMS PDF fit with HERA data eu 7 TeV (L = 5 fb⁻¹) I+iets 7 TeV (L = 2.3 fb⁻¹) CMS NNLO MC Method eu 8 TeV (L = 19.7 fb⁻¹) $\mu_{e}^{2} = 10^{5} \text{ GeV}^{2}$ I+iets 8 TeV (L = 19.6 fb⁻¹) 1.2 HERA DIS + CMS W[±] eu 13 TeV (L = 2.2 fb⁻¹) Inclusive tf cross ▲ I+jets 13 TeV (L = 2.2 fb⁻¹ HERA DIS + CMS W[±] + o_# Gluon PDF relative 80 L ф eu/ци 10²¹ b I+iets - NNLO+NNLL 80 eu/uu/l+iets PRL 110 (2013) 252004 DIS + W[±] + σ_{st} / DIS + W[±] 60 NNPDE3.0 MMHT14 10 -2 10 -1 10 -3 ABMP16* CT14 5.02 √s (TeV) CMS cross-section is 10 12 2 6 8 14 constraining high-x gluon √s (TeV)

- New CMS measurements at 5 and 13 TeV
- 2016 ATLAS measurement of tt(bar)/Z: backup slides

Gluon density and tt(bar) cross sections

New LHCb measurement at 13 TeV in the forward direction $(2 < y_{top} < 5, p_T > 10 \text{ GeV})$

LHCb: forward ttbar prediction is $\sim 2\sigma$ below data

$$\sigma_{LHCb} \sim g(x_1)g(x_2)$$

where $x_1 > 10^{-1}$, $x_2 < 10^{-2}$

Single-differential tt(bar) cross sections

- New ATLAS data: normalized singledifferential dilepton cross sections at 8 TeV
- Many variables are measured and are compared to various PDF sets

	Generator	p_{T}^{ℓ}	$ \eta^{\ell} $	$p_{\rm T}^{e\mu}$	$m^{e\mu}$	$ y^{e\mu} $	$\Delta \phi^{e\mu}$	$p_{\mathrm{T}}^{e} + p_{\mathrm{T}}^{\mu}$	$E^e + E^{\mu}$
	N _{dof}	9	8	8	11	8	9	7	9
	MCFM + CT14	11.5	14.1	7.2	11.2	13.0	7.2	11.4	11.2
2	MCFM + MMHT	11.3	12.8	7.2	11.2	12.6	7.1	11.2	9.6
X	MCFM + NNPDF 3.0	11.7	11.3	7.2	11.4	9.4	7.3	11.5	8.5
	MCFM + HERAPDF 1.5	9.1	10.9	6.4	12.1	8.0	6.9	8.5	2.6
	MCFM + HERAPDF 2.0	8.4	12.0	6.2	12.4	8.0	6.8	8.0	2.7
	MCFM + CT14	0.24	0.080	0.51	0.43	0.11	0.62	0.12	0.27
~ `	MMHT	0.26	0.12	0.51	0.42	0.13	0.62	0.13	0.38
D-V	alue NNPDF 3.0	0.23	0.18	0.52	0.41	0.31	0.61	0.12	0.49
	MCFM + HERAPDF 1.5	0.43	0.21	0.61	0.36	0.44	0.65	0.29	0.98
	MCFM + HERAPDF 2.0	0.49	0.15	0.63	0.33	0.44	0.66	0.34	0.97

EPJ C77 (2017) 804 [arXiv1709.09407]; WG1+5(160) 18.4. 14:35

DIS conference, April 2018

Double-differential tt(bar) cross sections

EPJ C77 (2017) 459 [arXiv1703.01630]; WG1(30) 17.4. 15:40

DIS conference, April 2018

Flavour separation, strangeness

Strangeness in PDF fits

- Indirect constraints on strangeness by combining structure functions, W-prod and Drell-Yan + sum rules (each probing different flavour combination)
- Direct measurements:
 - High-x semi-inclusive DIS, K⁺&K[−]
 - Charm in charged current, vN NLO calc: WG1(146) 18.4. 15:30
 - LHC W+c
- Look at suppression factor $r_s = \frac{\overline{s}}{\overline{d}} \sim R_s = \frac{s+\overline{s}}{\overline{u}+\overline{d}}$

HERA NC: $\sigma_r \sim 4(u + \bar{u} + c + \bar{c}) + d + \bar{d} + s + \bar{s} + b + \bar{b}$ HERA CC $e^+ p$: $\sigma_{cc} \sim d + s + b + \bar{u} + \bar{c}$ HERA CC $e^- p$: $\sigma_{cc} \sim u + c + \bar{d} + \bar{s} + \bar{b}$ LHC Z: $\sigma_{DY} \sim u \bar{u} + c \bar{c} + 1.3(d \bar{d} + s \bar{s} + b \bar{b})$ LHC W+: $\sigma_{W^+} \sim u \bar{d} + c \bar{s} + Cabbibo$ suppr.prod. LHC W+: $\sigma_{W^-} \sim \bar{u} d + \bar{c} s + Cabbibo$ suppr.prod.

Recap: LHC data and the strange sea

- Global fits+NuTeV/CCFR, NOMAD, CHORUS: "suppressed" strange sea, r_s<1.
- HERMES 2014: r_s is x-dependent (leading-order analysis)
- ATLAS 2012 fit of W and Drell-Yan +HERA: "unsuppressed" strange sea r_s=1
- CMS 2013 data on W asymmetry plus PDF fit: "suppressed" strange sea
- CMS 2013 data on c+W compatible with "suppressed" strange sea
- ATLAS 2014 data on c+W compatible with with "unsuppressed" ATLAS fit

HERMES: Phys.Rev. D89 (2014) 097101 [arXiv:1312.7028] ATLAS fit: Phys.Rev.Lett. 109 (2012) 012001 [arXiv:1203.4051] CMS c+W: JHEP 1402 (2014) 013 [arXiv:1310.1138] CMS W asym: Phys.Rev. D90 (2014) 032004 [arXiv:1312.6283] ATLAS c+W: JHEP 1405 (2014) 068 [arXiv:1402.6263]

da/dln/ [pb]

600

500

Theory/Data 56'0 7

New LHC W and Drell-Yan data

ATLAS

 $xs(x, Q^2)$

10-2

xs(x,Q²)

0.5

0.4

0.3

- Recent data: ATLAS √s=7 TeV
- W: single-differential in lepton n •
- DY: differential in y_{μ} for three mass • regions, forward and central rapidity

x 10⁻¹ x 10⁻¹ ATLAS+HERA data PDF fit: confirms unsuppressed strange sea at low/medium x PDF parametrisation uncertainties at low-x and high-x are large

s+s)/(u+d)(x,Q²)

1.4

1.2

0.9

10-3

ATLAS

 $\frac{s+\overline{s}}{\overline{s}} \sim 1.1$

10⁻²

 $\overline{u} + \overline{a}$

 $Q^2 = 1.9 \text{ GeV}^2$

ATLAS-epWZ16 par+exp+mod unc.

Triple-differential ALTAS DY data are also available: JHEP 12 (2017) 059 [arXiv:1710.05167]

EPJ C77 (2017) 367 [arXiv:1612.03016]; WG1(58) 17.4. 12:10

 $Q^2 = 1.9 \text{ GeV}^2$

ATLAS-epWZ16

ar+exp+mod unc.

New data on c+W

 New CMS analysis for DIS2018 W+c at √s=13 TeV

- Fully-reconstructed D* mesons
- Direct probe of strangeness in the proton
- Integrated and singledifferential |η_µ| cross sections
- PDF fit with HERA, CMS W asymmetry and previous CMS W+c

DIS conference, April 2018

CMS-PAS-SMP-17-014; parallel session talk: WG1(30) 17.4. 15:40

New CMS data: not compatible with ATLASepWZ16nnlo central fit. Overlap within parametrisation unc. under study

Fits using ATLAS and CMS W+DY data

NNPDF3.1: EPJ C77 (2017) 663 [arXiv:1706.00428]; WG1(252) 17.4. 15:00

DIS conference, April 2018

SeaQuest preliminary data

- Sea Quest: fixed-target Drell-Yan experiment with hydrogen and deuterium targets
- Recent run finished in summer 2017

 SeaQuest/E906: reduced beam energy, higher x

E866/NuSea:

restricted to x<0.35

- Only 15% of the full dataset – analysis ongoing
- No evidence for dbar/ubar<1 at high x
- Also recorded: data from heavier targets → better systematics, option to measure EMC effect in DY
- Late 2018: operation with polarized target

NuSeaE866: Phys.Rev. D64 (2001) 052002 [hep-ex:0103030] SeaQuest detector: arXiv:1706.09990 Preliminary result e.g.: JPS Conf.Proc. 13 (2017) 020051; Parallel session talk: WG1(266) 18.4. 12:30 S.Schmitt, Parton density results

DIS conference, April 2018

Lattice QCD

- Recent Lattice calculations reach scales µ~2 GeV
 → compare with fitted PDFs
- Two new results predicting difference u-d and dbar-ubar at large x:
 - 1) European Twisted Mass Collaboration
 - 2) LP³ collaboration
- Shown here: LP³ results on u-d and dbar-ubar at µ=3 GeV
- Lattice results on unpolarized PDFs may become increasingly interesting for PDF fits in the future

Ratio d/u from fixed-targed DIS

- JLAB 12 GeV program includes dedicated experiments to improve structure functions and d/u ratio at high x
 - Hall C: precision F₂ for ep and ed scattering
 - MARATHON: ³H and ³He, nuclear corrections cancel in ratio
 - BONuS12: effective free neutron target in ed scattering with proton tag
 - SoLID PVDIS: u/d from parity-violating ep scattering
- Fitting group CJ at JLAB, focussing on the use of high-x data in PDFs

CJ15 PDFs: Phys.Rev. D93 (2016) 114017 [arXiv:1602.03154] BONuS 5 GeV: Phys.Rev. C89 (2014) 045206, add: Phys.Rev. C90 (2014) 059901[arXiv:1402.2477] MARATHON: https://www.jlab.org/exp_prog/proposals/10/PR12-10-103.pdf SoLID PVDIS: https://www.jlab.org/exp_prog/proposals/10/PR12-10-007.pdf Hall C precision F2: https://www.jlab.org/exp_prog/proposals/10/PR12-10-002.pdf

Projected precision on u/d from future 12 GeV JLAB experiments

Parallel session talks: BONuS12: WG7(261) 18.4. 10:24 JLAB 12GeV: WG7(255) 18.4. 16:54

Nuclear PDFs

Nuclear PDF fits

- Parton content of a heavy target with charge Z and atomic number A?
- Heavy target is composed of bound protons and neutrons.
- Given isospin asymmetry, bound neutron is inferred from bound proton PDFs
- Bound proton is taken from free proton PDFs with A-dependent modifications
- Recent nuclear PDF fits: EPPS16, nCTEQ

nCTEQ: Phys.Rev. D93 (2016) 085037 [arXiv:1509.00792] EPPS16: EPJ C77 (2017) 163 [arXiv:1612.05741]

LHC data in nuclear PDF fits

- Collider data in nuclear PDF fits: production of W and Z is theoretically cleanest
- Jet data add constraints on gluon
- EPPS: LHC jet, W and Z data from pPb [5.02] ATLAS & CMS
- nCTEQ+LHC: W,Z data pPb [5.02] and PbPb [2.76] ATLAS,ALICE,CMS,LHCb

nCTEQ15+LHC W,Z: EPJ C77 (2017) 488 [arXiv:1610.02925]; WG1(155) 18.4. 11:50 EPPS16: EPJ C77 (2017) 163 [arXiv:1612.05741]

New LHC W and Z data in pPb and PbPb

DIS conference, April 2018

Collider data beyond W,Z in nuclear PDFs

- Recent study by Kusina et al, on the use of heavy-flavour probes to constrain low-x gluon
- Includes many datasets from LHC and RHIC

Data add sizable constraints (shown here: prompt D⁰, LHCb and ALICE data)

Kusina et al.: arXiv:1712.07024 WG1(116) 18.4. 11:30

DIS conference, April 2018

Extracted gluon modification factors are similar for all probes

Gluon nuclear modification factors are constrained in both shadowing and antishadowing regime

Summary

- Many measurements rely on a precise knowledge of the proton PDFs
- The field is driven both by new data and by theory advances
- LHC data are becoming increasingly important for constraining PDFs: Drell-Yan and W, top, jets, charm, etc
- "Old" experiments such as HERA continue to improve their results: charm and beauty combination, DIS jets with NNLO calculations
- Several fixed-target experiments at lower energies are coming soon. pp and pA: SeaQuest/E906, ep and eA: JLAB (BONuS, SoLID, ...)
- Global analyses are preferentially done in NNLO not yet available for all measurements of interest
- Nuclear PDF analyses start to use LHC data not covered in detail here

DIS conference, April 2018

Backup

ATLAS jet data: comparison to theory

- Quantitative comparisons of ATLAS 14TeV jet data to theory (various PDFs)
- Dijet theory in good agreement with most PDFs
- Inclusive jets are poorly described by all PDFs (in some bins of η)

Inclusive jets, all bins together

χ^2/dof all $ y $ bins	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$	419/177	431/177	404/177	432/177	475/177
$p_{\mathrm{T}}^{\mathrm{jet}}$	399/177	405/177	384/177	428/177	455/177

Inclusive	jets d	differentia	in η _{Pobs}		
Rapidity ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$					
y < 0.5	67%	65%	62%	31%	50%
$0.5 \leq y < 1.0$	5.8%	6.3%	6.0%	3.0%	2.0%
$1.0 \le y < 1.5$	65%	61%	67%	50%	55%
$1.5 \leq y < 2.0$	0.7%	0.8%	0.8%	0.1%	0.4%
$2.0 \leq y < 2.5$	2.3%	2.3%	2.8%	0.7%	1.5%
$2.5 \leq y < 3.0$	62%	71%	69%	25%	55%
$p_{\rm T}^{\rm jet}$					
y < 0.5	69%	67%	66%	30%	46%
$0.5 \le y < 1.0$	7.4%	8.9%	8.6%	3.4%	2.0%
$1.0 \le y < 1.5$	69%	62%	68%	45%	54%
$1.5 \le y < 2.0$	1.3%	1.6%	1.4%	0.1%	0.5%
$2.0 \le y < 2.5$	8.7%	6.6%	7.4%	1.0%	3.6%
$2.5 \leq y < 3.0$	65%	72%	72%	28%	59%
Diiets			Pobs		
y* ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
$y^* < 0.5$	79%	59%	50%	71%	71%
$0.5 \le y^* < 1.0$	27%	23%	19%	32%	31%
$1.0 \le y^* < 1.5$	66%	55%	48%	66%	69%

26%

35%

46%

5.5%

28%

31%

40%

9.8%

99%

4.2%

25%

0.1%

 $1.5 \le y^* < 2.0$

 $2.0 \le y^* < 2.5$

 $2.5 \le u^* < 3.0$

all u^* bins

26%

43%

45%

8.1%

25%

21%

38%

4.4%

ATLAS W+jet

- W+jets and Wasymmetry+jets, √s=8 TeV
- Sensitive to QCD models, less so to PDFs
- Example: PDF prediction wrt jet p_T

arXiv:1711.03296

ATLAS top pair to Z cross section ratio

ATLAS

13 TeV, 3.2 fb1

8 TeV, 20.2 fb

7 TeV, 4.6 fb1

(°0,×)e×\(°0,1 1.02

- Ratio of tt(bar) to Z cross sections at three centre-of-mass energies
- Already shown at DIS2017
- Adds PDF sensitivity over ATLAS-epWZ12 fit

ATLAS

13 TeV, 3.2 fb1

8 TeV, 20.2 fb

7 TeV, 4.6 fb1

°,x∑(x,0 0°)/x∑(x,0

LHCb forward Z

ALICE D mesons in pp

- Measure D0,D+,D*+,Ds+ at √s=7 TeV
- Reach to very low p_T
- Theory has large scale uncertainties
- Possibility to constrain PDFs in ratios to future data at different \sqrt{s}

EPJ C77 (2017) 550 [arXiv:1702.00766]

DIS conference, April 2018

CMS new result on W+c

DIS conference, April 2018

Comparison: CMS W+c and ATLAS DY

DESY

- PDF fit by ATLAS, using 2016 W+DY data
- PDF fit by CMS, using W+c data
- Differences covered by parametrisation uncertainties?

ATLAS: EPJ C77 (2017) 367 [arXiv:1612.03016]; **WG1(58) 17.4. 12:10** CMS: CMS-PAS-SMP-17-014; **WG1(30) 17.4. 15:40**

RHIC preliminary data on W

- **RHIC** measurements of W • production: polarisation and charge asymmetries
- Accessible region of large x complements LHC and fixed-target measurements
- Only 15% of the available data have ulletbeen analyzed so far

-0.5 0.5 Shown at INT Workshop, The Flavor Structure of Nucleon Sea. Bernd Surrow, October 2017

Parallel session: WG6(128) 18.4. 9:25

Gluon at very low-x: LHCb charm data

- LHCb spectrometer: large rapidities → low-x
- Constrain gluon at x down to 10⁻⁶ with LHCb open charm data
- Recent works by Gauld/Rojo (cross section ratios), Oliveira/Martin/Ryskin (absolute cross sections)

Oliveira et al: fit with two-parameters (red) describes LHCb data but does not easily match global PDF fit

Gauld/Rojo: Phys.Rev.Lett. 118 (2017) 072001 [arXiv:1610.09373] LHCb data but does not easily match global PDF fi Oliveira/Martin/Ryskin: arXiv:1712.06834 LHCb 5 TeV D mesons: JHEP 1706 (2017) 147 [arXiv:1610.02230]; WG1+5(49) 18.4. 15:10 LHCb 13 TeV D mesons: JHEP 1603 (2016) 159, Erratum: JHEP 1609 (2016) 013, Erratum: JHEP 1705 (2017) 074 [arXiv:1510.01707] LHCb 7 TeV D mesons: Nucl.Phys. B871 (2013) 1 [arXiv:1302.2864]

S.Schmitt, Parton density results

 D^++D^-

 $D^0 + \overline{D}^0$

13 TeV

13 TeV