

Collider Studies on Jet and Heavy Flavor Properties

Vieri Candelise

on behalf of the ATLAS, CMS and LHCb Experiments

University of Kobe, Japan 16/04/2018

Outline

- Jet Physics: Phenomenology at the LHC
- Jet Reconstruction in ATLAS, CMS, LHCb
- Selected Measurements at \sqrt{s} =7/8/13 TeV
 - 1 QCD: Inclusive jet production
 - 2 Jets from b quarks: properties and measurements
 - 3 Latest Top quark results at colliders

Jet Phenomenology at Hadron Colliders

LHC is the most efficient Jet Factory of the world!

Jets are the experimental signatures of quarks and gluons

what can we do with jets?

not-purely-QCD

pure-QCD

- Explore the pQCD in brand new energy regions
- Constrain the PDFs
- Probe and measure $\,lpha_S\,$
- Access the dynamics of heavy flavors
- Compare to NLO/NNLO predictions
- Tune Monte Carlo Generators

... much more!

- Extensive test of the Standard Model: V+Jets, H+Jets, V+heavy flavors...
- Test the SM at NNLO precision
- Beyond the Standard Model:
 - dijet resonances
 - monojet & dark matter
 - new strongly produced states
 - hadronic resonances

... much more!

Jet Phenomenology at Hadron Colliders

LHC is the most efficient Jet Factory of the world!

Jets are the experimental signatures of quarks and gluons

what can we do with jets?

explore substructure

exploring the inner structure of jets

- highly boosted bosons reconstructed as jets
- using sub-jets as a powerful tool for measurements such as H(bb) jets, Z(bb) jets, top-jets...

Jet Reconstruction: Strategy

ATLAS

topological calorimeter-cell clusters

anti-k_T clustering algorithm (infrared and collinear safe)

ATLAS/CMS: R=0.4 (Run II)

LHCb: R=0.5

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) rac{\Delta_{ij}^2}{R^2}$$
 $d_{iB} = k_{ti}^{2p}$,

CMS

particle-flow

uses all the sub-detectors information to reconstruct objects

LHCb

calo cell E_T~10 GeV saturation

use the precise \rightarrow use tracking information use $(\land, \mathsf{Ks}, \pi, ...)$

 $(2 < \eta < 5)$

LHCb acceptance forward direction

Particle Flow

Jet Reconstruction: Energy Corrections

ATLAS

both deliver jet energy corrections

Correct for

Pile-Up

- Jet Flavor Composition
- Absolute/Relative Scale

Less than 2% in the region $p_T > 100 \text{ GeV}!$

LHCb: $\sim 10-15\%$ for p_T of 10–100 GeV

disclaimer!

huge amount of results from the experiments on QCD, b jets, top physics...
this is just a (personal) selection!

see the end of the talk for links to the full list of results from the experiments

part 1

QCD

Inclusive jet differential cross section at 13 TeV

Anti-k_T R=0.4 Jets inclusive jets cross section in six *y* bins

- theoretical comparison: NLOJet++ using CT14, MMHT, NNPDF3.0
- corrected for non-perturbative and EWK effects
- modified Bayesian unfolding

arXiv:1711.02692

overall good agreement with NLO predictions!

Inclusive jet differential cross section at 13 TeV

inclusive jets cross section in seven *y* bins

Anti- k_T R=0.4; Anti- k_T R=0.7

- theoretical comparison: NLOJet++ and Powheg+Pythia8, CT14 PDF
- measured jets up to 2 TeV and |y|<4.7</p>
- Bayesian unfolding

Eur. Phys. J. C 76 (2016) 451

overall good agreement with NLO predictions!

Inclusive jet differential cross section at 13 TeV

Determination of the strong coupling α_S

 $p_T > 100 \text{GeV}, |\eta| < 2.5, \text{ anti } k_T - R = 0.4$

- Eur. Phys. J. 77 (2017) 872
- energy-energy correlations and their associated asymmetries in multi-jet event
- bins of the scalar sum of the transverse momenta of the two leading jets
- unfolded distributions fitted to NLO calculations

 $\alpha_S = 0.1162 \pm 0.0011(exp.) + 0.0084 - 0.0070(th.)$

Determination of the strong coupling α_S

coupling extracted from double-diff σ at 8 TeV

JHEP 03 (2017) 156

- theoretical comparison: CT10 NLO x NP x EW PDF
- measured jets up to 2.5 TeV and |y|<4.7</p>
- ratio between 8 and 7, 2.76 TeV also performed

$$\alpha_S = 0.1164^{+0.0014}_{-0.0015}(exp.)^{+0.0025}_{-0.0029}(NP)^{+0.0053}_{-0.0028}(scale)$$

Measurement of the jet charge

8 TeV

19.7 fb⁻¹ (8 TeV)

PH + P8 (CT10)
PH + HPP (CT10)

0.4

— PH + P8 (HERAPDF)

access the initiated parton charge

$$Q^j = \frac{1}{p_T^j} \sum_k Q_k (p_T^k)^j$$

JHEP10(2017)131

Data

data compared to LO predictions Pythia/Herwig CTEQ6L1 and NNPDF30

unfolded jet charge, p_T> 400 GeV

Measurement of the jet charge

8 TeV

access the initiated parton charge

$$Q^j = \frac{1}{p_T^j} \sum_k Q_k (p_T^k)^j$$

Phys. Rev. D93 (2016) 052003

unfolded data compared to LO predictions Pythia8 w/ CT10

average jet charge of quark-initiated jets decreases as the jet energy increases

part 11

Jets from b quark

Heavy flavor tagging at collider

recipe

- reconstruct jets with the anti-kT05 algorithm
- tagging using b- and c- inclusive tagger
- reconstruct the two-body vertices in the event
- merge SV n-body by linking tracks and vertices associated
- associate vertices/jets requiring ΔR(SV, jet) < 0.5

BDT trained on SV/j properties to separate heavy/light

light-jet mistag rate < 1% for b-tag efficiency of 65% and c-tag efficiency of 25%

Heavy flavor tagging at collider

ATLAS

- several taggers:
 - track based (impact parameter tag)
 - soft muon (discriminate µ from b decays)
 - vertex based

high-level taggers: MVA using all the information available to maximize the b-tag performance ATL-PHYS-PUB-2017-013 ATLAS-FTAG-2017-003

trained on top + Z'bb events (hybrid training)

Deep Learning Neural Network

combine inputs from track, particle and vertex-based physics taggers using multivariate classifier

BDT

b-tag efficiency of 77% and c-tag efficiency of 25%

mistag rate of light flavored jets using dijet events with negative tag

< 2% under pT = 1 TeV

Heavy flavor tagging at collider

CMS picualos unnin paduno

- several taggers:
- Jet Probability: likelihood that jets is coming from primary vertex using tracks
- Combined (CSV): combination of displaced tracks with SV info associated to the jet using an MVA
- CSVv2 evolution of CSV using neural networks
 cMVAv2 combines all the taggers

CERN-CMS-DP-2017-005 CMS-PAS-BTV-15-001

Tagger	operating point	discriminator value	ϵ_b (%)
	JPL	0.245	≈ 82
JetProbability (JP)	JPM	0.515	≈ 62
	JPT	0.760	≈ 42
Combined Secondary Vertex (CSVv2)	CSVv2L	0.460	≈ 83
	CSVv2M	0.800	≈ 69
	CSVv2T	0.935	≈ 49
	cMVAv2L	-0.715	≈ 88
Combined MVA (cMVAv2)	cMVAv2M	0.185	≈ 72
	cMVAv2T	0.875	≈ 53

deepCSV: based on CSVv2 ●

+ more charged particles, based on deep NN

improves
~4% the btag
efficiency
with a
mistag rate
of 0.1%

First observation of forward $Z \to bb$

Phys. Lett. B776 (2017) 430-439

- standard candle of the SM: background for many new physics processes, Hbb
- first measurement in forward region ever made!
- challenging measurement (huge QCD background at colliders)
- >2 antikT05 jets, =2 b-tagged, p_T>20 GeV and 45 < m_{JJ}< 165 GeV; $\Delta \phi$ (bb)<2.5.
- MVA to separate QCD from signal b-jets

simultaneous fit to the dijet mass in the signal+control regions

$$\sigma(pp \to Z)\mathcal{B}(Z \to b\bar{b}) = \frac{N_Z^s}{\mathcal{L} \cdot (1 - f_{\text{uGB}}) \cdot \epsilon_Z^s \cdot (1 + f_{Z \to c\bar{c}})}$$

syst: flavor tagging eff. ~17%, JEC ~2%, trig. eff. ~2%

measured
$$\sigma(pp \to Z) \mathcal{B}(Z \to b\bar{b}) = 332 \pm 46 \pm 59 \text{ pb}$$

theory
$$\sigma(pp \to Z)\mathcal{B}(Z \to b\bar{b}) = 272^{+9}_{-12}(\text{scale}) \pm 5(\text{PDFs}) \text{ pb}$$

NLO using aMC@NLO+Pythia;NNPDF3.0

b-hadron pairs cross sections

8 TeV
11.4/fb ATLAS
EXPERIMENT

production of two b hadrons in the 3 muons final state through:

JHEP 11 (2017) 62

- 3 muons fiducial, particle level total and differential σ several observables:
 Δφ(J/ψ, μ), pT (J/ψ, μ), ΔR(J/ψ, μ),m(J/ψ, μ), pT/m(μμμ)...
- modelling of b dynamics in generators and background for Higgs measurements
- access small-angle bb pair sensitive to pQCD (loosely constrain by data)

Event Selection

- first B: $pT(\mu) > 4$ GeV and $|\eta(\mu)| < 2.4$,
- $2.5 < m(\mu\mu) < 4.3 \text{ GeV}$
- second B: third μ in the event required
- signal extracted by fitting Mµµ and B decay time
 +3rd µ from B is determined
- BDT + IP for prompt/signal discrimination
- several g → bb splitting options investigated in P8

4-flavor and 5-flavor modes tested using MG5_aMC MG5_aMC 4-flavor best agreement!

b-hadron pairs cross sections

8 TeV
11.4/fb ATLAS
EXPERIMENT

production of two b hadrons in the 3 muons final state through:

JHEP 11 (2017) 62

- 3 muons fiducial, particle level total and differential σ several observables:
 Δφ(J/ψ, μ), pT (J/ψ, μ), ΔR(J/ψ, μ),m(J/ψ, μ), pT/m(μμμ)...
- modelling of b dynamics in generators and background for Higgs measurements
- access small-angle bb pair sensitive to pQCD (loosely constrain by data)

Event Selection

- first B: $pT(\mu) > 4$ GeV and $|\eta(\mu)| < 2.4$,
- $2.5 < m(\mu\mu) < 4.3 \text{ GeV}$
- second B: third μ in the event required
- signal extracted by fitting Mµµ and B decay time
 +3rd µ from B is determined
- BDT + IP for prompt/signal discrimination
- several g → bb splitting options investigated in P8

4-flavor and 5-flavor modes tested using MG5_aMC MG5_aMC 4-flavor best agreement!

b quarks in association with a Z boson

Eur. Phys. J. C 77 (2017) 751

two categories: Z boson (μμ+ee) plus >0 and >1 b tagged jets (CSV tagging)

8 TeV

• b jets $p_T > 30$ GeV, |e| < 2.5, Z+b unfolded to particle level

19.8/fb

- several differential cross sections: angles, pT, HT, bbZ and bZ system explored
- compared to NLO predictions by MadGraph and Powheg, 4F and 5F schemes tested

sensitive to new physics

5-flavor, mb≠0

part III

Top Quark

Top quark production at colliders

 $t\bar{t}$ dominated by gluon fusion (qq/gg=10%/90%) at LHC

top Factory: High rate of $t\bar{t}$ at LHC (30m only in 2016)

vast phenomenology: standard model, QCD calculation and new physics searches

calculations are challenging: NNLO/NNLL corrections important

final states:

fully hadronicdilepton

lepton+jets

Present times top quarks general news

- $t \bar{t}$ production cross section @ 13 TV measured at ~5.5%(beyond NNLO+NNLL precision!)
- Jet substructure and shape observables @ 13 TeV
- first measurement of the forward production

First observation of forward top at 13 TeV

Forward top quarks in LHCb

 unique probe of higher Bjorken-x and constrain PDF in this region

13 TeV

arXiv:1803.05188 (submitted to JHEP)

- expected larger charge asymmetry in the forward region than in the central region.
- previously measured at 7+8 TeV. With 13 TeV **x10** in $\sigma(tt)$

μeb channel

- isolated prompt μ , e p_T > 20 GeV, 2.0< η < 4.5
- SV-tagged Jet
- $\Delta R(I,J) > 0.5, \Delta R(\mu,e) > 0.1$
- tt shape normalised to data purity of ~ 87%

First observation of forward top at 13 TeV

fiducial region

arXiv:1803.05188 (submitted to JHEP)

٠.		
	7	
	<i>LHCb</i>	A
	LIICO	
	LHCD	

1	3	TeV
1	-≺	leV

Source	%
trigger	2.0
muon tracking	1.1
electron tracking	2.8
muon id	0.8
electron id	1.3
jet reconstruction	1.6
jet tagging	10.0
selection	4.0
background	5.1
acceptance	0.5
total	12.7

$\sigma_{t\bar{t}} = \frac{N - N_b}{L \cdot \epsilon}$	$rac{kg}{ightharpoonup} \cdot F_{res}$
1.93 fb ⁻¹	
calculated in MC	migration in to and out of the

validated in Data

 $\sigma tt^{-} = 126 \pm 19 \text{ (stat)} \pm 16 \text{ (syst)} \pm 5 \text{ (lumi) fb}$

extrapolated to top quark level 2.0 $< y^{t} < 5.0$, $p^{t}_{T} > 10$ GeV

compatible with the SM ($<2\sigma$)

20% precision achieved!

Jet substructure observables in $t\bar{t}$ events

- using lepton+jets final states to measure several unfolded substructure observables: tuning generators and describe fragmentation of quarks
- relative uncertainties relevant for top measurements (i.e. top mass)

35.9/fb 13 TeV

CMS-PAS-TOP-17-013

lots of different shape-observables have been measured!

Eccentricity

$$\epsilon = 1 - \frac{v_{min}}{v_{max}}$$
 $\stackrel{\rightarrow 0: \text{ perfectly circular jet}}{\underbrace{\hspace{1.5cm}}}$

with v_{min} , v_{max} eigenvalues of

$$M = \sum_{i} E_{i} \times \begin{pmatrix} (\Delta \eta_{i,\hat{n}_{r}})^{2} & \Delta \eta_{i,\hat{n}_{r}} \Delta \phi_{i,\hat{n}_{r}} \\ \Delta \phi_{i,\hat{n}_{r}} \Delta \eta_{i,\hat{n}_{r}} & (\Delta \phi_{i,\hat{n}_{r}})^{2} \end{pmatrix}$$

Jet substructure observables in $t\bar{t}$ events

- using lepton+jets final states to measure several unfolded substructure observables: tuning generators and describe fragmentation of quarks
- relative uncertainties relevant for top measurements (i.e. top mass)

35.9/fb 13 TeV

CMS-PAS-TOP-17-013

lots of different shape-observables have been measured!

N-subjettiness

$$\tau_N^{\beta} = d_0^{-1} \sum_{i} p_{T,i} \cdot min[(\Delta R_{1,i})^{\beta}, (\Delta R_{2,i})^{\beta}...(\Delta R_{N,i})^{\beta}]$$

 $\tau_{MN} = \tau_M/\tau_N$

- evaluate compatibility with N sub-jet hypothesis
- allows to distinguish between
 M and N subjets within a jet

Color flow using jet-pull observables in tt

• gluon radiation and the jet structure are affected by the color connection of the generating particles (*color flow*)

13 TeV 36.1/fb

color connection may be used to distinguish different event topologies

Strategy: the **jet-pull** vector/angle is predicted to encode color information:

ATLAS-CONF-2017 -069

$$\vec{\mathcal{P}}(J) = \sum_{i \in J} \frac{\left| \vec{\Delta r_i} \right| \cdot p_T^i}{p_T^J} \vec{\Delta r_i} \longrightarrow$$

i constituents of the jet J with momentum pTi located at $\Delta ri = (\Delta yi, \Delta \phi i)$

- system with 2 colour-connected jet : θ_P~0
- system with 2 jet with no C.C.: θ_P~uniform

Two systems used to measure θP and color flow

- W→JJ in ttbar events (color singlet)
- bbar in ttbar events (uncorrelated colors)

θ_P (J1,J2) relates local color structure of J1 to the global structure of the dijet

unfolded differential cross section for in θ_P ttbar

Color flow using jet-pull observables in tt

• gluon radiation and the jet structure are affected by the color connection of the generating particles (*color flow*)

13 TeV 36.1/fb

Charged particle $\theta_P(j_2^W, j_1^W)$ [rad]/ π

- color connection may be used to distinguish different event topologies
- W \rightarrow JJ in tt events (color singlet)

θ_P (J1,J2) relates local color structure of J1 to the global structure of the dijet

Color flow using jet-pull observables in $t\bar{t}$

• gluon radiation and the jet structure are affected by the color connection of the generating particles (*color flow*)

- 13 TeV 36.1/fb
- ATLAS EXPERIMENT
- color connection may be used to distinguish different event topologies
- ullet $b\overline{b}$ in tt events (uncorrelated colors)

θ_P (J1,J2) relates local color structure of J1 to the global structure of the dijet

Summary and conclusions

- LHC is a jet factory: a rich QCD phenomenology can be explored with the experiments
- QCD can be tested at NLO with the latest generators on several aspects
- Several new measurements at 13 TeV with QCD jets, b-jets and top within the Standard Model, all resulting in outstanding precise measurements
- Many more are there and many more to come... stay tuned!!

Summary and conclusions

CMS Public Results

http://cms-results.web.cern.ch/cms-results/public-results/ publications/

ATLAS Public Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Publications

LHCb Public Results

http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/

backup

Inclusive b quarks cross section

JHEP 10(2015) 172

- production σ of forward J/ψ
- prompt and b-decays J/ψ determined
- fitting the J/ψ 's pseudo-lifetime

- $t_z = \frac{(z_{J/\psi} z_{PV}) \times M_{J/\psi}}{p_z}$
- $\sigma(J/\psi)$ from b-hadron decays used to extrapolate to a total $\sigma(bb)$ @ 13 TeV

$$\sigma(pp \to b\overline{b}X) = \alpha_{4\pi} \frac{\sigma\left(J/\psi\text{-from-}b, \ p_T < 14 \ \text{GeV/}c, \ 2.0 < y < 4.5\right)}{2\mathcal{B}\left(b \to J/\psi X\right)} \qquad \alpha_{4\pi} = \text{extrapolation factor}$$

- σ(J/ψ) vs. pT and y of the J/ψ
- pT<14GeV/c and 2.0<y<4.5</p>
- prompt $J/\psi \rightarrow \delta$ (tz = 0),
- J/ψ-from-b -> exp decay function
 (both convolved with a double-Gaussian resolution function)

$$\sigma(pp \rightarrow bbX) = 495 \pm 2 \pm 52 \,\mu b$$

State-of-Art of $t\bar{t}$ cross sections

https://atlas.web.cern.ch/Atlas/GROUPS/ PHYSICS/CombinedSummaryPlots/

tt production cross section grand summary at 13 TeV for ATLAS+CMS

Most precise measurements from $e\mu$ at 7+8 TeV, and I+jets at 13 TeV

Individual analyses with precision of 3-4%

tt cross section and energy

Measured $t\overline{t}$ cross section versus \sqrt{s}

TeVatron+ATLAS+CMS data: impressive agreement!!

Inclusive bb production

Eur. Phys. J. C 76 (2016) 670

- pp->bb: testing different Feynman diagrams
- two jets $p_T > 20$ GeV, $|\eta| < 2.5$, b-tagged
- p_{T1} > 270 GeV [enhance (b), (c)], p_{T2}>20GeV
- data compared to NLO by Powheg+Pythia6,
 Sherpa1.4 and MC@NLO+Herwig6

different ranges of measured observables probe different production mechanisms

Jet substructure observables in tt events

- using lepton+jets final states to measure several unfolded substructure observables: tuning generators and describe fragmentation of quarks
- relative uncertainties relevant for top measurements (i.e. top mass)

35.9/fb 13 TeV

CMS-PAS-TOP-17-013

lots of different shape-observables have been measured!

phace space =1 e/
$$\mu$$
 pT > 26 GeV, $|\eta|$ < 2.4
(gen~reco) \geq 4j anti-kT04, pT > 30 GeV, $|\eta|$ < 2.5
=2b-tag + \geq 2 untag from W (within 15 GeV Mw)

Soft-drop

Iterative clustering regulated by a parameter $z_g = p_T(j_k/j_i)$

$$j_i \to j_j + j_k$$

 ΔR_g = angle between j,k subjets

z_g = momentum fraction of the last iteration

best agreement with angular-ordered Herwig7

