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Search for New Physics

Theory predictions not important 
for finding a resonance peak

However, they do play a role in 
measuring its properties…

�2

10-3

10-2

10-1

100

101

102

Higgs pT

p p → H in the EFT LHC13
µR=µF=µEFT=62.5 GeV
NLO+PS, MMHT2014NLO
dashed: only 1/Λ2 terms, solid: including 1/Λ4 terms

σ
 p

er
 b

in
 [p

b]

B1 (4,0.004,0.21)
B2 (-4,0.005,-0.5)

B3 (-1,0.004,-0.25)
B4 (2,-0.006,0.3)
B5 (5,0.004,0.2)

SM

Ma
dG
ra
ph
5_
aM
C@
NL
O

 0

 0.5

 1

 1.5

 2

 0  50  100  150  200  250  300  350  400  450
Ra

tio
 o

ve
r t

he
 S

M
pT

H [GeV]

Figure 6. Transverse momentum distributions of the Higgs for different values of the Wilson
coefficients. The lower panel shows the ratio over the SM prediction for the various benchmarks
and the SM scale variation band.

4.3 Renormalisation group effects

The impact of running and mixing between the operators is demonstrated in fig. 7, where we
show the individual (O(1/⇤2)) contributions from the three operators in gluon-fusion Higgs
production at LO and NLO, as a function of µEFT , assuming that C3 = 1, C1 = C2 = 0 at
µEFT = mH/2 and ⇤ = 1 TeV. While at µ = mH/2 the only contribution is coming from
the chromomagnetic operator, this contribution changes rapidly with the scale. While the
effect of the running of C3 is only at the percent level, �3 has a strong dependence on the
scale. At the same time non-zero values of C1 and C2 are induced through renormalisation
group running, which gives rise to large contributions from O2. We find that the dependence
on the EFT scale is tamed when the sum of the three contributions is considered. This is
the physical cross section coming from C3(mH/2) = 1 which has a weaker dependence on
the EFT scale. The dependence of this quantity on the scale gives an estimation of the
higher order corrections to the effective operators and should be reported as an additional
uncertainty of the predictions. By comparing the total contributions at LO and NLO we
find that the relative uncertainty is reduced at NLO.

5 Conclusion and outlook

A precise determination of the properties of the Higgs boson and, in particular, of its
couplings to the other SM particles is one of the main goals of the LHC programme of the
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[Deutschmann et al. 2018]

Invariant mass peak: "easy" Shape variation: "hard"

Theory predictions fundamental 
in extraction of signal

Need accuracy, including 
realistic theory estimates
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Searching for New Physics

LHC is touching the <1% uncertainty 
for some observables

Can we match this accuracy with 
theory predictions to test SM?

Might be difficult: factorisation works 
only up to O(Λ/Q) power corrections
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Searching for New Physics

LHC is touching the <1% uncertainty 
for some observables

Can we match this accuracy with 
theory predictions to test SM?

Might be difficult: factorisation works 
only up to O(Λ/Q) power corrections
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More exclusive phase-space regions 
might be more sensitive to BSM physics

Hard cuts/tails/jet-vetos/b-tagging/etc.

Even though these measurements come 
with larger uncertainties (statistic and 
systematic), this is where New Physics 
could be found

Need to match accuracy in 
measurements with accuracy in theory 
predictions for these exclusive phase-
space regions

At least multi-jet NLO matched/
merged with Parton Shower MC
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Current state-of-the-art

NLO-accurate tools are the default for most SM background 
predictions by ATLAS and CMS. Most used are

POWHEG BOX

MadGraph5_aMC@NLO (incl. FxFx merging)

Sherpa+OpenLoops/BlackHat/… (incl. MEPS@NLO)

Can we do better than NLO-QCD?

What about NNLO?

What about NLO-EW corrections?

What about the accuracy of the Parton Shower?
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Matching NNLO QCD 
calculation to parton showers

Alternative approach: UN2LOPS [Höche, Li, Prestel 2014]
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NLO for H+j
0-jet: unphysical
1-jet: NLO
2-jet: LO 
n-jet: 0

Minlo for H+j
0-jet: LO+
1-jet: NLO
2-jet: LO 
n-jet: 0

Minlo’ for H+j
0-jet: NLO
1-jet: NLO
2-jet: LO 
n-jet: 0

NNLO+PS for 
H
0-jet: NNLO
1-jet: NLO
2-jet: LO 
n-jet: PS

NNLO for H
0-jet: NNLO
1-jet: NLO
2-jet: LO 
n-jet: 0

Special scale 
setting + simple 

Sudakov FF

Add 'unitarising' 
higher order, process 
dependent, terms to 

Sudakov FF

Add parton 
shower below 
scale of 2nd jet 

using POWHEG

Reweight incl. 0-jet 
observables (i.e. 

Higgs rapidity) to 
include NNLO

Hamilton, Nason, Re, Zanderighi, 2013For example: Higgs production
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Rethinking the 2nd step

Tricky to compute these terms 
in practice: only known for 
Higgs and DY production 
(and related, like VH)

Alternative approach:

These should be higher 
order in Sudakov FF -> 
logarithmic form known

Enforce unitarity to 
deduce them 
[RF, Hamilton 2015]
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Minlo for H+j
0-jet: LO+
1-jet: NLO
2-jet: LO 
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2-jet: LO 
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Rethinking the 2nd step
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Minlo for H+j
0-jet: LO+
1-jet: NLO
2-jet: LO 
n-jet: 0

Minlo’ H+j/jj
0-jet: NLO
1-jet: NLO
2-jet: NLO 
n-jet: 0

Add 'unitarising' 
higher order, process 
dependent, terms to 

Sudakov FF
Tricky to compute these terms 
in practice: only known for 
Higgs and DY production 
(and related, like VH)

Alternative approach:

These should be higher 
order in Sudakov FF -> 
logarithmic form known

Enforce unitarity to 
deduce them 
[RF, Hamilton 2015]
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Rethinking the 2nd step
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Minlo for H+j
0-jet: LO+
1-jet: NLO
2-jet: LO 
n-jet: 0

Minlo’ H+j/jj
0-jet: NLO
1-jet: NLO
2-jet: NLO 
n-jet: 0

Add 'unitarising' 
higher order, process 
dependent, terms to 

Sudakov FF
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0-jet: NNLO
1-jet: NLO
2-jet: NLO 
n-jet: PS
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scale of 2nd jet 
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observables (i.e. 

Higgs rapidity) to 
include NNLO
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For example: H+2j
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We do not claim that variation of ⇢, together with the renormalization and factorization scales,
gives a realistic estimate of theoretical uncertainties in regions where large Sudakov logarithms
occur. We content ourselves to say that ⇢ is an unphysical technical parameter introduced in our
procedure, with systematics associated to it. We believe our variation of ⇢, as described above, is
a conservative estimate of these systematics, and we find them to be very much negligible.

Finally, statistical uncertainties are shown as vertical lines, however, for the most part these
are negligible to the point of being invisible.

Inclusive quantities

In figure 1 we plot the rapidity of the Higgs boson; no cuts have been applied to the final state. The
Hjj? and Nnlops central predictions agree with one another to within 2%, with their uncertainty
bands exhibiting a similar level of agreement. This indicates that the method and its implementation
are performing as expected (eqs. 2.40-3.1). The uncorrected Hjj-Minlo prediction in blue is 10%
away from the central Nnlops results, but this is fortuitous given that the scale uncertainty on
the former is ⇠ 30%. Moreover, given our theoretical analysis in the preceding sections of this
paper, neglecting the sub-leading NLL� �S1 terms, we expect the Hjj-Minlo prediction here is
only LO accurate, so the ⇠ 30% uncertainty assigned to it is arguably too small. The uncertainty
band associated to varying the ⇢ parameter as described at the beginning of this subsection 4.2 is
so small that it is concealed within thickness of the black reference line in the upper right plot;
indeed since this quantity is fully inclusive in L12, by construction of the procedure (sect. 2.6), the
only way any such uncertainty could manifest here is as a result of technical problems and/or some
statistical issues.
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Figure 1. Rapidity of the Higgs boson as predicted by the Hjj-Minlo (Hjj, blue), Nnlops (dark green)
and improved Hjj-Minlo (Hjj

?, red) generators.

In figure 2 we plot the Higgs boson transverse momentum spectrum. As with the Higgs boson
rapidity distribution no cuts have been applied to the final state. Exceptionally, in this figure we
compare Hjj? and Hjj to the NNLL+NNLO predictions of the Hqt program [66–70], instead
of Nnlops. Comparing Nnlops (not shown) and Hjj? we find the two generators agree with
one another to within 3% throughout the spectrum, except for the region pT . 5GeV, where the
difference rises up to 15% in the pT < 2GeV region. The latter differences owe to the finite size of the
bins in our interpolation grids, coupled with the fact that the distribution is changing very rapidly for
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Transverse momentum of the 
leading jet
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Figure 5. Leading jet transverse momentum spectrum, for anti-kt-jets with radius parameter R = 0.4.

predictions agree very well throughout the spectrum, with the procedure correcting well for sub-
stantial (±15%) shape differences between the unimproved Hjj-Minlo result and the more accurate
Nnlops prediction. Regarding differences between the Nnlops and Hjj? results in the pT . 5GeV

region, the explanation here is the same as for the case of the Higgs boson pT spectrum, namely, that
the granularity in our discretized implementation of the �BJ phase space is not sufficiently fine to
cope with the rapidly changing distribution for pT . 5GeV. We reiterate that this region is under
limited theoretical control anyway. Indeed, rather than seek improved agreement of Nnlops and
Hjj? in the latter murky region, we might prefer to lessen the 3-5% deviation in the neighbourhood
60  pT  80 GeV. This region, where the Hjj-Minlo and Nnlops lines intersect, appears to
be where the pT derivative of the difference between the two predictions is changing most rapidly,
i.e. the numerator of � (�BJ) in eq. 2.35/3.11. It should therefore be possible to improve agreement
between the Nnlops and Hjj? results in this region by, for example, making use of (irregular)
optimized grids and interpolation methods which can work on them. Overall, notwithstanding our
unsophisticated implementation, agreement between the Nnlops and Hjj? predictions is very sat-
isfactory, providing significant improvement across the whole pT spectrum relative to the original
Hjj-Minlo generator.

In fig. 6 we plot Hjj, Hjj? and NNLL+NNLO JetVHeto [37, 47] predictions for the jet
veto efficiency, "(pT,veto), defined as the cross section for Higgs boson production events containing
no jets with transverse momentum greater than pT,veto, divided by the respective total inclusive
cross section. In the left-hand column, in the red shaded area, we show the scale uncertainty
band predicted by the Hjj? simulation, with the central NNLL+NNLO resummed prediction of
JetVHeto superimposed in green (matching scheme-(a), µR = µF = µQ = mH, µQ being the
resummation scale). The lower panel shows the ratio with respect to the Hjj? prediction obtained
with its central scale choice. On the right we have made the same plots as on the left but with
the JetVHeto predictions replacing those of the Hjj? and vice-versa. The uncertainty band in
the JetVHeto results is the envelope of a seven point variation of µR and µF by a factor of two.
This is in contrast to the band associated with it in ref. [37], where additionally resummation scale
and matching scheme variations were included in the envelope. Thus the JetVHeto error band
here is considerably smaller than that shown in ref. [37]. We restricted the JetVHeto uncertainty
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Transverse momentum of the 
second jet

�12

Additionally, for the case of jet rapidity distributions, in figures 12 and 13, the jets are required to
pass a transverse momentum threshold of 25 GeV.
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Figure 10. Transverse momentum spectrum of the second jet.

The transverse momentum spectrum of the second hardest jet is plotted in fig. 10. In all
simulations, before (not shown) and after showering, the distribution peaks in the bin at 3GeV 
p

J2
T  6GeV. Moving upwards from the first bin at p

J2
T = 0 GeV the Hjj? (red) and Hjj-Minlo

(blue) predictions start off with a 20% difference, which smoothly and monotonically diminishes,
with the two distributions coalescing at p

J2
T ⇡ 20 GeV. For higher transverse momenta, the Hjj?

and Hjj-Minlo histograms become indistinguishable from one another. Meanwhile, in the same
region, the Nnlops result starts off with a 15% discrepancy between it and the latter simulations,
which rises with the transverse momentum. Nevertheless, the Nnlops prediction is within the
margins set by all renormalization and factorization scale uncertainty bands.

The behaviour of the Hjj? and Hjj-Minlo predictions relative to one another is as intended.
In general, the Hjj-Minlo prediction is NLO accurate in the description of p

J2
T , and so it is of

course desirable that the Hjj? tends to that result in regions where Sudakov logarithms at higher
orders are not large, i.e. away from the Sudakov peak.18 In the vicinity of the peak, large logarithms
enter at every order in perturbation theory. In this feasibility study we claim to control these large
logarithms nominally at just LL/NLL� accuracy. The improved Hjj? prediction works so as to
implement unitarity for the 0- and 1-jet inclusive cross sections by ascribing the mismatch there to
missing NNLL� Sudakov logarithms beyond NLO. The increasing difference of Hjj? with respect
to Hjj-Minlo in the region p

J2
T  20 GeV, up onto the Sudakov peak, roughly reflects this NNLL�

‘profiling’ of the ⇠10-12% excess in the Nnlops total inclusive cross section over that of Hjj-Minlo
(see e.g. figs. 1-3).

In figure 11 we plot the transverse momentum of the third jet. In this case there is, coinci-
dentally, good agreement of all predictions in the moderate to high pT domain. This is somewhat
fortuitous in the context of the Nnlops simulation, since the third jet in that simulation is gen-
erated exclusively in the parton shower approximation, whereas in Hjj? and Hjj-Minlo it has a
matched matrix element-parton shower description. With a view to validating our ideas, what is
more relevant is the observation of the relative behaviour of Hjj? and Hjj-Minlo. Here we see,

18In such regions where it is meaningful to quantify accuracy in the context of just fixed order perturbation theory,
we remind that the Nnlops prediction for pJ2

T is, by contrast, only LO accurate.
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Higgs boson pT in events with 
exactly 2 jets

�13

Turning to the Higgs transverse momentum in the 1-jet events, we see the results we naively
expect in the region p

H
T > 100 GeV, with Nnlops and Hjj? in very good agreement. In the

region surrounding the peak of the distribution at p
H
T ⇠ 50 GeV, Hjj? continues to agree well with

Hjj-Minlo, but not quite as nicely as before. The slight excess of the Hjj? prediction over the
Nnlops around this peak follows the same explanation as for the similarly sized enhancement of
the exclusive 1-jet cross section of the former over the latter, in the discussion surrounding fig. 4.
There we explained that our correction procedure led to an enhanced 1-jet exclusive cross section,
by acting to recover the inclusive 1-jet cross section of the Nnlops, while maintaining the 2-jet
inclusive cross section of Hjj-Minlo; since the 2-jet inclusive cross section of Hjj-Minlo was low
with respect to that of the Nnlops, the Hjj? 1-jet exclusive cross section therefore had to be high.
Remarkably, on the other hand, we note that for the lowest bin in the Njets = 1 p

H
T plot, it is

in fact natural and correct that the Hjj? distribution is found to be in complete agreement with
Hjj-Minlo, for in that region the recoil of the leading jet can no longer be balanced by the Higgs
boson, and instead extra radiation must be present to this end.
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Figure 22. In the upper plot we show the transverse momentum distribution of the Higgs boson in 2-jet
events. Jets are here constructed according to the anti-kt clustering algorithm, for a radius parameter
R = 0.4. Jets are required to have transverse momentum pT � 30 GeV and rapidity |y|  4.4. The
corresponding distribution in the case of � 3-jet events is shown underneath.

Lastly, we look to the Higgs boson transverse momentum distributions in the exclusive 2-jet
events and inclusive 3-jet events, in the upper and lower plots of fig. 22. For both the exclusive 2-jet
and inclusive 3-jet p

H
T spectra, we see that Hjj? agrees perfectly with the Hjj-Minlo generator
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H-NNLOPS, green, LO at low pT, NLO at high pT

Minlo-HJJ, blue, NLO at low pT, not quite LO at high pT

RF, Hamilton (2015)
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Expected importance of EW 
corrections

By comparing the strength of the strong to the EW coupling, one 
expects that NNLO QCD corrections of similar importance to 
NLO EW corrections

On top of that, EW corrections can be enhanced in certain 
kinematical regions, where they can result in several tens of 
percents:

Close to EW resonances, radiation from decay products 
results in sizeable changes

Large invariants result in large EW corrections

Important in BSM searches, particularly when 
understanding shapes of backgrounds is a must
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Matching NLO EW

No complete matching 
including EW effects exists 
apart from DY in the 
POWHEG BOX [Barzé et al. 
2012, 2013; Bernaciak 2012]

Sherpa (+Recola/Openloops/
GoSam) and 
MadGraph5_aMC@NLO are 
working towards complete 
automation including matching 
to parton showers

Sherpa+Openloops have 
some approximated results

Resonance-aware matching 
an issue here
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Figure 13. Distribution in the invariant mass of the matching lepton-neutrino pair, m`⌫ , for pp !
e+µ�⌫e⌫̄µ at 13 TeV. Details as in Fig. 9.

LHC 13 TeV
µR = µF = 1

2 H
lep
T

CT14 QED0.05%

LO
NLO QCD
NLO EW
NLO QCD+EW
NLO QCD⇥EW

10�3

10�6

10�9

pp ! e
+ µ� ne n̄µ

ds
/d

m
`
`
nn

[p
b/

G
eV

]

80 100 120 140 160 180 200 1000 5000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

m``nn [GeV]
ds

/d
s L

O

gPDF
0.9

1.0

1.1

CT14
LUX

none
NNPDF3.0

pp ! e
+ µ� ne n̄µ

ds
/d

s N
LO

Q
C

D
⇥

EW

80 100 120 140 160 180 200 1000 5000

0.9

1.0

1.1

NLO QCD⇥EWVI
NLO QCD⇥EWVI ⌦YFS
NLO QCD⇥EWVI ⌦CSS

m``nn [GeV]

ds
/d

s N
LO

Q
C

D
⇥

EW

Figure 14. Distribution in the invariant mass of all four final state leptons and neutrinos, m``⌫⌫ , for
pp ! e+µ�⌫e⌫̄µ at 13 TeV. Details as in Fig. 9.

as for the integrated cross section. As for QCD corrections, we observe a pronounced kinematic
dependence for ��`` ! ⇡. This can be understood as a statistical effect related to the migration
of events form highly populated to poorly populated bins.
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as for the integrated cross section. As for QCD corrections, we observe a pronounced kinematic
dependence for ��`` ! ⇡. This can be understood as a statistical effect related to the migration
of events form highly populated to poorly populated bins.
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Dijet production: "Complete-NLO"

Dijet production

What about terms "beyond NLO EW"?

Consider complete-NLO corrections:

Size of corrections mostly follows what 
one expects from the coupling 
combinations

Apart from the tail where NLO3 is 
larger then one would expect
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Figure 2. Single-inclusive transverse momentum.

was previously mentioned, a solid (dashed) pattern indicates that the corresponding result

is positive (negative). The three LO results are displayed as histograms overlaid with

symbols: red with full diamonds for ⌃LO1
, green with open boxes for ⌃LO2

, and brown

with open circles for ⌃LO3
. The four NLO results are associated with plain histograms:

blue for ⌃NLO1
, purple for ⌃NLO2

, yellow for ⌃NLO3
, and cyan for ⌃NLO4

; the sum of all

contributions is represented by the black histogram. The middle inset presents the ratios

of the results shown in the upper inset, over the all-orders prediction; in other words, these

are the fractional contributions of the ⌃LOi and ⌃NLOi terms to the most accurate result

obtained from our simulations. The patterns employed in the middle inset are identical

to those of the upper inset. Finally, the bottom inset presents the relative theoretical

– 12 –

Dijet production

results for inclusive and two-jet distributions have been available since the early 1990’s [3–

6]. The first complete next-to-NLO (NNLO) QCD predictions have appeared only very

recently [7]. As a rule of thumb based on the values of the respective coupling constants,

NNLO QCD e↵ects (O(↵4
S)) have the same numerical impact as the so-called NLO ones

in the electroweak (EW) theory (O(↵2
S↵)). Partial pure-weak contributions to the latter

had been computed in refs. [8, 9], and the complete weak results published in ref. [10].

The rationale for ignoring the NLO EW corrections of electromagnetic origin, which to the

best of our knowledge have not been calculated so far, is the possible enhancement of weak

contributions due to the growth of logarithmic terms of Sudakov origin in certain regions

of the phase space associated with large scales [11–14], in particular at high transverse mo-

menta. Incidentally, such Sudakov e↵ects can also be responsible for large violations of the

natural hierarchy of QCD and EW corrections, with NLO EW ones becoming significantly

larger than their NNLO QCD counterparts and competitive with the NLO QCD results.

Motivated by the previous considerations, in this paper we present the computation

of all the leading and next-to-leading order contributions to the dijet cross section in a

mixed QCD-EW coupling scenario. In other words, we compute all the terms in the

perturbative series that factorise the coupling-constant combinations ↵n
S↵

m, with n+m = 2

(leading order, LO) and n +m = 3 (NLO). Thus, we calculate here for the first time the

O(↵2
S↵) electromagnetic contribution, and the two NLO terms of O(↵S↵

2) and O(↵3). Our

computations are carried out in the MadGraph5 aMC@NLO framework [15] (MG5 aMC

henceforth), and are completely automated; this work therefore constitutes a further step

in the validation of the MG5 aMC code, in a case that requires the subtraction of QED

infrared singularities which is significantly more involved than that studied in ref. [16]. We

also take the opportunity to discuss issues that arise when one defines jets in the presence

of final-state photon and leptons.

This paper is organised as follows. In sect. 2 we outline the contents of our computation

and the general features of the framework in which it is performed. The problem of the

definition of jets in the context of higher-order EW calculations is discussed in sect. 3.

Phenomenological results for the LHC Run II are given in sect. 4. Finally, we present our

conclusions in sect. 5.

2 Calculation setup

A generic observable in two-jet hadroproduction can be written as follows:

⌃(LO)

jj (↵S,↵) = ↵
2

S ⌃2,0 + ↵S↵⌃2,1 + ↵
2⌃2,2

⌘ ⌃LO1
+ ⌃LO2

+ ⌃LO3
, (2.1)

⌃(NLO)

jj (↵S,↵) = ↵
3

S ⌃3,0 + ↵
2

S↵⌃3,1 + ↵S↵
2⌃3,2 + ↵

3⌃3,3

⌘ ⌃NLO1
+ ⌃NLO2

+ ⌃NLO3
+ ⌃NLO4

, (2.2)

at the LO and NLO respectively. The notation we adopt throughout this paper is fully

analogous to that of refs. [15–17]. We refer the reader, in particular, to ref. [17] for a detailed

discussion on the physical meaning of the terms that appear in eqs. (2.1) and (2.2), and

– 2 –

[RF et al. 2017]
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Parton showers beyond 
Leading Order

All Parton Showers are based on LO splitting functions

Some universal NLO terms are included (through angular 
ordering and ⍺S(..) scale choice)

Formal accuracy of Parton Shower is only Leading Logarithmic, 
although most important NLL terms are included as well

Some progress is being made for including complete NLO 
corrections to the DGLAP shower splitting functions

requires one to move away from the traditional 1->2 branchings 
(or 2->3 in case of dipole shower)

�25
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Vincia

Formalism allows for 
iterated NLO 2->3 
branchings combined with 
LO 2->4 branchings

2->4 branchings enlarge the 
phase-space of the shower 
emissions beyond what can 
be reached by ordered, 
iterated 2->3 branchings

Smooth/consistent 
description and 
implementation
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Figure 1: Illustration of scales and Sudakov factors in strongly

ordered (ACD), smoothly (un)ordered (ACB), and direct 2 →

4 (AB) branching processes, as a function of the number of

emitted partons, n.

parts of phase space, they may be developed as sep-

arate algorithms, provided they use the same set of

antenna functions. (Full second-order precision is

of course only achieved when both components are

included.) Given that a proof-of-concept study of

NLO corrections to ∆2→3 already exists [13], we

focus in the following sections on the previously

missing piece: explicit construction of the 2 → 4

component.

We round off the discussion of the Sudakov form

factors by illustrating the scale evolutions for 2 →

3 and 2 → 4 showers in fig. 1. An ordered se-

quence of 2→ 3 branchings is represented by path

A → C → D and the corresponding combined Su-

dakov factor is ∆2→3(Q2
A,Q

2
C)∆3→4(Q2

C ,Q
2
D) . The

2 → 4 shower explores more phase space by in-

cluding path A → B which lives in unordered

phase space compared with the ordinary strongly-

ordered shower. Path A→ C → B shows the possi-

ble branching in “smoothly-ordered showers” [22]

which can also access unordered phase space.

However, for smooth ordering the combined Su-

dakov factor ∆2→3(Q2
A,Q

2
C)∆3→4(Q′ 2

C ,Q
2
B) is used

where Q′C > QB represents the restart scale of

the smooth-ordering shower. As pointed out in

[13], the ∆2→3(Q2
A,Q

2
C) factor implies an LL sen-

sitivity to the intermediate scale QC ; an undesired

byproduct of the use of iterated on-shell 2 → 3

phase-space factorisations. The direct 2 → 4

shower avoids this by using the exact Sudakov fac-

tor ∆2→4(Q2
A,Q

2
B) in which QC only appears im-

plicitly as an auxiliary integration variable.

Finally, let us consider what happens in the

vicinity of the boundary between what we label

as ordered and unordered emissions, i.e., when

there is no “strong” ordering between two suc-

cessive (colour-connected) emissions. This is par-

ticularly relevant for the double-unresolved limits

characterised by a single unresolved scale. The

boundary can be approached either from the un-

ordered region, or from the ordered one, and in

general both regions will contribute to the double-

unresolved limits. In the unordered region, the

2 → 4 antenna functions are used directly, cap-

turing both the single- and double-unresolved (soft

and collinear) limits of QCD [19]. They are also in

our formalism intrinsically characterised by a sin-

gle scale, as discussed above. In the ordered re-

gion, the product of 2 → 3 antennae is modulated

by the correction factors R2→4, to reproduce the full

2 → 4 functions, and the two separate scales co-

incide as we approach the boundary, interpolating

smoothly between the single-unresolved (iterated,

strongly ordered) and double-unresolved (single-

scale) limits.

3. Explicit Construction of the 2→4 Shower

For a branching 1 2 → 3 4 5 6 we define the

resolution scale as Q4 = 2 min(p345
⊥ , p

456
⊥ ), with

(p
i jk
⊥ )2 = si j s jk/si jk. We let the direct 2 → 4

shower populate all configurations for which the

clustering corresponding to Q4 is unordered. (Con-

versely, iterated 2 → 3 splittings populate those

configurations for which the clustering correspond-

ing to Q4 is ordered, with the correction factor

R2→4 reducing to R2→4 → a4/(a3a′3) when there is

only a single ordered path, and, for gluon neigh-

bours, the neighbour with the smaller resolution

scale used to define a4.)

We partition the direct 2 → 4 phase space into

two sectors: sector A with condition p345
⊥ < p456

⊥

and sector B with p345
⊥ > p456

⊥ . For each sector,

branching scales for 2→ 4 emissions are generated

5
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Figure 3: Top left: the ratio of sequential clustering scales Q4/Q3 for a strongly ordered 2 → 3 shower, for Z → qggq̄ (on log-log

axes). Top right: closeup of the region around Q4/Q3 ∼ 1, with 2→4 branchings included. Bottom row: the same for H → gggg. .

tion scale is only used to separate what is ordered

— and hence accessible by the iterated 2→ 3 evo-

lution — from what is unordered.) We also de-

fine sub-antenna functions for dipole-antennae in

which one or both of the parent partons are glu-

ons, starting from the antenna function for quark-

antiquark pairs, which is a good first approximation

to the amplitude squared. As a validation, we com-

pare 2 → 4 and 2 → 3 branchings in fig. 3. As

expected, the 2 → 4 branchings extend the phase-

space population into the unordered region. Impor-

tantly, the 2 → 4 and 2 → 3 branchings produce

consistent results on the boundary Q4 = Q3.

In the near future we will extend the 2 → 4

shower formalism to include g → qq̄ splittings.

We also expect to include the second-order correc-

tion to the 2 → 3 Sudakov form factor defined in

eq. (9). Finally, in the longer term we plan to turn

our attention to the initial state, extending the for-

malism to the case of hadron collisions.
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Dire

First steps also in the DIRE 
Parton Shower (available 
Sherpa & Pythia8)

NLO DGLAP evolution 
implemented

However, still leading-
colour and soft emissions 
are only at LO accuracy

Note: bands are not uncertainty 
estimates, but rather simply the 
scale dependence in the shower 
evolution
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FIG. 3. Predictions for leading and next-to-leading order DGLAP evolution for the di↵erential kT -jet resolution parameters in
pp ! e+e� +X (LHC

p
s = 7 TeV) and pp ! h+X (LHC

p
s = 8 TeV).
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FIG. 4. Results for leading and next-to-leading order DGLAP evolution in comparison to ATLAS data from [70].
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Conclusions

In the last couple of years the accuracy of event generation has 
greatly improved, and full automation has been achieved at NLO 
accuracy

NLO accuracy in multiple regions of phase-space, separated 
by a merging scale

Currently studying the possibilities for inclusion of NNLO QCD, 
NLO EW matrix elements, and higher order Parton Showers

A lot of freedom in tuning has been replaced by accurate theory 
descriptions:

More predictive power

Better control on uncertainties in predictions

Greater trust in the measurements
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