

Differential jet cross sections at the CMS experiment

Anterpreet Kaur Panjab University, Chandigarh (India)

on behalf of the CMS Collaboration

DIS2018: XXVI International Workshop on Deep Inelastic Scattering and Related Subjects April 16-20, 2018, Kobe, Japan

April 18, 2018

Introduction

Jets :

- key component to extend our understanding of the Standard Model physics
- signatures of large momentum transfers at short distances, belong primarily to perturbative domain of Quantum Chromodynamics (pQCD)
- produced abundantly in the collisions of protons at the Large Hadron Collider (LHC)
- important backgrounds for many new physics models

Inclusive jet cross section measurement :

 $\bullet\,$ gives important information about the strong coupling constant α_{S}

 $\sigma_{\text{i-jet}} = \sigma(\text{pp} \rightarrow \text{i jets + X}) \propto \alpha_{\text{S}}^{\text{i}}$

 provides a deep insight to understand the proton structure by deriving constraints on the parton distribution functions (PDFs)

Double-differential cross-section $\frac{d^2\sigma}{dp_{\rm T}dy} = \frac{1}{\epsilon \ \mathcal{L}_{\rm int \ eff}} \frac{N_{\rm jets}}{\Delta p_{\rm T}(2\Delta|y|)}$ Measurement at 8 TeV 0¹0¹0¹0¹ $\mathcal{L} = 19.7 \; \mathrm{fb}^{-1}$ and $\mathcal{L} = 5.6 \; \mathrm{pb}^{-1}$ • anti- k_t jets with R = 0.7 • $21 < p_T < 74$ GeV, upto |y| = 4.7 $74 \le p_{\rm T}$ < 2500 GeV, upto |y| = 3.0Theoretical NLO calculations :

- using CT10 PDF set
- corrected for non-perturbative (NP) and electroweak (EWK) effects

Inclusive jet production @ 8 TeV

Data/theory using the CT10 NLO PDF :

- Good agreement except low-p_T region
- Data uncertainties : jet energy scale (1-45%), lumi (2.6%)
- NLO uncertainties : scale (5-40%), PDF (10-100%)

Ratios to CT10 PDF :

Significant discrepancies with ABM11 PDF

Ratios 2.76/8 TeV, 7/8 TeV :

Inclusive jet production @ 8 TeV

QCD analysis using HeraFitter (1.1.1)

- Inclusive cross sections + HERA inclusive DIS :
 - probes hadronic parton-parton interaction over a wide range of x and Q
 - constraints on PDFs
 - significant improvement of the gluon distribution

Extraction of α_S

- Least square minimization on $p_{\rm T}(y)$ spectrum :
 - using the CT10 NLO PDF set $\alpha_{S}(M_{Z}) = 0.1164 + 0.0060 - 0.0043$
 - using the NNPDF3.0 NLO PDF set $\alpha_{S}(M_{Z}) = 0.1172 \stackrel{+0.0083}{-0.0075}$
- Consistent with the world average value :

 $\alpha_{S}(M_{Z}) = 0.1181 \pm 0.0011$

Inclusive jet production @ 13 TeV

- Measurement at 13 TeV $\mathcal{L} = 71 \text{ pb}^{-1} \text{ and } \mathcal{L} = 44 \text{ pb}^{-1}$
- anti- k_t jets with R = 0.4 and R = 0.7
- *p*_T < 2 TeV
- $\bullet~$ Large rapidity coverage : $|y|<3,\,3.2<|y|<4.7$
- Theoretical NLO calculations :
 - using CT14 PDF set
 - corrected for non-perturbative (NP) and electroweak (EWK) effects
- x-sections accurate described for R = 0.7, while for R = 0.4 theory overestimates by 5-10%

Inclusive jet production @ 13 TeV

• PYTHIA8 CUETM1 (LO) agrees well in shape for only |y| < 1.5.

- HERWIG++ CUETS1 (LO) agrees in shape for all rapidity bins.
- POWHEG+PYTHIA8 (NLO) with various tunes show good agreement for both R.

Anterpreet Kaur (PU)

Inclusive jet production @ 13 TeV

• PYTHIA8 CUETM1 (LO) agrees well in shape for only |y| < 1.5.

- HERWIG++ CUETS1 (LO) agrees in shape for all rapidity bins.
- POWHEG+PYTHIA8 (NLO) with various tunes show good agreement for both R.

Anterpreet Kaur (PU)

$$\frac{d^3\sigma}{dp_{\rm T,avg}dy^{\star}dy_b} = \frac{1}{\epsilon} \frac{1}{\mathcal{L}_{\rm int}^{\rm eff}} \frac{N}{\Delta p_{\rm T,avg}\Delta y^{\star}\Delta y_b}$$

- Measurement at 8 TeV, $\mathcal{L}=$ 19.7 fb $^{-1}$
- anti- k_t jets with R = 0.7
- Cross section as a function of the :
 - average transverse momentum, $p_{T,avg} = \frac{1}{2}(p_{T,1} + p_{T,2})$
 - ► half the rapidity separation, $y^* = \frac{1}{2}|y_1 - y_2|$
 - boost of the two leading jets,

 $y_b = \frac{1}{2}|y_1 + y_2|$

EPJC 77 (2017) 746

- *p*_{T,avg} spectrum for six phase-space regions in y^{*} and y_b
- Theoretical NLO predictions :
 - using NLOJET++ with NNPDF 3.0 PDF set
 - corrected for non-perturbative (NP) and electroweak (EW) effects
- Data are well described by NLO predictions except for the boosted region.

EPJC 77 (2017) 746

- Ratios to NNPDF 3.0 NLO \otimes EW \otimes NP
- Data points with statistical uncertainty
- Experimental uncertainty
- Theoretical uncertainty (PDF, Scale and NP)
- Good agreement with MMHT2014 and CT14 PDF NLO calculations
- ABM11 PDF underestimates the predictions

- Data are well described in most of the analysed phase spaces.
- Differences observed at high p_{T,avg} and y_b: less known high x region of the PDFs is probed.
- Smaller data uncertainties : potential to constrain the PDFs.

QCD analysis using XFitter (1.2.2)

- Dijet cross sections + HERA inclusive DIS :
 - an increased gluon PDF at high x with reduced uncertainties of the PDFs
 - change in shape especially at low Q^2
- Comparison of gluon PDFs with inclusive jet data :
 - similar shapes of the PDFs and the uncertainties
- Precise α_s extraction together with PDF fit :

 $\alpha_{S}(M_{Z}) = 0.1199 \pm 0.0015(\exp) \stackrel{+0.0031}{_{-0.0020}}(\text{theo})$

• Agreement with the world average value :

 $\alpha_S(M_Z) = 0.1181 \pm 0.0011$

Inclusive multijets

 $egin{aligned} \mathsf{Differential cross-section} \ rac{d\sigma}{d(\mathrm{H}_{\mathrm{T},2}/2)} &= rac{1}{\epsilon \; \mathcal{L}_{\mathrm{int,eff}}} rac{N_{\mathrm{event}}}{\Delta\left(\mathrm{H}_{\mathrm{T},2}/2
ight)} \end{aligned}$

- Measurement at 8 TeV, $\mathcal{L} = 19.7 \text{ fb}^{-1}$
- anti- k_t jets with R = 0.7
- 2-jet and 3-jet event cross sections as a function of :

 $H_{T,2}/2 = \frac{1}{2}(p_{T,1} + p_{T,2})$

- Theoretical NLO calculations :
 - using CT10 PDF set
 - corrected for non-perturbative (NP) and electroweak (EWK) effects

Inclusive multijets

Multijet cross sections

- Data are well described by theory predictions within uncertainty.
- EWK corrections explain the increasing excess of the 2-jet data w.r.t. theory (~1 TeV).

Cross section ratio

- $R_{32} = \frac{\sigma_{3-jet}}{\sigma_{2-jet}} \sim \alpha_S$
- Experimental uncertainties, theory uncertainties due to NP effects, PDFs, scale choice, EWK corrections may cancel partially or fully
- Better tool to extract α_S

Inclusive multijets

Determination of α_S

- By minimizing the χ^2 between the measurement and the theory
- In a fit to R_{32} , using the MSTW2008 PDF set : $\alpha_S(M_Z) = 0.1150 \pm 0.0023$ (all except scale) $\substack{+0.0050 \\ -0.0000}$ (scale)
- α_S(M_Z) extracted in ranges of H_{T,2}/2 → evolved to α_S(Q)

Azimuthal correlations

Normalized differential cross-section

- $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi_{1,2}}, \quad \frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi_{2j}^{min}} (3\text{-jet and } 4\text{-jet})$
- Measurement at 13 TeV, $\mathcal{L}=$ 35.9 fb $^{-1}$
- anti-k_t jets with R = 0.4
- Normalized cross sections as a function of the :
 - azimuthal angular separation between the two highest leading p_T jets
 - minimum azimuthal angular separation between any two of the three or four leading p_T jets (3-jet and 4-jet)
- Spectrum gets flatter and become more sensitive to parton shower on moving from 2-jet to 3-jet to 4-jet
- Best agreement is given by Herwig7
- POWHEG-2J gives better results when matched with Pythia8 than Herwig++
- POWHEG-3J+Pythia8 is generally lower than POWHEG-2J+Pythia8

35.9 fb⁻¹ (13 TeV

her of late 11

< 1200 GeV (v10

arXiv:1712.05471 (Submitted to EPJC)

Azimuthal correlations

• Pythia8 (LO) exhibits small deviations from the $\Delta \phi_{1,2}$ and fails to describe $\Delta \phi_{2i}^{min}$

- Herwig++ exhibits the largest deviations from the Δφ_{1,2} but provides a reasonable description
 of the Δφ^{min}_{2i}
- MADGRAPH+Pythia8 provides a good overall description of the measurements except for $\Delta \phi_{2i}^{min}$ in 4-jet case
- An interesting tool to test the theoretical predictions of multijet production processes

Anterpreet Kaur (PU)

Summary

- Jet production in pp collisions is one of the main phenomenological predictions of pQCD.
- Many interesting results from CMS^{*}, reaching new levels of precision and exploring new regions of phase space :
 - Measurements of differential jet cross sections over a wide range in transverse momenta from inclusive jets to multi-jet final states are presented.
 - Compared to theoretical predictions including those matched to parton shower and hadronization.
 - Impact on the determination of the strong coupling constant α_s as well as on parton density functions (PDFs) are reported.
- Wide range of jet measurements at various collision energies improve our understanding of QCD.

*http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html

Back-Up Slides

		HERA data		HERA & CMS data	
Data set	$n_{\rm data}$	χ^2_p	$\chi_{\rm p}^2/n_{\rm data}$	χ^2_p	$\chi_{\rm p}^2/n_{\rm data}$
NC HERA-I+II $e^+p E_p = 920 \text{ GeV}$	332	382.44	1.15	406.45	1.22
NC HERA-I+II $e^+p E_p = 820 \text{ GeV}$	63	60.62	0.96	61.01	0.97
NC HERA-I+II $e^+p E_p = 575 \text{ GeV}$	234	196.40	0.84	197.56	0.84
NC HERA-I+II $e^+p E_p = 460 \text{ GeV}$	187	204.42	1.09	205.50	1.10
NC HERA-I+II e ⁻ p	159	217.27	1.37	219.17	1.38
CC HERA-I+II e ⁺ p	39	43.26	1.11	42.29	1.08
CC HERA-I+II e ⁻ p	42	49.11	1.17	55.35	1.32
CMS triple-differential dijet	122	-	_	111.13	0.91
Data set(s)	$n_{ m dof}$	χ^2	$\chi^2/n_{\rm dof}$	χ^2	$\chi^2/n_{\rm dof}$
HERA data	1040	1211.00	1.16	_	_
HERA & CMS data	1162	—	—	1372.52	1.18

EPJC 77 (2017) 746

