Inclusive Jet Measurements in Longitudinally Polarized proton-proton Collisions at STAR

Zilong Chang for the STAR Collaboration

Brookhaven National Laboratory, Upton, New York 11973

April 18, 2018

The Proton Spin

Proton spin sum rule:

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q,g} \tag{1}$$

- $\Delta\Sigma$: \sim 0.3 measured by DIS.
- ΔG: poorly constrained by DIS and SIDIS.
- $L_{q,g}$: undetermined yet.

With fit to DIS data only, $\Delta \textit{G} = 0.46 \pm 0.43,$ Blümlein, Böttcher, NPB 841, 205 (2010)

With fit to DIS and SIDIS data,

$$\Delta \textit{G} = 0.32 \pm 0.19$$
 for pos,

$$\Delta \textit{G} = -0.34 \pm 0.46$$
 , Leader et al, PRD 82,

114018 (2010)

Exploring Gluon Polarization at RHIC

In longitudinally polarized pp collisions, define

longitudinal double-spin asymmetry A_{LL} as,

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} \sim \frac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a_{LL}}$$
 (2)

gg and qg dominate jet production, making A_{LL} for jets sensitive to gluon polarization.

Zilong Chang DIS2018, Kobe, Japan 3 / 25

RHIC Facilities

- Polarization orientation varies from RF bunches to RF bunches (9.4 MHz).
- Spin rotators provide choice of polarization orientation (longitudinal or transverse).

STAR Detectors

- Jet reconstruction:
 - ullet High precision tracking with Time Projection Chamber ($|\eta| < 1.3$).
 - High energy resolution with Barrel and Endcap Electro-Magnetic Calorimeter (-1.0 $< \eta <$ 2.0).
- Global detectors for relative luminosity monitoring: Beam-Beam Counter, Vertex Position Detector, and Zero-Degree Calorimeter(| η| > 3.4).

Zilong Chang DIS2018, Kobe, Japan 5 / 25

Data from Longitudinally Polarized pp Collisions at STAR

STAR longitudinally polarized pp data since 2006:

Year	\sqrt{s} [GeV]	Lum. $[pb^{-1}]$	Pol. [%]	Jet Rec.
2006	200	45	55	Midpoint cone, $R = 0.7$
2009	200	54	56	Anti- k_T , $R = 0.6$
2009	500	53	35	Anti- k_T , $R = 0.6$
2012	510	144	52	Anti- k_T , $R = 0.5$
2013	510	500	52	Anti- k_T , $R = 0.5$
2015	200	120	57	In process

Zilong Chang DIS2018, Kobe, Japan 6/25

- PYTHIA + GEANT + Zero-bias events as embedding sample.
- Allow to correct from detector jets to particle and parton jets.
- Determine systematic uncertainties.

STAR has measured a series of inclusive jet and di-jet cross-sections and longitudinal double-spin asymmetry A_{LL} s at $\sqrt{s}=200$ GeV.

- Inclusive jet: x_g as low as ~ 0.05 at $\sqrt{s} = 200$ GeV
- Di-jets: two jet correlation unfolds x₁ and x₂ at the leading order.

$$x_1 = \frac{1}{\sqrt{s}}(p_{T,3}e^{\eta_3} + p_{T,4}e^{\eta_4})$$
 (3)

$$x_2 = \frac{1}{\sqrt{s}} (p_{T,3}e^{-\eta_3} + p_{T,4}e^{-\eta_4})$$
 (4)

$$M = \sqrt{x_1 x_2 s} \tag{5}$$

Gluon x_g sampled by inclusive and di-jets at $\sqrt{s}=200$ GeV (PRD 95, 071103(R)).

Inclusive Jet Cross-section Measurements

Jet profile, fraction of the total jet transverse energy within a cone of radius ΔR centered on the reconstructed thrust axis, from STAR 2006 $\sqrt{s}=200$ GeV data (PRD, 86, 032006).

Preliminary inclusive jet cross-sections from STAR 2009 $\sqrt{s}=200$ GeV data

- Good agreement between data and simulation
- Good agreement with NLO pQCD calculation after hadronization and underlying event correction.
- Jet production is well understood at RHIC energies

Zilong Chang DIS2018, Kobe, Japan 9/25

Di-jet Cross-section Measurements

Di-jet cross-sections from STAR 2009 $\sqrt{s} = 200$ GeV data (PRD 95, 071103(R)).

Preliminary di-jet cross-sections from STAR 2009 $\sqrt{s}=500$ GeV data.

 Di-jet cross-section is well described by the NLO pQCD calculations after hadronization and underlying event corrections.

Inclusive Jet Double-spin Asymmetry A_{LL} Measurements

Inclusive jet A_{LL} from STAR 2009 $\sqrt{s}=200$ GeV data (PRL 115, 092002).

- This measurement is more precise than the previous measurement from the 2006 data, (3 times at high jet p_T and 4 times at low jet p_T).
- A_{LL} falls in the middle among several polarized PDF fit predictions.
- A_{LL} is larger than the 2008 DSSV fit, and would push the fit towards positive Δg in the accessible x region.

DSSV new fit with STAR 2009 inclusive jet A_{IJ} data (PRL 113, 012001).

 $x\Delta g$ from NNPDF with STAR 2009 inclusive jet A_{LL} data (NPB 887.276).

- Both groups find the STAR 2009 inclusive jet A_{LL} provide significantly tighter constraints on gluon polarization than previous measurements.
- DSSV: $\Delta G = 0.19^{+0.06}_{-0.05}$ for x > 0.05 at 90% C.L.
- NNPDF: $\Delta G = 0.23 \pm 0.07$ for 0.05 < x < 0.5.

Zilong Chang DIS2018, Kobe, Japan 12 / 25

Analysis of STAR 2012/2013 510 GeV Inclusive Jet A_{LL}

• Higher $\sqrt{s}=510$ GeV provides sensitivity to smaller x_g . x_g sampled by two jet p_T bins with mean $p_T=7.7$ and 34.4 GeV/c:

- Smaller R=0.5 for anti- k_T algorithm reduces pile-up effects and is less sensitive to background.
- \bullet By comparing with various detectors, relative luminosity is estimated more precisely than previous measurements $\sim 10^{-4}.$
- Using replicas from the polarized NNPDF PDF set to estimate trigger bias and reconstruction uncertainties

Zilong Chang DIS2018, Kobe, Japan 13 / 25

Data Simulation Comparison for 510 GeV Jet Spectrum

• Choose default Perugia 2012 tune with a smaller $p_{T,0}$ scale parameter (P_{90} from 0.24 to 0.213)

$$\sigma \sim \frac{1}{(\rho_T^2 + \rho_{T,0}^2)^2}$$
 (6)

$$p_{T,0} = p_{T,ref} \times \left(\frac{\sqrt{s}}{\sqrt{s_{ref}}}\right)^{p_{90}} \tag{7}$$

- Reduce multiple parton interaction contribution
- Lead to better matching between PYTHIA simulation and previous STAR charged π^{\pm} spectrum measurements (PLB 637, 161,2006 and PRL 108, 072302, 2012).

Jet spectrum comparison for jet patch triggers, JP0, JP1 and JP2. Markers: data and lines: simulation

Zilong Chang

DIS2018, Kobe, Japan

Underlying Event Correction

 Two off-axis cones are used to estimate underlying event for a given jet (ALICE, PRD 91, 112012).

Two off-axis cones centered at $\pm \frac{\pi}{2}$ away in ϕ and the same η relative to a given jet.

- The underlying event correction: $dp_T = \frac{1}{2}(\rho_{plus} + \rho_{minus}) \times A_{jet}$
- lacksquare Sample η dependence of the underlying event.
- Other applications: jet analysis in pA collisions.

Zilong Chang DIS2018, Kobe, Japan 15 / 25

Underlying Event Correction from Data and Simulation

• Underlying event dp_T vs. jet p_T for three jet patch triggers JP0, JP1 and JP2. The difference in dp_T between data and simulation used as a systematics as underlying event correction on jet p_T .

Effects of Underlying Event Correction on Jet A_{LL}

• Define underlying event correction dp_T asymmetry:

$$A_{LL}^{dp_T} = \frac{1}{P_A P_B} \frac{\left(\langle dp_T \rangle^{++} + \langle dp_T \rangle^{--} \right) - \left(\langle dp_T \rangle^{+-} + \langle dp_T \rangle^{-+} \right)}{\left(\langle dp_T \rangle^{++} + \langle dp_T \rangle^{--} \right) + \left(\langle dp_T \rangle^{+-} + \langle dp_T \rangle^{-+} \right)}$$
(8)

Underlying event correction dp_T asymmetries. Little asymmetries for the underlying event correction.

• Underlying event contribution to jet A_{LL} is estimated $\sim 10^{-4}$, assigned as an uncertainty. More detail in backup slides.

Zilong Chang DIS2018, Kobe, Japan 17 / 25

STAR 510 GeV Inclusive Jet A_{LL} Measurements

Preliminary STAR 2012 and 2013 $\sqrt{s}=510$ GeV inclusive jet A_{LL} results compared with the STAR 200 GeV data from 2009. Both preliminary results agree well with:

- The STAR 200 GeV data in the overlapping x_T region.
- Recent polarized PDF predictions.
- Final 2012 results will have much smaller systematic uncertainties.

Zilong Chang DIS2018, Kobe, Japan 18 / 25

Increased Precision for 200 GeV Inclusive Jet A_{LL}

• The combined 2015 data with the existing STAR 200 GeV data will significantly reduce the uncertainties for the 200 GeV inclusive jet A_{LL} , by a factor of **two** relative to the 2009 results.

STAR Forward Upgrade

- STAR is proposing to install a Forward Calorimeter System (FCS), including an electromagnetic calorimeter and a hadron calorimeter, and a Forwarding Tracking System (FTS) in 2020s.
- Di-jet measurements with one or both jets in the forward region (2.8 < η < 3.7) will be one of the highlights of this upgrade.
- FCS will provide gluon polarization at very low x

 $x \sim 5 \times 10^{-3}$ with FCS-EEMC di-jets

 $x \le 10^{-3}$ with FCS-FCS di-jets

See Elke's talk:

The STAR Cold QCD
Physics Program after
2020.

- STAR inclusive jet and di-jet cross-section measurements provide valuable information to constrain unpolarized gluon distribution in the proton. The results are consistent with NLO pQCD calculations.
- STAR inclusive jet and di-jet double-spin asymmetry measurements are unique to explore gluon polarization in the proton.
 - The 200 GeV results provided the first experimental evidence for positive gluon polarization over RHIC kinematic range.
 - 2 The 510 GeV results extend gluon polarization measurement at lower x.
- Publication preparation:
 - 1 510 GeV inclusive jet and di-jet A_{LL} ,
 - 200 GeV forward di-jet A_{LL} ,
 - 3 510 GeV inclusive jet cross-sections.
- The STAR forward upgrade will provide new opportunities to probe low $x\sim 10^{-3} \mbox{ gluon polarization where the current polarized PDF studies show large uncertainties.}$

Zilong Chang DIS2018, Kobe, Japan 21 / 25

Underlying event systematic uncertainty on inclusive jet A_{LL} for 2012 510 GeV data compared with systematic uncertainty due to relative luminosity.

Zilong Chang DIS2018, Kobe, Japan 22 / 25

Backup: STAR 200 GeV Di-jet A_{LL} Measurements

STAR 2009 $\sqrt{s}=200$ GeV di-jet A_{LL} measured with jets at $|\eta|<0.8$ (PRD 95, 071103(R)).

Preliminary STAR 2009 $\sqrt{s}=200$ GeV di-jet A_{LL} with one jet at $|\eta|<0.8$ and the other at $0.8<\eta<1.8$.

Preliminary STAR 2009 $\sqrt{s}=$ 200 GeV di-jet $A_{LL} {\rm measured} {\rm \ with \ jets \ at \ } 0.8 < \eta < 1.8.$

Backup: STAR 510 GeV Di-jet A_{LL} Measurements

Preliminary STAR 2012 $\sqrt{s}=510$ GeV di-jet A_{LL} measured with jets at $|\eta|<0.9$ compared with STAR 2009 data.

Preliminary STAR 2013 $\sqrt{s}=510$ GeV di-jet A_{LL} compared with STAR 2009 data.

Zilong Chang DIS2018, Kobe, Japan 24 / 25

STAR charged π^{\pm} yields. PRL 108, 072302, 2012

 Zilong Chang
 DIS2018, Kobe, Japan
 25 / 25