MEASUREMENTS OF VECTOR BOSON FUSION

Philippe Calfayan Indiana University

On behalf of the ATLAS Collaboration

Deep Inelastic Scattering and Related Subjects

April 17, 2018

Introduction

- Measurement: electroweak (EW) production of Wjj and Zjj via t-channel exchange of EW boson, including Vector Boson Fusion (VBF)
- Wjj and Zjj final states dominated by processes involving strong interations
- EW-Wjj and Zjj productions measured in signal-enriched fiducial regions. Differential cross sections further unfolded for various observables distinguishing EW and QCD processes.
- VBF process is of particular interest:
 - Measure couplings to Higgs boson
 - Searches for new particles beyond Standard Model (SM)
 - $\circ~$ Sensitive to anomalous triple-gauge-boson couplings (WWZ and $WW\gamma)$
 - Tune Monte Carlo simulation

LO Vjj EW-production (VBF):

Measurement of electroweak Wjj production - Regions of interest

- Published: EPJC 77 (2017) 474 [$\sqrt{s} = 8(7)$ TeV, 20.2(4.7) fb⁻¹]
- e and μ channels combined
- Event pre-selection:
 - $\circ~$ High- $p_T~$ lead jets: $p_T^{j_1} > 80~{\rm GeV}$, $p_T^{j_2} > 60~{\rm GeV}$
 - $\circ~$ Well separated leading jets: $\Delta y(j_1,j_2)>2$
 - Di-jet invariant mass: $M_{jj} > 500 \,\mathrm{GeV}$
 - W boson selection cuts
- Main backgrounds (% of SR in 8 TeV analysis):
 - QCD-Wjj (~ 60%)
 - \circ Multijet and top ($\sim 10\%$ each)
- Lepton (jet) centrality:

Measurement of electroweak Wjj production - Main background estimates

- QCD-Wjj samples simulated by POWHEG+PYTHIA8
- Multijet background (in CR and SR) determined by simultaneous fit of multijet-enriched template and QCD-Wjj to data
- Control region constrained QCD-Wjj:
 - $\circ~$ QCD-Wjj M_{jj} distribution weighted in SR by fit function determined by ratio of background subtracted data over QCD-Wjj in CR
 - Allows to suppress systematic uncertainties via ratio of simulated SR/CR QCD-Wjj
 - The computed fit function is confirmed in the central-jet validation region
- Final normalizations in SR of (CR-corrected) QCD-Wjj and simulated (POWHEG+PYTHIA8) EW-Wjj obtained by global M_{jj} fit to data

Measurement of electroweak Wjj production - Fiducial cross sections

- σ_{Wij}^{fid} (fb) measurements in SR (background-only hypothesis rejected at $> 5\sigma$):
 - 7 TeV: $144 \pm 23 \, (stat) \pm 23 \, (exp) \pm 13 \, (th)$ [POWHEG+PYTHIA: 144 ± 11]
 - 8 TeV: $159 \pm 10 (stat) \pm 17 (exp) \pm 15 (th)$ [POWHEG+PYTHIA: 198 ± 12]

- Systematic uncertainties on σ_{Wjj}^{fid} (8 TeV):
 - $\circ~$ Data statistics in CR: 4.4%
 - $\circ~$ Largest experimental: jet calibration ($\sim 8\%)$
 - Largest theoretical: EW-Wjj σ (~ 6%) ; PDF (~ 5%) ; EW/QCD-Wjj interference, MC statistics, and EW-Wjj scale and parton shower (~ 3% each)

Measurement of electroweak Wjj production – Unfolded differential σ

- Unfolding performed via bayesian iterative technique, for both EW and QCD+EW Wjj production, and for single lepton flavor
- Done in 4 mutually orthogonal fiducial regions, high- M_{jj} EW-enhanced and inclusive regions
- Achieved for observables distinguishing EW/QCD Wjj productions $(M_{jj}, \Delta y(j_1, j_2), C_{l(j)},$ number of additional central jets) and sensitive to anomalous gauge couplings $(\Delta \Phi(j_1, j_2), p_T^{j1}, p_T^{jj})$
- Comparison to predictions from POWHEG+PYTHIA8, SHERPA v1.4.3, and HEJ (QCD)
- Examples:
 - $\circ~$ High- M_{jj} region is better described by POWHEG+PYTHIA8 and HEJ
 - $\circ \ p_T^{j_1}$, correlated with p transfer in t-channel, better described by POWHEG+PYTHIA8

Measurement of electroweak Zjj production - Regions of interest

- Published: JHEP 04 (2014) 031 $[\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}]$ PLB 775 (2017) 206 $[\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}]$
- e and µ channels combined
- Main background: QCD-Zjj (95% of 13 TeV EW-enriched SR)
- $p_T^{balance} = \frac{|\overrightarrow{p_T}^{\ell_1} + \overrightarrow{p_T}^{\ell_2} + \overrightarrow{p_T}^{j_1} + \overrightarrow{p_T}^{j_2}|}{|\overrightarrow{p_T}^{\ell_1} + |\overrightarrow{p_T}^{\ell_2} + |\overrightarrow{p_T}^{j_1} + |\overrightarrow{p_T}^{j_2}|}$

constrained to low values to suppress pileup or multiple parton interactions, and poorly measured jets

- N_{jet}^{gap} : number of jets in the rapidity interval between the two leading jets
- If $N_{jet}^{gap} \ge 1$, $p_T^{balance,3}$ is considered, including highest- p_T -jet in the rapidity gap

Analysis regions:

	Fiducial region					
Object	Baseline	High-mass	High-p _T	EW-enriched	$\begin{array}{l} \mbox{EW-enriched},\\ m_{jj}>1~\mbox{TeV} \end{array}$	QCD-enriched
Leptons	$ \eta < 2.47, p_T > 25 \text{ GeV}, \Delta R_{j,\ell} > 0.4$					
Dilepton pair	$81 < m_{\ell\ell} < 101 {\rm ~GeV}$					
				$p_{T}^{\ell\ell} > 20 \text{ GeV}$		
	y < 4.4					
Jets	$p_{\mathrm{T}}^{j_1} > 55~\mathrm{GeV}$		$p_{\rm T}^{\rm j_1}>85~{\rm GeV}$	$p_T^{j_1} > 55 \text{ GeV}$		
	$p_{\rm T}^{j_2} > 45~{\rm GeV} \qquad p_{\rm T}^{j_2} > 75~{\rm GeV}$		$p_T^{j_2} > 45 \text{ GeV}$			
Dijet system	-	$m_{jj} > 1 \; {\rm TeV}$	-	$m_{jj}>250~{\rm GeV}$	$m_{\rm jj}>1~{\rm TeV}$	$m_{jj} > 250 { m ~GeV}$
Interval jets	-		$N_{\text{jet } p_T>25 \text{ GeV}}^{\text{interval}} = 0$		$N_{\text{jet }(p_{\text{T}}>25 \text{ GeV})}^{\text{interval}} \ge 1$	
Zjj system	_		$p_{\rm T}^{\rm halonce} < 0.15$		$p_{\rm T}^{\rm halance,3} < 0.15$	
Dijet system Interval jets Zjj system	- m _{jj} > 1 TeV		$m_{jj} > 250 \text{ GeV}$ $N_{jet p_T > 25}^{interval}$ $p_T^{halance}$	$m_{jj} > 1$ TeV GeV) = 0 < 0.15	$m_{jj} > 280$ $N_{jet}^{interval}$ $p_T^{halance,3} <$	

Measurement of electroweak Zjj production – Main Background estimate

- QCD-Zjj template simulated by SHERPA v1.4.3 normalized to NLO (8 TeV), and the combination of MADGRAPH5_aMC@NLO+PYTHIA8, SHERPA v2.2.1, and ALPGEN+PYTHIA6 (13 TeV)
- EW-Zjj template simulated by SHERPA v1.4.3 normalized to NLO (8 TeV), and the combination of POWHEG+PYTHIA8 and SHERPA v2.2.1 (13 TeV)
- Control region constrained QCD-Zjj:
 - $\circ~$ Same method as for Wjj analysis, yet with CR defined by events with $\geq 1~{\rm jet}$ in rapidity gap
 - Pairs of mutually exclusive subsets of CR used to bound QCD-Zjj reweighting function
- Simulated signal and (CR-corrected) QCD-Zjj templates scaled to match data via global M_{jj} fit 13 TeV case: average of 6 fits derived from all combination of QCD-Zjj and EW-Zjj templates

Measurement of electroweak Zjj production – Fiducial cross sections

- σ_{Zjj}^{fid} (fb) in $M_{jj} > 250 \,\text{GeV}$ region (background-only hypothesis rejected at $> 5\sigma$):
 - 8 TeV: 54.7 ± 4.6 (*stat*) $^{+9.8}_{-10.4}$ (*syst*) ± 1.5 (*lumi*) [POWHEG+PYTHIA: 46.1 ± 1.0]
 - $\circ~13\,{\rm TeV}:~119\pm16\,(stat)\pm20\,(syst)\pm2\,(lumi)$ [POWHEG+PYTHIA: $125.2\pm3.4]$
- Systematic uncertainties on σ_{Wjj}^{fid} (13 TeV, $M_{jj} > 250 \,\text{GeV}$ region):
 - Data statistics in CR: 6.2%
 - Largest experimental: jet calibration (5-6%)
 - Largest theoretical: M_{jj} shape (11%); QCD-Zjj scale, PDF & showering (4.5%)

Measurement of electroweak Zjj production – Unfolded differential σ

- Unfolding performed at 8 TeV in all analysis regions via bayesian iterative technique, for both EW and QCD+EW Zjj productions, and for single lepton flavor
- Measured for observables distinguishing between 2 leading jets and between EW/QCD Zjj (e.g., M_{jj} , $|\Delta y(j_1, j_2)|$, $|\Delta \Phi(j_1, j_2)|$, N_{jet}^{gap} , $p_T^{balance}$, p_T^{jj})
- Comparison to theoretical predictions from POWHEG+PYTHIA6 and SHERPA v1.4.3
- Examples:
 - $\circ N_{jet}^{gap}$ well separates EW and QCD-Zjj productions (veto selects EW-Zjj)
 - $\circ \ p_T^{balance}$ adequately described by both Zjj simulations

Constraints on anomalous gauge couplings

- Zij 8 TeV analysis probes WWZ assuming aTGC model, using SR with $M_{ii} > 1 \text{ TeV}$
- Wij 8 TeV analysis probes WWV (V= Z/γ) with aTGC or EFT model using high- q^2 region (SR with $M_{ii} > 1 \text{ TeV}$ and $p_T^{j_1} > 600 \text{ GeV}$), which is more sensitive to anomalous couplings
- aTGC couplings simulated with SHERPA
- Different aTGC suppression scales (Λ) tested: 4 TeV (Wij only), 6 TeV (Zjj only), and ∞ (both analyses, with Wij one being more sensitive)
- aTGC couplings probed: g_1^Z and κ_Z (=1 in SM), λ_V , and $\tilde{\kappa}_Z$, λ_V

-0.2

-0.4

-0.6

Conclusion

- EW-Zjj production cross sections have been measured at $\sqrt{s} = 7$, 8, and $13 \,\mathrm{TeV}$, while EW-Wjj production cross sections have been determined at 7 and $8 \,\mathrm{TeV}$
- Accurate data-driven techniques have been used to make the measurements with suppressed systematic uncertainties on QCD-Wjj(Zjj) productions
- Unfolded differential production cross sections have been estimated for EW-Wjj(Zjj) processes at $\sqrt{s} = 8 \text{ TeV}$
- Stringent constraints have been put on triple-gauge-boson anomalous couplings, complementarily to WW production results
- For more information: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

BACKUP

Constraints on anomalous couplings

- Limit on a given coupling assumes all others are 0
- EFT limits on coefficients divided by new scale Λ (Wjj analysis 8 TeV):

Parameter	Expected $[TeV^{-2}]$	Observed $[TeV^{-2}]$
$\frac{c_W}{\Lambda^2}$	[-39, 37]	[-33, 30]
$\frac{C_B}{\Lambda^2}$	[-200, 190]	[-170, 160]
$\frac{CWWW}{\Lambda^2}$	[-16, 13]	[-13, 9]
$\frac{c_{W}}{\Lambda^2}$	[-720, 720]	[-580, 580]
$\frac{c_{\tilde{W}WW}}{\Lambda^2}$	[-14, 14]	[-11, 11]

• aTGC interval limits on couplings for different scales:

Wjj analysis ($8 \,\mathrm{TeV}$):

	$\Lambda = 4 \text{ TeV}$		$\Lambda = \infty$		
	Expected	Observed	Expected	Observed	
Δg_1^Z	[-0.39, 0.35]	[-0.32, 0.28]	[-0.16, 0.15]	[-0.13, 0.12]	
$\Delta \kappa_Z$	[-0.38, 0.51]	[-0.29, 0.42]	[-0.19, 0.19]	[-0.15, 0.16]	
λ_V	[-0.16, 0.12]	$\left[-0.13, 0.090 ight]$	$\left[-0.064, 0.054 ight]$	[-0.053, 0.042]	
$\tilde{\kappa}_Z$	[-1.7, 1.8]	[-1.4, 1.4]	[-0.70, 0.70]	[-0.56, 0.56]	
$\tilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	[-0.058, 0.057]	[-0.047, 0.046]	

Zjj analysis (8 TeV):

aTGC	$\Lambda=6~{\rm TeV}~({\rm obs})$	$\Lambda=6~{\rm TeV}~({\rm exp})$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \ (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

