Dark Matter searches with the ATLAS Detector

Will Kalderon, Lund University (SE)

DIS Kobe
18.04.18

on behalf of the ATLAS Collaboration
DM signatures

Gravitational: ✓
Electromagnetic: ✗
Strong: ✗
Weak-strength: ?
How to search for them

Direct detection

Indirect detection

Collider production

Collider: how do we search for nothing?
Option 1: require something to happen!

We can see this

Which also allows us to notice this as p_T^{miss}

“Mono-X searches”

In a hadron collider, “SM” initial state = quarks and gluons
ATLAS mono-X / associated production

mono-X Dataset

<table>
<thead>
<tr>
<th>mono-X</th>
<th>Dataset</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>jet</td>
<td>36.1 fb⁻¹</td>
<td>JHEP 01 (2018) 126</td>
</tr>
<tr>
<td>Z (→ ℓℓ)</td>
<td>36.1 fb⁻¹</td>
<td>PLB 776 (2017) 318</td>
</tr>
<tr>
<td>W/Z (→ qq)</td>
<td>3.2 fb⁻¹</td>
<td>PLB 763 (2016) 251</td>
</tr>
<tr>
<td>h (→ bb)</td>
<td>36.1 fb⁻¹</td>
<td>PRL 119 (2017) 181804</td>
</tr>
<tr>
<td>h (→ γγ)</td>
<td>36.1 fb⁻¹</td>
<td>PRD 96, 112004 (2017)</td>
</tr>
<tr>
<td>Z' (→ qq)</td>
<td>36.1 fb⁻¹</td>
<td>ATLAS-CONF-2018-005</td>
</tr>
</tbody>
</table>

Associated production

<table>
<thead>
<tr>
<th>Associated production</th>
<th>Dataset</th>
<th>Reference</th>
</tr>
</thead>
</table>

scalar mediator, 3rd-gen couplings
Option 2: dark matter? What dark matter?

If there is a mediator that couples to quarks and DM...

...then we can forget about the DM and look for the mediator

“Dijet* resonance searches”

*One can also imagine the Z’ coupling to leptons -> dilepton resonances, lower BR to dijet
Dijet limits on Z’, at end of run 1

Model has **four parameters**:

1. Mediator coupling to quarks g_q (usually assumed universal, but dijets ignore Z’ \to tt)
2. Mediator mass $m_{Z'}$
3. Dark Matter mass m_{DM} - set well above 0.5 $m_{Z'}$ (eg 10 TeV) -> kinematically inaccessible
4. Mediator coupling to Dark Matter, g_{DM} - not very relevant given 3, often set to 1

$$g_B = 6g_q$$

References:

Prescaled* triggers (with extensive use of delayed stream**)

Axial vector mediator
Dirac DM, $m_{DM} = 10$ TeV

Lower coupling g_q for given mass $m_{Z'}$:
more data ($\sigma \sim g_q^2 \Rightarrow \text{limit}(g_q) \sim \text{data}^{1/4}$), better mass resolution

Higher bottom mass edge to exclusion: trigger limitations

* Prescaled: only a fraction of events accepted by a trigger are recorded
** Delayed stream: events accepted by some triggers are written to a separate stream that is not reconstructed until computing resources become available over a shutdown
What limits the ATLAS trigger?

Limitations:
- detector readout
- total: storage & processing cost
- single jet: competing demands

Higher instantaneous luminosity -> higher rate of high-p_T jet production

=> with rising instantaneous luminosity, must raise jet p_T threshold for recording events

- Empirical observation: at high p_T (>100 GeV or so), rate $\sim p_T^{-5}$
- 2016: record events containing jets with $E_T > 380$ GeV -> efficient by $p_T > 440$ GeV in analysis

* 25ns bunch spacing gives 40 MHz, but the ring is not full
• ATLAS has preliminary results (ATLAS-CONF-2016-070) using photon and jet using initial state radiation to trigger on => resonance can be much lower p_T (lead resonance jet $p_T > 25$ GeV, vs 440 GeV)

• At Z' masses below ~ 200 GeV, resonance jets merge -> large-R jet
Quick overview: Large-R + ISR

- Use substructure τ_{21} to distinguish 2-subjet signal from single-subjet QCD background
- Use “designed decorrelated tagger” method to decorrelate from jet mass
- Main background QCD
 - Data-driven method for background estimation based on inverted τ_{21}^{DDT}
 - Method validated on W/Z peak
 - Separate signal region for each mass point

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV} \)

Jet channel

- Bkg., 500 < p_T^j < 700 GeV
- Sig., 500 < p_T^j < 700 GeV
- Bkg., 700 < p_T^j < 900 GeV
- Sig., 700 < p_T^j < 900 GeV
- Bkg., 900 < p_T^j < 1300 GeV
- Sig., 900 < p_T^j < 1300 GeV

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, \ 36.1 \text{ fb}^{-1} \)

Jet channel

- Data
- Background est.
- W/Z + jets
- Z' (160 GeV)
- Bkg. stat. uncert.
- Bkg. stat. ⊕ syst.

Data / est.

- 0.98
- 0.99
- 1
- 1.01
- 1.02

Events / GeV

- 10
- 10^3
- 10^6
- 10^9
- 10^12
Dijet (merged & resolved) + ISR limits

ATLAS Preliminary March 2018
\(\sqrt{s} = 13\) TeV, 3.6-37.0 fb\(^{-1}\)

95\% CL upper limits

- **Observed**
- **Expected**

- Large-R jet + ISR, 36.1 fb\(^{-1}\)
- arXiv: 1801.08769
- Dijet + ISR (\(\gamma\)), 15.5 fb\(^{-1}\)
- ATLAS-CONF-2016-070
- Dijet + ISR (jet), 15.5 fb\(^{-1}\)
- ATLAS-CONF-2016-070
- Dijet, 20.3 fb\(^{-1}\) 8 TeV
- Dijet, 37.0 fb\(^{-1}\)

ISR -> sensitivity down to 200 GeV

200 GeV = crossover between merged and resolved

Large-R jet -> takes this down to 100 GeV
Dijet (merged & resolved) + ISR limits

Requiring ISR reduces signal cross-section -> lower sensitivity than pure dijet
2: Revisit trigger limitations

- 30\(^*\) MHz
- L1: \(~100\ kHz\)
- HLT: \(~1.5\ kHz\)

Limitations:

- Total: storage & processing cost
- Single jet: competing demands

Storage and processing drives 1.5 kHz limit for ATLAS

- Dijet resonance search only uses jets - no leptons, no p\(T\)\(_{\text{miss}}\), etc.
- We already build and calibrate jets in the trigger... just save these
- Record minimal events at high rate

* 25ns bunch spacing gives 40 MHz, but the ring is not full

\(~20-40\ Hz\) single jet
Evade trigger bandwidth limits

ATLAS Trigger Operation

HLT Stream Rates (with overlaps)

pp Data July 2016, √s = 13 TeV

LHCb: “Turbo stream” [1]

CMS: “Data Scouting” [2]

ATLAS: “Trigger Level Analysis”

(arXiv: 1804.03496, April 11th!)

Huge TLA rate but tiny bandwidth since ~0.5% of full event size

Instead of 20-40 Hz for a dijet resonance search, we now have 1-3 kHz!

jump: sometimes recorded more TLA data once the luminosity had fallen

The payoff

"standard"

dijet

TLA

lead jet $p_T > 440$

sublead jet $p_T > 60$

$m_{jj} > 1100$

4×10^7 events in first bin

in 29.3 fb$^{-1}$ of 2016 data

$\sqrt{s} = 13$ TeV, 29.3 fb$^{-1}$

$|y^*| < 0.6$

ATLAS Preliminary

Data 2016

Data 2015

$|y| < 2.8$

Offline central jet p_T [GeV]

3.0

2.5

2.0
TLA calibration

EM-scale jets
Jet finding applied to topological clusters at the electromagnetic scale

Jet-area based pileup correction
Applied as a function of event pileup p_T density and jet area only

Absolute MC-based calibration
Corrects the jet 4-momentum to the particle-level energy scale. Both the energy and direction are calibrated

Global sequential calibration
Reduces flavor dependence and energy leakage using calorimeter variables only

Eta intercalibration
Corrects the scale of forward jets in data to that of central jets, using the p_T balance ratio between data and simulation, applied only to data

Trigger-to-offline data-derived correction
Corrects trigger-level jets to the scale of offline jets, applied only to data

Residual in-situ calibration
A smooth residual calibration is derived by fitting in-situ measurements and applied only to data

- Write out sufficient information to be able to redo calibration offline
- Some parts rederived since TLA data lacks eg track information
- End result: excellent agreement between offline and recalibrate trigger mjj

ATLAS
$\sqrt{s}=13$ TeV, 29.3 fb$^{-1}$
$|y^*| < 0.6$
Background estimation

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by high-mass dijet 37 fb$^{-1}$ result: fit sub-ranges
Background estimation

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by high-mass dijet 37 fb$^{-1}$ result: fit sub-ranges

\[
\begin{align*}
 f(x) &= p_1(1 - x)^p_2x^p_3 \\
 f(x) &= p_1(1 - x)^p_2x^p_3 + p_4 \ln x \\
 f(x) &= p_1(1 - x)^p_2x^p_3 + p_4 \ln x + p_5 \ln x^2 \\
 f(x) &= \frac{p_1}{x^p_2} e^{-p_3x - p_4x^2}
\end{align*}
\]

ATLAS
\[\sqrt{s} = 13\text{ TeV}, 29.3\text{ fb}^{-1}\]
$|y^*| < 0.6$

Data

Fit window

Fit for this bin

animation here
Background estimation

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by high-mass dijet 37 fb$^{-1}$ result: fit sub-ranges

$$f(x) = p_1 (1 - x)^{p_2} x^{p_3} + p_4 \ln x$$
$$f(x) = p_1 (1 - x)^{p_2} x^{p_3} + p_4 \ln x + p_5 \ln x^2$$
$$f(x) = \frac{p_1}{x^{p_2}} e^{-p_3 x - p_4 x^2}$$

ATLAS
√s=13 TeV, 29.3 fb$^{-1}$
$|y^*| < 0.6$

Data
Fit window
Fit for this bin

animation here
Background estimation

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by high-mass dijet 37 fb$^{-1}$ result: fit sub-ranges

\[f(x) = p_1 (1 - x)^p_2 x^p_3 \]
\[f(x) = p_1 (1 - x)^p_2 x^p_3 + p_4 \ln x \]
\[f(x) = p_1 (1 - x)^p_2 x^p_3 + p_4 \ln x + p_5 \ln^2 x \]
\[f(x) = \frac{p_1}{x^p_2} e^{-p_3 x - p_4 x^2} \]
Background estimation

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by high-mass dijet 37 fb$^{-1}$ result: fit sub-ranges
 - $|y^*|<0.3$: 27 bins, $|y^*|<0.6$: 19
Results

• “BumpHunter” with background-only fit: no significant excesses found

• Signal + Background fit: set limits (areas of flexibility give observed - expected differences)

• Similar sensitivity to conventional dijet resonance search at 1.5 TeV

• Can go much lower in m_{Z'}:
 • 450-700 GeV using dedicated signal region with L1_J75 for some of 2016
Trigger-level analysis greatly improves sensitivity

New results mean that we surpass pre-LHC constraints everywhere
Prospects, TLA

- 2017/8: improve calibration of trigger jets, take advantage of unused L1 rate towards end of fill to run new triggers allowing lower masses to be probed (J50 vs J75/J100)
- Run 3: improve reconstruction of L1 objects with new hardware => can probe lower mass for given rate
- Run 3: FTK -> full tracking at HLT -> pileup rejection possible -> can go well below 85 GeV

ATLAS Preliminary April 2018

$\sqrt{s} = 13$ TeV, 3.6-37.0 fb$^{-1}$

ATLAS Trigger Operation

HLT Stream Rates (with overlaps)

pp Data July 2016

$\sqrt{s} = 13$ TeV

ATLAS-CONF-2016-070

γ, 15.5 fb$^{-1}$

arXiv: 1804.03496

Dijet TLA, 15.5 fb$^{-1}$

arXiv: 1801.08769

10 TeV, 3.6-37.0 fb$^{-1}$

ATLAS-CONF-2016-070

γ, 15.5 fb$^{-1}$

arXiv: 1804.03496

Dijet, 37.0 fb$^{-1}$

ATL-DAQ-PUB-2017-003
Prospects, resolved dijet + ISR

- g_q limit scales as data$^{1/4}$ => 15.5 to 120 fb$^{-1}$ = factor 1.7
- Higher instantaneous luminosity -> higher trigger thresholds, mitigated by improved jet trigger performance
- Combinatorics in jet channel can improve mass reach and sensitivity
- Potential for TLA technique in run 3 with FTK
Prospects, merged dijet + ISR

- g_q limit scales as $\text{data}^{1/4} \Rightarrow 37$ to 120 fb$^{-1} = \text{factor 1.3}$
- New trigger strategies for large-R, including substructure information in the trigger (2017 has mass, run 3 will have more) => much more data
- Optimised grooming methods ATL-PHYS-PUB-2017-020 => better S/B
- Also improvements in jet substructure resolution thanks to track information in jet reconstruction inputs ATL-PHYS-PUB-2017-015

More details on substructure in Jason Veatch's WG4 talk yesterday
Complementarity between DM searches

DM Simplified Model Exclusions

ATLAS Preliminary July 2017

DM Mass [TeV]

0

0.5

1

1.5

2

2.5

3

Mediator Mass [TeV]

Axial-vector mediator, Dirac DM

\(g_q = 0.25, g_l = 0, g_{DM} = 1 \)

All limits at 95% CL

Caveats:
- plot is ~ 1 year old, doesn’t include latest TLA, large-R+ISR or mono-X results

mono-X and resonance searches complement each other
Complementarity between DM searches

Caveats:
- plots are ~ 1 year old, don’t include latest TLA, large-R+ISR or mono-X results
- very model-dependent (eg non-zero lepton coupling causes large changes)

other channels (eg dilepton resonance) cover other model scenarios
Complementarity between DM searches

- plots are ~ 1 year old, don’t include latest TLA, large-R+ISR or mono-X results
- very model-dependent (eg non-zero lepton coupling causes large changes)
- DD limits 90% CL, collider 95%

also complementarity with direct detection
Conclusions

• Broad set of approaches to searching for Dark Matter with ATLAS

• Various new techniques being exploited to go lower in mass
 • Initial state radiation to evade trigger limitations
 • Substructure to take this into the merged regime
 • Borrowing methods from LHCb and CMS to make the best use of jet trigger system and do a dijet analysis with partial events

• New methods can all take advantage of LS2 trigger upgrades for sensitivity scaling much better than integrated luminosity alone

• Can also help with significant computing and storage pressures in the future
Backup
New: mono-Z'

ATLAS-CONF-2018-005, April 4th

Dark Fermion

Dijet resonance + MET

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Dark-fermion model</th>
<th>Dark-Higgs model</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{X_1} = 5 GeV</td>
<td>m_{X} = 5 GeV</td>
<td></td>
</tr>
<tr>
<td>Light dark sector</td>
<td>m_{X_2} = m_{X_1} + m_{Z'} + 25 GeV</td>
<td>m_{h_D} = \begin{cases} m_{Z'} , m_{Z'} < 125 GeV \ 125 GeV , m_{Z'} > 125 GeV \end{cases}</td>
</tr>
<tr>
<td>m_{X_1} = m_{Z'}/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy dark sector</td>
<td>m_{X_2} = 2m_{Z'}</td>
<td>m_{h_D} = \begin{cases} 125 GeV , m_{Z'} < 125 GeV \ m_{Z'} , m_{Z'} > 125 GeV \end{cases}</td>
</tr>
</tbody>
</table>
Quick overview: Mono-Z’

- E_T^{miss} trigger
- Merged and resolved jet resonance search
- Use of btagging to enhance sensitivity to $Z’ \rightarrow bb$
- Combined fit of MC normalisations in 1&2-lepton CRs and 0-lepton SRs
- Limits: heavy dark sector comparable to dijet searches, stronger with light dark sector
- Systematically limited \Rightarrow foresee improvement
Resonance search

$q \rightarrow Z' \rightarrow q\bar{q}\rightarrow hadronisation$ of final state quarks

“pile-up” - simultaneous p-p interactions

highest-mass dijet event in 2016
$p_T(j1,j2) = 3.79$
$m_{jj} = 8.12$ TeV
Jet reconstruction

- Seed from cells with S/N > 4
- Grow with cells S/N > 2
- Split local maxima (EM calorimeter)

“topological clusters” - 3D energy blobs

- Sequentially merge topoclusters
- Start from highest ET
- Size controlled by ‘radius’ parameter, \(\Delta R = \Delta \eta \oplus \Delta \phi = 0.4 \)
- End with a 2D object - ~ circular in \(\eta \)-\(\phi \) (except when touch)
- Built from raw energy recorded by calorimeter
- **sampling**
 calorimeters -> don’t record all the energy
- Also have energy deposits from other p-p collisions in same event
Jet calibration

- Built from raw energy recorded by calorimeter
- **sampling**
 calorimeters ->
don’t record all the energy
- Also have energy deposits from other p-p collisions in same event

Origin correction
Changes the jet direction to point to the hard-scatter vertex. Does not affect E.

Jet area-based pile-up correction
Applied as a function of event pile-up p_T density and jet area.

Residual pile-up correction
Removes residual pile-up dependence, as a function of μ and N_{PV}.

look at average p_T density of event in the calorimeter, subtract this approximated pileup contribution
Jet calibration

- Built from raw energy recorded by calorimeter
- **Sampling** calorimeters -> don’t record all the energy
- Also have energy deposits from other p-p collisions in same event

Origin correction
Changes the jet direction to point to the hard-scatter vertex. Does not affect E.

Jet area-based pile-up correction
Applied as a function of event pile-up p_T density and jet area.

Residual pile-up correction
Removes residual pile-up dependence, as a function of μ and N_{PV}.

Absolute MC-based calibration
Corrects jet 4-momentum to the particle-level energy scale. Both the energy and direction are calibrated.

Global sequential calibration
Reduces flavor dependence and energy leakage effects using calorimeter, track, and muon-segment variables.

Residual in situ calibration
A residual calibration is derived using in situ measurements and is applied only to data.

at this point, have only discriminated based on event pileup and jet origin, η and p_T. We have more information than this!

final corrections to get back to “truth” scale
• Very large number of events -> very little scope for QCD to deviate from functional form

• In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
BumpHunter - high-mass dijet

- “BumpHunter” - scans all widths from 1 to Nbins/2, finds maximally discrepant interval
- p-value < 0.05 => there is something there with 95% confidence
- p-value > 0.05 => there is not something there
Limits on the limits: m_{jj} resolution

Good resolution

Bad resolution

Bad resolution: signal smears out, covers wider m_{jj} range, trying to extract same number of signal events from more background events
m_{jj} resolution

Cartoon because offline plot is internal… but you can read it from m_{jj} bins

\[\sigma(\sqrt{m_{jj}}) / m_{jj} \]

TLA

offline

\[|y^*| < 0.6 \]

ATLAS Simulation Preliminary

Pythia 8 QCD
Lower still: exploiting the Kinematics

The dijet searches use $|y^*| < 0.6$

$y^* = \frac{1}{2} (y_1 - y_2)$

Imagine a centrally produced Z':

i.e. quarks back to back, $y_1 = -y_2$, $y^* = y_1$

small Δy, large p_T

large Δy, small p_T

TLA: Imposing $|y^*| < 0.3 \Rightarrow$ higher $<p_T>$ from given Z' mass \Rightarrow sensitive to lower Z' mass for given p_T (394 vs 443)

(signal and background both lose a factor of $\sim 2-3$)
Trigger evolution over time

1. LHC performance increases
2. Decide rate allocation
3. Adjust jet p_T threshold to fit
4. Evaluate performance of this trigger to determine analysis selections

<table>
<thead>
<tr>
<th>Year</th>
<th>$L / 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$</th>
<th>Jet p_T Threshold</th>
<th>Single Jet Trigger Rate</th>
<th>Offline Turnon</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0.5</td>
<td>260</td>
<td>18</td>
<td>400</td>
</tr>
<tr>
<td>2016</td>
<td>1.2</td>
<td>380</td>
<td>38</td>
<td>420</td>
</tr>
<tr>
<td>2017</td>
<td>1.7</td>
<td>420</td>
<td>33</td>
<td>435</td>
</tr>
</tbody>
</table>
Jet trigger performance

Before: offline - truth resolutions for width of m_{jj} peak

For triggers: trigger - offline resolution, i.e. how good are we at selecting the events we want to analyse?

This is set by how similar we can make trigger jets to offline jets, given:

- partial event information (e.g. restricted / no tracking)
- trigger calibrations determined before data-taking, offline afterwards!
Jet trigger calibration

<table>
<thead>
<tr>
<th>Calibration</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin correction</td>
<td>Move jet origin to vertex</td>
</tr>
<tr>
<td>Pileup subtraction瘠</td>
<td>Remove contributions from pileup</td>
</tr>
<tr>
<td>Jet Energy Scale correction</td>
<td>Restore hadronic energy</td>
</tr>
<tr>
<td>Global Sequential Correction</td>
<td>Reduce flavour (quark / gluon) dependence</td>
</tr>
<tr>
<td>In-situ eta intercalibration</td>
<td>Corrects detector effects along eta to central region</td>
</tr>
<tr>
<td>In-situ JES correction</td>
<td>Calorimeter response corrected to MC truth scale</td>
</tr>
</tbody>
</table>

Applied to?

Offline

- Start with offline calibration chain
Jet trigger calibration

- Start with offline calibration chain
- No GSC or in-situ in 2015/16 data (developed using 2015 data!)

Calibration
- Origin correction
- Jet area
- Residual
- Jet Energy Scale correction
- Jet area
- Residual
- Global Sequential Correction
- Calo-only with tracks
- In-situ eta intercalibration
- In-situ JES correction

Purpose
- Move jet origin to vertex
- Remove contributions from pileup
- Restore hadronic energy
- Reduce flavour (quark / gluon) dependence
- Corrects detector effects along eta to central region
- Calorimeter response corrected to MC truth scale

Applied to?
- Offline and HLT (2015 and 2016)
- Offline only - not implemented in time
Jet trigger calibration

Calibration
- Origin correction
- Pileup subtraction
- Jet Energy Scale correction
- Global Sequential Correction
- In-situ eta intercalibration
- In-situ JES correction

Purpose
- Move jet origin to vertex
- Remove contributions from pileup
- Restore hadronic energy
- Reduce flavour (quark / gluon) dependence
- Corrects detector effects along eta to central region
- Calorimeter response corrected to MC truth scale

Applied to?
- Offline and HLT (2015 and 2016)
- Offline only - not implemented in time
- Offline only - needs tracks

Status in 2015 and 2016 data

- Start with offline calibration chain
- No GSC or in-situ in 2015/16 data (developed using 2015 data!)
- Also: no tracks!
 - very CPU intensive in ATLAS trigger -> infeasible to run full tracking
Jet trigger calibration

- **Purpose**: Move jet origin to vertex
 - Remove contributions from pileup
 - Restore hadronic energy
 - Reduce flavour (quark / gluon) dependence
 - Corrects detector effects along eta to central region
 - Calorimeter response corrected to MC truth scale

- **Origin correction**: Move jet origin to vertex
- **Pileup subtraction**: Jet area, Residual
- **Jet Energy Scale correction**: Calo-only, with tracks
- **Global Sequential Correction**: Calo-only with tracks
- **In-situ eta intercalibration**: Calo-only with tracks
- **In-situ JES correction**: Calo-only with tracks

- **Applied to?**
 - Offline and HLT (2015-2017)
 - Offline and HLT (all 2017)
 - Offline and HLT (some 2017)
 - Offline only

- **New in 2017**
- **Apply partial GSC and in-situ calibrations to all trigger jets**
- **Some HLT tracking in jets is possible within CPU constraints - can apply GSC to some trigger jets**

Status in 2017 data
Jet trigger calibration

- Application of more steps in calibration chain hugely improves resolution and turnon
- Partially offsets threshold increases required from luminosity increases
Offline trigger jet calibration

- We save enough information to be able to (re)do most of the calibration offline.

- Offline and HLT (2015 and 2016)

- Offline only - not implemented in time
Offline trigger jet calibration

- We save enough information to be able to (re)do most of the calibration offline
- Some parts specifically redefined for trigger jets
Offline trigger jet calibration

- We save enough information to be able to (re)do most of the calibration offline
- Some parts specifically redefined for trigger jets
- Apply scale factor between trigger and offline jets to correct residual differences

Calibration
- Origin correction
- Pileup subtraction
- Jet Energy Scale correction
- Global Sequential Correction
- trigger - offline scale factor
- In-situ JES correction

Purpose
- Move jet origin to vertex
- Remove contributions from pileup
- Restore hadronic energy
- Reduce flavour (quark / gluon) dependence
- Corrects residual differences (binned in \(p_T \) and \(\eta \))
- Calorimeter response corrected to MC truth scale

Applied to?
- Offline, applied to trigger jets
- Offline, trigger-jet specific
- trigger - offline correction
- Offline only - needs tracks
TLA trigger jet calibration

Custom “in-situ” step to ensure smoothness - statistical fluctuation in normal spline-based combination leads to bump in p_T and hence m_{jj}

Excellent trigger : offline agreement
Expected limits fluctuations

- Real signal can exist in data, but expected limits need to represent signal-free background
 - Fit signal+background model for each signal point
 - Set signal component to zero & throw toys for expected limit
- Thus the model used to generate the expected limits is **different for each signal point**, since a different signal is included in each signal+background fit
 - Results in wobbly expected limits
 - More pronounced the more “flexible” the background estimation is
Observed and expected limits at 95% confidence level on the coupling (g_q), for the combination of the ISR jet and ISR γ channels.
Large-R + ISR DDT

\[\rho_{DDT} \equiv \log \left(\frac{m_J^2}{p_T \times \mu} \right) \]

Linear relationship between \(\rho_{DDT} \) and \(< \tau_{21} > \) for \(\rho_{DDT} > \sim 1 \)

Define \(\tau_{21}^{DDT} \) : linearly corrected version of \(\tau_{21} \)

\(\tau_{21}^{DDT} \) independent of jet mass

\(\begin{align*}
&DATLAS \text{ Simulation} \\
&\sqrt{s} = 13 \text{ TeV} \\
&\text{Jet channel}
\end{align*} \)

arXiv:1801.08769

ATLAS Simulation
\(\sqrt{s} = 13 \text{ TeV} \)
Jet channel

- Bkg., 500 < \(p_T^J < 700 \text{ GeV} \)
- Sig., 500 < \(p_T^J < 700 \text{ GeV} \)
- Bkg., 700 < \(p_T^J < 900 \text{ GeV} \)
- Sig., 700 < \(p_T^J < 900 \text{ GeV} \)
- Bkg., 900 < \(p_T^J < 1300 \text{ GeV} \)
- Sig., 900 < \(p_T^J < 1300 \text{ GeV} \)
Tracking in CaloClusters

- Improvements in jet substructure resolution thanks to track information in jet reconstruction inputs ATL-PHYS-PUB-2017-015

- Black -> Red
 - Mostly low p_T -> improvement in D2, degradation in mass
CMS and ATLAS limits

CMS Preliminary

95% CL exclusions

$\Gamma_{Z'}/M_{Z'} = 100\%$

$\Gamma_{Z'}/M_{Z'} = 50\%$

$\Gamma_{Z'}/M_{Z'} = 30\%$

$\Gamma_{Z'}/M_{Z'} = 10\%$

$\Gamma_{Z'}/M_{Z'} = 5\%$

boosted dijet (ATLAS)

b-tagged

8 TeV

Dijet

Dijet ATLAS

Z'→qq

Dijet X

CMS Dijet, 13 TeV [EXO-16-056]

ATLAS Dijet+ISR, 13 TeV [ATLAS-CONF-2016-070]

ATLAS TLA, 13 TeV [ATLAS-CONF-2016-030]

CMS Dijet, 13 TeV [ATLAS-EXOT-2017-01]

ATLAS Boosted Dijet, 13 TeV [ATLAS-EXOT-2016-21]

ATLAS Dijet+ISR γ, 13 TeV [ATLAS-CONF-2016-070]

CMS Dijet, 8 TeV [EXO-14-005]

ATLAS Dijet+ISR γ, 13 TeV [ATLAS-CONF-2016-070]

CMS Dijet b tagged, 8 TeV [EXO-16-057]

UA2 [Nucl. Phys. B 400, 3 (1993)]

UA2

CDF Run1

CDF Run2

CDF Run2

[arXiv:1404.3947]

95% CL exclusions

$\Gamma_{Z'}/M_{Z'} < 10\%$

$\Gamma_{Z'}/M_{Z'} < 10\%$
Wider context

Sensitivity decreases as DM mass decreases
(Z' branching ratio to dijets decreases)
-> covered by mono-X searches

Interpretation is very model-dependent

Sensitivity decreases as lepton coupling g_l increases and quark coupling g_q decreases
-> covered by dilepton resonance searches
Even wider context

Interpretation is even more model-dependent

Nice complementarity between direct detection, collider production with mono-X and “indirect searches” with dijet resonances
8 TeV 20.3 fb$^{-1}$ triggers

ATLAS

- Normal stream only
- Delayed stream added

Prescaled single jet triggers plus delayed stream