Dark Matter searches with the ATLAS Detector

on behalf of the ATLAS Collaboration

DM signatures

How to search for them

Collider: how do we search for nothing?

Option 1: require something to happen!

ATLAS mono-X / associated production

mono-X	Dataset	Reference
jet	36.1 fb ⁻¹	JHEP 01 (2018) 126
γ	36.1 fb ⁻¹	Eur. Phys. J. C 77 (2017) 393
$Z (\rightarrow \ell \ell)$	36.1 fb ⁻¹	PLB 776 (2017) 318
W/Z (→ qq)	3.2 fb ⁻¹	PLB 763 (2016) 251
h (→ bb)	36.1 fb ⁻¹	PRL 119 (2017) 181804
h $(\rightarrow \gamma \gamma)$	36.1 fb ⁻¹	PRD 96, 112004 (2017)
Z' (→ qq)	36.1 fb ⁻¹	ATLAS-CONF-2018-005

Associated production	Dataset	Reference
tt/bb/b+MET	36.1 fb ⁻¹	Eur. Phys. J. C 77 (2017) 393

scalar mediator, 3rd-gen couplings

Option 2: dark matter? What dark matter?

If there is a mediator that couples to quarks and DM...

> .. then we can forget about the DM and look for the mediator

"Dijet* resonance searches"

Dijet limits on Z', at end of run 1

Model has **four parameters**:

- Mediator coupling to quarks g_q (usually assumed universal, but dijets ignore Z' -> tt)
- 2. Mediator mass mz
- 3. Dark Matter mass m_{DM} set well above 0.5 m_{Z} , (eg 10 TeV) -> kinematically inaccessible
- 4. Mediator coupling to Dark Matter, g_{DM} not very relevant given 3, often set to 1

Dijet limits, run 1 vs run 2

Lower coupling g_q for given mass $m_{Z'}$: more data $(\sigma \sim g_q^2 => limit(g_q) \sim data^{1/4})$, better mass resolution

Higher bottom mass edge to exclusion: trigger limitations

^{*} Prescaled: only a fraction of events accepted by a trigger are recorded

^{**} Delayed stream: events accepted by some triggers are written to a separate stream that is not reconstructed until computing resources become available over a shutdown

What limits the ATLAS trigger?

~20-40 Hz single jet

Limitations:

detector readout

total: storage & processing cost

single jet: competing demands

Higher instantaneous luminosity -> higher rate of high-p_T jet production

- => with rising instantaneous luminosity, must raise jet pt threshold for recording events
- Empirical observation: at high p_T (>100 GeV or so), rate ~ p_T-5
- 2016: record events containing jets with $E_T > 380 \text{ GeV} -> \text{efficient by } p_T > 440 \text{ GeV}$ in analysis

^{* 25}ns bunch spacing gives 40 MHz, but the ring is not full

Overcoming trigger 1: ISR

- ATLAS has preliminary results (<u>ATLAS-CONF-2016-070</u>) using photon and jet using initial state radiation to trigger on => resonance can be much lower p_T (lead resonance jet p_T > 25 GeV, vs 440 GeV)
- At Z' masses below ~ 200 GeV, resonance jets merge -> large-R jet

Quick overview: Large-R + ISR

arxiv: 1801.08768, EXOT-2017-01

- Use substructure τ_{21} to distinguish 2-subjet signal from single-subjet QCD background
 - Use "designed decorrelated tagger" method to decorrelate from jet mass
- Main background QCD
 - Data-driven method for background estimation based on inverted τ_{21}^{DDT}
 - Method validated on W/Z peak
 - Separate signal region for each mass point

Dijet (merged & resolved) + ISR limits

Run 2 dijet

ISR -> sensitivity down to 200 GeV

200 GeV = crossover between merged and resolved

Large-R jet -> takes this down to 100 GeV

Dijet (merged & resolved) + ISR limits

2: Revisit trigger limitations

~20-40 Hz single jet

Limitations:

detector readout

total: storage & processing cost

single jet: competing demands

Storage and processing drives 1.5 kHz limit for ATLAS

- dijet resonance search only uses jets - no leptons, no p_T^{miss}, etc.
- we already build and calibrate jets in the trigger... just save these
- record minimal events at high rate

* 25ns bunch spacing gives 40 MHz, but the ring is not full

Evade trigger bandwidth limits

[1] LHCb Collaboration, Tesla: an application for real-time data analysis in High Energy Physics, Comput. Phys. Commun. 208 (2016) 35, arXiv: 1604.05596 [physics.ins-det].

[2] CMS Collaboration, Search for dijet resonances in proton–proton collisions at $\sqrt{s} = 13$ TeV and constraints on dark matter and other models, Phys. Lett. B **769** (2017) 520, arXiv: 1611.03568 [hep-ex].

15 / 31

The payoff

4x10⁷ events in first bin in 29.3 fb⁻¹ of 2016 data

TLA calibration

- Write out sufficient information to be able to redo calibration offline
- Some parts rederived since TLA data lacks eg track information
- End result: excellent agreement between offline and recalibrate trigger m_{ij}

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges
 - |y*|<0.3: 27 bins, |y*|<0.6: 19

Results

- "BumpHunter" with backgroundonly fit: no significant excesses found
- Signal + Background fit: set limits (areas of flexibility give observed - expected differences)
- Similar sensitivity to conventional dijet resonance search at 1.5 TeV
- Can go much lower in mz⁷
 - 450-700 GeV using dedicated signal region with L1_J75 for some of 2016

Limits, March 2018

Trigger-level analysis greatly improves sensitivity

New results mean that we surpass pre-LHC constraints everywhere

Prospects, TLA

- 2017/8: improve calibration of trigger jets, take advantage of unused L1 rate towards end of fill to run new triggers allowing lower masses to be probed (J50 vs J75/J100)
- Run 3: improve reconstruction of L1 objects with new hardware => can probe lower mass for given rate
- Run 3: FTK -> full tracking at HLT -> pileup rejection possible -> can go well below 85 GeV
 ATL-DAQ-PUB-2017-003

Prospects, resolved dijet + ISR

- g_q limit scales as data^{1/4} => 15.5 to 120 fb⁻¹ = factor 1.7
- Higher instantaneous luminosity -> higher trigger thresholds, mitigated by improved jet trigger performance
- Combinatorics in jet channel can improve mass reach and sensitivity
- Potential for TLA technique in run 3 with FTK

Prospects, merged dijet + ISR

- g_q limit scales as data^{1/4} => 37 to 120 fb⁻¹ = factor 1.3
- New trigger strategies for large-R, including substructure information in the trigger (2017 has mass, run 3 will have more) -> much more data
- Optimised grooming methods <u>ATL-PHYS-PUB-2017-020</u> -> better S/B
- Also improvements in jet substructure resolution thanks to track information in jet reconstruction inputs <u>ATL-PHYS-PUB-2017-015</u>

%89 =

Background efficiency

Complementarity between DM searches

mono-X and resonance searches complement each other

Caveats:

 plot is ~ 1 year old, doesn't include latest TLA, large-R+ISR or mono-X results

28 / 31

Complementarity between DM searches

Caveats:

- plots are ~ 1 year old, don't include latest TLA, large-R+ISR or mono-X results
- very model-dependent (eg nonzero lepton coupling causes large changes)

other channels (eg dilepton resonance) cover other model scenarios

Complementarity between DM searches

E_x +jet √s = 13 TeV, 36.1 fb⁻¹

arXiv:1608.07648; arXiv:1602.03489

ATLAS-CONF-2017-060 E_{τ}^{miss} +Z \sqrt{s} = 13 TeV, 36.1 fb⁻¹

ATLAS-CONF-2017-040

LUX

Dijet

 10^{2}

 10^{3}

DM Mass [GeV]

Axial-vector mediator, Dirac DM

10

 $g_{a} = 0.25, g_{i} = 0, g_{DM} = 1$

also complementarity with direct detection

zero lepton coupling causes

- DD limits 90% CL, collider 95%

large changes)

Conclusions

- Broad set of approaches to searching for Dark Matter with ATLAS
- Various new techniques being exploited to go lower in mass
 - Initial state radiation to evade trigger limitations
 - Substructure to take this into the merged regime
 - Borrowing methods from LHCb and CMS to make the best use of jet trigger system and do a dijet analysis with partial events

- New methods can all take advantage of LS2 trigger upgrades for sensitivity scaling much better than integrated luminosity alone
- Can also help with significant computing and storage pressures in the future

 $31/3^{2}$

Backup

New: mono-Z'

ATLAS-CONF-2018-005, April 4th

Dijet resonance + MET

Scenario	Dark-fermion model	Dark-Higgs model
	$m_{\chi_1} = 5 \text{ GeV}$	$m_{\chi} = 5 \text{ GeV}$
Light dark sector	$m_{\chi_2} = m_{\chi_1} + m_{Z'} + 25 \text{ GeV}$	$m_{h_D} = \begin{cases} m_{Z'} & , m_{Z'} < 125 \text{ GeV} \\ 125 \text{ GeV} & , m_{Z'} > 125 \text{ GeV} \end{cases}$
		$m_{h_D} = 125 \text{ GeV}$, $m_{Z'} > 125 \text{ GeV}$
Heavy dark sector	$m_{\chi_1} = m_{Z'}/2$	$m_{\chi} = 5 \text{ GeV}$
	$m_{\chi_2}=2m_{Z'}$	$\int 125 \text{GeV}$, $m_{Z'} < 125 \text{GeV}$
		$m_{h_D} = \begin{cases} 125 \text{ GeV} &, m_{Z'} < 125 \text{ GeV} \\ m_{Z'} &, m_{Z'} > 125 \text{ GeV} \end{cases}$

Quick overview: Mono-Z'

- E_Tmiss trigger
- Merged and resolved jet resonance search
- Use of btagging to enhance sensitivity to Z' -> bb
- Combined fit of MC normalisations in 1&2-lepton CRs and 0-lepton SRs
- Limits: heavy dark sector comparable to dijet searches, stronger with light dark sector
- Systematically limited => foresee improvement

Resonance search

highest-mass dijet event in 2016 $p_T(j1,j2) = 3.79$ $m_{jj} = 8.12 \text{ TeV}$

Jet reconstruction

calorimeter cells "topological clusters" - 3D energy blobs "jet" cluster

- Seed from cells with S/N > 4
- Grow with cellsS/N > 2
- Split local maxima (EM calorimeter)

- Sequentially merge topoclusters
- Start from highest E_T
- Size controlled by 'radius' parameter, $\Delta R = \Delta \eta \oplus \Delta \phi = 0.4$
- End with a 2D object \sim circular in η - ϕ (except when touch)

Jet calibration

- Built from raw energy recorded by calorimeter
- sampling
 calorimeters ->
 don't record all the
 energy
- Also have energy deposits from other p-p collisions in same event

Jet calibration

Origin correction jet

Jet area-based pileup correction

Residual pile-up correction

Changes the jet direction to point to the hard-scatter vertex. Does not affect E.

Applied as a function of event pile-up p_T density and jet area.

Removes residual pile-up dependence, as a function of μ and N_{PV} .

- Built from raw energy recorded by calorimeter
- sampling calorimeters -> don't record all the energy
- Also have energy deposits from other p-p collisions in same event

look at average p_™ density of event in the calorimeter, subtract this approximated pileup contribution

Jet calibration

jet

Origin correction

Jet area-based pileup correction Residual pile-up correction

- Built from raw energy recorded

by calorimetersamplingcalorimeters ->don't record all the

energy

 Also have energy deposits from other p-p collisions in same event Changes the jet direction to point to the hard-scatter vertex. Does not affect E.

Applied as a function of event pile-up p_T density and jet area.

Removes residual pile-up dependence, as a function of μ and N_{PV}.

Absolute MC-based calibration

Corrects jet 4-momentum to the particle-level energy scale. Both the energy and direction are calibrated.

Global sequential calibration

Reduces flavor dependence and energy leakage effects using calorimeter, track, and muon-segment variables.

at this point, have only discriminated based on event pileup and jet origin, η and p_T. We have more information than this!

Residual in situ calibration

A residual calibration is derived using in situ measurements and is applied **only to data**.

final corrections to get back to "truth" scale

40 / 31

TLA fitting

- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV

BumpHunter - high-mass dijet

- "BumpHunter" scans all widths from 1 to Nbins/2, finds maximally discrepant interval
- p-value < 0.05 => there is something there with 95% confidence
- p-value > 0.05 => there
 is not something there

Limits on the limits: mjj resolution

Good resolution

Bad resolution

Bad resolution: signal smears out, covers wider m_{jj} range, trying to extract same number of signal events from more background events

m_{jj} resolution

Cartoon because offline plot is internal... but you can

read it from mjj bins 0.075 0.075 0.007 0.065 0.065 ATLAS Simulation Preliminary Pythia 8 QCD $|y^*| < 0.6$ 0.06 0.055 σ (m_{||}) / <m_|> 0.05 0.045 0.055 0.04 0.035 0.05 0.03 400 600 800 1000 1200 m_{ii} [GeV] 0.045 0.04 0.035 0.03 offline 0.025 0.02 5×10^2 6×10^2 10³ 2×10^{3} m_{ii} [GeV]

Lower still: exploiting the Kinematics

The dijet searches use $|y^*| < 0.6$ $y^* = \frac{1}{2}(y_1 - y_2)$

Imagine a centrally produced Z': i.e. quarks back to back, $y_1 = -y_2$, $y^* = y_1$

small ∆y, large p_T

large ∆y, small p_T

TLA: Imposing $|y^*|<0.3 =>$ higher $< p_T>$ from given Z' mass => sensitive to lower Z' mass for given p_T (394 vs 443)

(signal and background both lose a factor of ~ 2-3)

Trigger evolution over time

- 1. LHC performance increases
- 2. Decide rate allocation
- 3. Adjust jet pT threshold to fit
- 4. Evaluate performance of this trigger to determine analysis selections

year	L / 10 ³⁴ cm ⁻² s ⁻¹	jet p _⊤ threhsold	single jet trigger rate	offline turnon
2015	0.5	260	18	400
2016	1.2	380	38	420
2017	1.7	420	33	435

Jet trigger performance

Before: offline - truth resolutions for width of m_{ij} peak

For triggers: trigger - offline resolution, i.e. how good are we at selecting the events we want to analyse?

This is set by how similar we can make trigger jets to offline jets, given:

- partial event information (eg restricted / no tracking)
- trigger calibrations determined before data-taking, offline afterwards!

Start with offline calibration chain

Calibration Purpose Origin correction Move jet origin to vertex Remove contributions from Pileup Jet area subtraction pileup Residual **Jet Energy Scale correction** Restore hadronic energy **Global Sequential** Calo-only Reduce flavour (quark / Correction gluon) dependence with tracks **Corrects detector effects** In-situ eta intercalibration along eta to central region **Calorimeter response In-situ JES correction** corrected to MC truth scale **Applied to?** Offline and HLT Offline only - not (2015 and 2016) implemented in time

- Start with offline calibration chain
- No GSC or in-situ in 2015/16 data (developed using 2015 data!)

- Start with offline calibration chain
- No GSC or in-situ in 2015/16 data (developed using 2015 data!)
- Also: no tracks!
 - very CPU
 intensive in
 ATLAS trigger ->
 infeasible to run
 full tracking

Status in 2015 and 2016 data

Status in 2017 data

- Application of more steps in calibration chain hugely improves resolution and turnon
- Partially offsets threshold increases required from luminosity increases

Offline trigger jet calibration

 We save enough information to be able to (re)do most of the calibration offline

Offline trigger jet calibration

Calibration Purpose Origin correction Move jet origin to vertex **Pileup** Remove contributions from Jet area subtraction pileup Residual Restore hadronic energy **Jet Energy Scale correction Global Sequential** Calo-only Reduce flavour (quark / Correction gluon) dependence with tracks **Corrects detector effects** In-situ eta intercalibration along eta to central region Calorimeter response **In-situ JES correction** corrected to MC truth scale Applied to? Offline, applied trigger - offline Offline only -Offline, triggerto trigger jets jet specifc correction needs tracks

- We save enough information to be able to (re)do most of the calibration offline
- Some parts specifically redefined for trigger jets

Offline trigger jet calibration

Calibration

Origin correction

Pileup subtraction

Jet area Residual

Jet Energy Scale correction

Global Sequential Correction

Calo-only with tracks

trigger - offline scale factor

In-situ JES correction

In-situ JES correction

Purpose

Move jet origin to vertex

Remove contributions from pileup

Restore hadronic energy

Reduce flavour (quark / gluon) dependence

Corrects residual differences (binned in p_T and eta)

Calorimeter response corrected to MC truth scale

Calorimeter response corrected to MC truth scale

Applied to?

Offline, applied to trigger jets

Offline, triggerjet specifc trigger - offline correction

Offline only - needs tracks

- We save enough information to be able to (re)do most of the calibration offline
- Some parts specifically redefined for trigger jets
- Apply scale factor between trigger and offline jets to correct residual differences

TLA trigger jet calibration

Custom "in-situ" step to ensure smoothness -

statistical fluctuation in normal spline-based combination leads to bump in p_T and hence m_{jj}

Excellent trigger : offline agreement

Expected limits fluctuations

- Real signal can exist in data, but expected limits need to represent signalfree background
 - Fit signal+background model for each signal point
 - Set signal component to zero & throw toys for expected limit
- Thus the model used to generate the expected limits is different for each signal point, since a different signal is included in each signal+background fit
 - Results in wobbly expected limits
 - More pronounced the more "flexible" the background estimation is

Large-R + ISR results

arxiv: 1801.08768, EXOT-2017-01

Observed and expected limits at 95% confidence level on the coupling (g_q), for the combination of the ISR jet and ISR γ channels

Large-R + ISR DDT

arxiv: 1801.08768, EXOT-2017-01

Tracking in CaloClusters

- Improvements in jet substructure resolution thanks to track information in jet reconstruction inputs <u>ATL-PHYS-</u> PUB-2017-015
- Black -> Red
 - Mostly low p_T -> improvement in D2, degradation in mass

CMS and ATLAS limits

ATLAS TLA updated since this plot

Wider context

mono-X

Interpretation is very model-dependent

Sensitivity decreases as lepton coupling g_I increases and quark coupling g_q decreases -> covered by dilepton resonance searches

Even wider context

Interpretation is even more model-dependent

Nice complementarity between direct detection, collider production with mono-X and "indirect searches" with dijet resonances

8 TeV 20.3 fb⁻¹ triggers

prescaled single jet triggers plus delayed stream