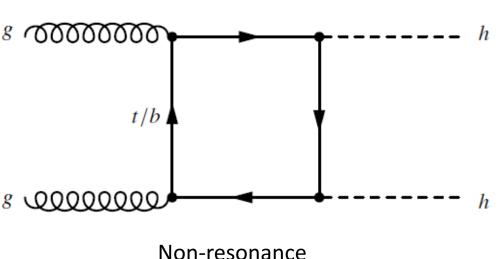
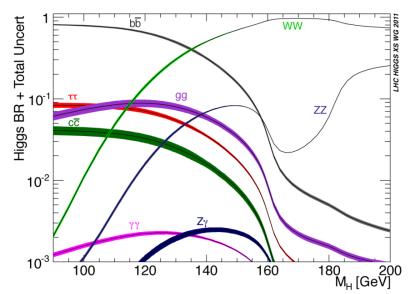

Search for di-Higgs Production with ATLAS Detector

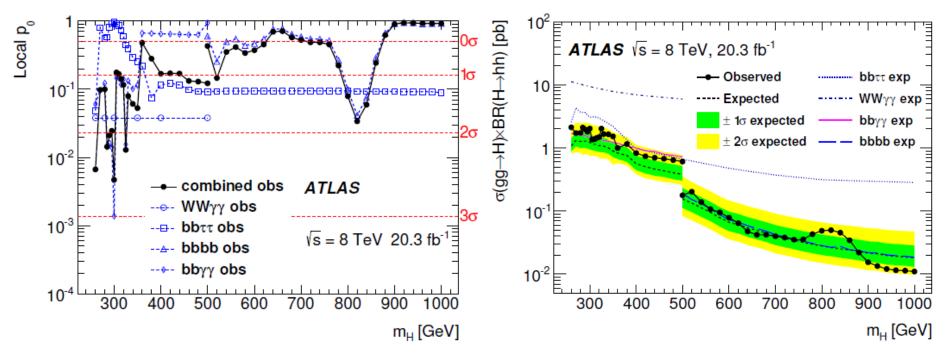

Yaquan Fang (IHEP, Beijing)
on Behalf of the ATLAS Collaboration
DIS2018 at Kobe


April 16-20, 2018

hh analyses

the decay of SM Higgs boson (h)

- The bb, WW, tautau channels have the highest BRs
- $\gamma\gamma$ has the di-photon mass resonance (bump search)
- SM di-higgs cross-section at at 13TeV, less than 0.1% that of SM Higgs
- Some BSM models (2HDM,KK-Gravitons, new scalar) can enhance the cross-section significantly in some region of phase space.

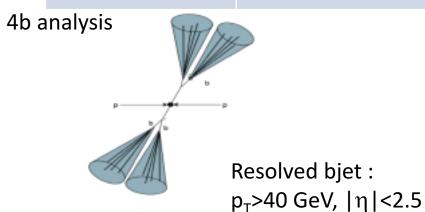

Overview of different channels at ATLAS/RUN2

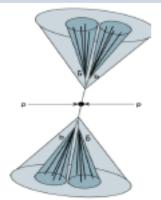
- γγbb: di-photon provides a sharp mass peak and bb can further help to suppress QCD bkg in addition to di-photon requirements.
 - RUN2 results: L=3.2 fb⁻¹, ATLAS-CONF-2016-004
- WW(Ivqq)γγ: In principle, Ivqq is not very sensitive at low mass due to huge QCD; however, di-photon can improve the situation here. Statistics will be low although it is clean. IvIvγγ will start to be sensitive with more RUN2 data.
 - RUN2 results : L = 13.3 fb⁻¹, ATLAS-CONF-2016-071
- **bbbb**: this channel is sensitive at high mass region with highly boosted jets.
 - Run2 results: L=27.5 fb⁻¹, 36.1 fb⁻¹ ATLAS-EXOT-2016-31

Results are preliminary, more new results with 36 fb⁻¹ are coming out in the next months

Results for Run 1

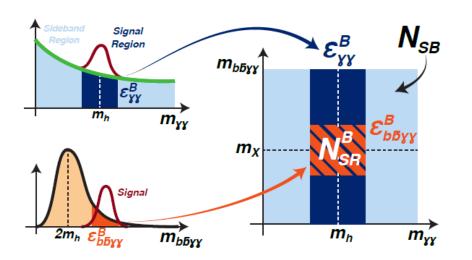
Phys.Rev.D92,092004(2015)




- With run1 data, four channels (bbγγ,WWγγ, bbbbb, bbtautau)are taken into account in the analyses and are combined:
 - No obvious excess has been seen.
- The upper limit can reach O(1) pb (low mass)- O(10) fb (high mass) for resonance search; for non-resonance search, ~50 SM gg->hh cross-section is excluded.

Run2 analyses:

Object definitions:


Objects	Selections
Photons	TightID FixedCutLoose Lead $P_T/m_{\gamma\gamma}>0.35$, Sub $P_T/m_{\gamma\gamma}>0.25$
Jets	$P_T>25$ GeV, $ \eta <2.5$ Jet vertex tagger (JVT) selection
Muons	Medium ID $P_{T}>4~GeV,~ \eta <2.5, \\ d_{0}significance,~Z_{0}~selection \\ B-jet~muon~correction$
Electrons	Loose Likelihood ID, $$P_{T}$>$10~\text{GeV}\ \eta $<$2.47$ excluding the crack region
b-jets	B-tagging selection Lead P _T >55 GeV, Sub P _T >35 GeV

Boosted bjet : $p_T>250~GeV~|\eta|<2.5$ $M_i>50~GeV$

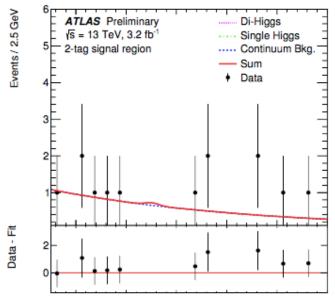
$bb\gamma\gamma$: Continuous Background estimation

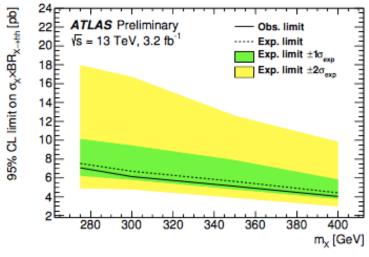
$$N_{SR}^{B} = N_{SB} \frac{\varepsilon_{m_{\gamma\gamma}}^{B}}{1 - \varepsilon_{m_{\gamma\gamma}}^{B}} \varepsilon_{m_{b\bar{b}\gamma\gamma}}^{B}$$

- ➤ Since the analysis is dominated by statistical uncertainty, a cut and count analysis is used for the resonant search.
- ightharpoonup The efficiencies of $\varepsilon^B_{m_{\gamma\gamma}}$ and $\varepsilon^B_{m_b \overline b \gamma \gamma}$ (efficiencies passing the mass window cuts of $m_{\gamma\gamma}$ and $m_{bb\gamma\gamma}$) for continuous bkg are obtained from sideband fit.
- \triangleright High statistical sideband sample $\gamma\gamma$ +2jets (no b-tagging) is used to estimate $\varepsilon^B_{m_b\overline{b}\gamma\gamma}$

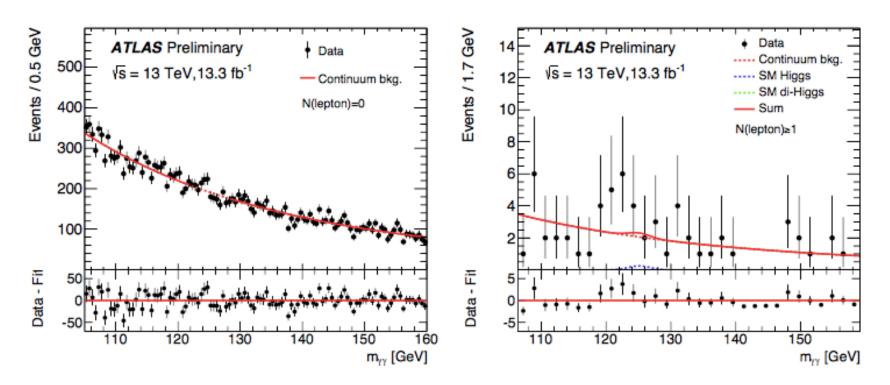
Run2 analyses: $bb\gamma\gamma$ with 3.2 fb⁻¹

Further Selections:


- Veto events with 3 b-jets.
- ➤ 0 b-jet category as control region to derive bkg shape.
- ➤ 2 b-jet as the signal region:95<|m_{bb}|<135 GeV.


Process	0-tag	2-tag
Continuum background	35.8 ± 2.1	1.63 ± 0.30
SM single-Higgs	1.8 ± 1.5	0.14 ± 0.05
SM di-Higgs	< 0.001	0.027 ± 0.006
Observed	27	0

For non-resonance search:


the observed(expected) limits are 3.9(5.4)pb, i.e. 116(162) SM di-higgs prediction.

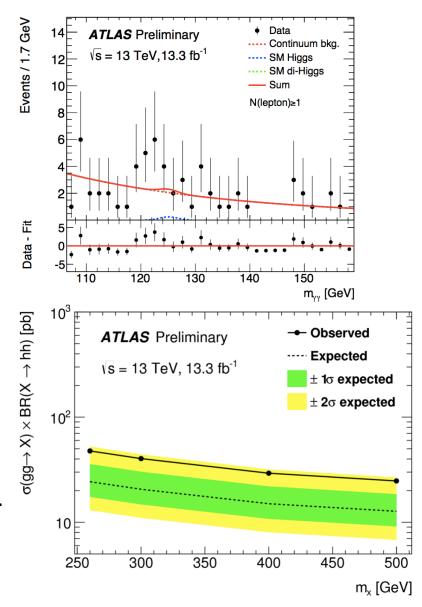
For the resonance search (mass 275-400 GeV): the observed(expected)limit ranges between 4.0-7.0 (4.4-7.5) pb.

WWγγ: Continuous Background estimation

➤ Due to the lack of statistics in the 1-lepton (right plot), a simultaneous fit with 2nd exponential function on 0-lepton (left plot) and 1-lepton di-photon mass spectra is implemented to extract the continuum bkg.

Run2 analyses: WWγγ with 13.3 fb⁻¹

Further Selections:


- ➤ At least two central jets
- B-veto.
- ➤ At least one lepton with Pt>10 GeV
- Fit sideband (Olep, 1lepton simultaneously)directly to extract the continuum bkg.

 $m_H \pm 2\sigma$

Process	Number of events			
Continuum background	7.26	± 1.23		
SM single-Higgs	0.616	± 0.115		
SM di-Higgs	0.0187	±0.00224		
Observed		15		

For non-resonance search:

the observed(expected) limits are 25.0(12.9)pb. For the resonance search (mass 275-400 GeV): the observed(expected)limit ranges between 24.7-47.7 (12.7-24.3) pb.

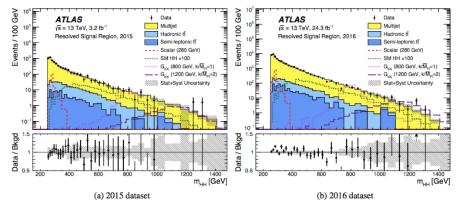
Run2 analyses: bbbb with 27.5-36.1 fb⁻¹

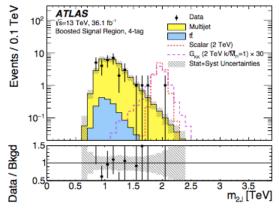
Further Selections:

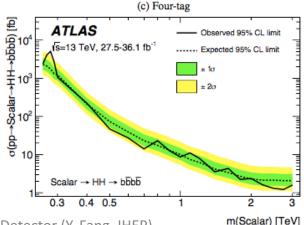
- Resolved analysis: 4 b-tagged jets: 260<m_{hh}<1400 GeV</p>
- Boosted analysis: 2 larger-R jets with the 2/3/4tag small-R b-tagged jets: 800-3000 GeV
- Higgs candidates are around higgs mass within its resolution.

Boosted analys	sis Tw	o-ta	g	Th	ree-tag	For	ır-tag
Multijet	3390	± 1	50	702	± 63	32.9	± 6.9
$t\bar{t}$	860	± 1	10	80	± 33	1.7	± 1.4
Total	4250	± 1	30	782	± 51	34.6	± 6.1
G _{KK} (2 TeV)	0.9	7 ±	0.29	1.2	3 ± 0.16	0.40	0.13
Scalar (2 TeV)	28.2	±	9.0	35.0	\pm 4.6	10.9	± 3.5
Data	4376			801		31	

For non-resonance search:


the upper limit 13XSM di-higgs prediction.


For the resonance search (mass 260-3000 GeV):


Different models (narrow-width scalar, spin-2 resonances)has been exploited.

No significant excess has been observed.

A deviation of 2.3σ has been found at 280 GeV.

Conclusion

- Different channels bbbb, bbγγ, wwγγ have been exploited in ATLAS detector with RUN1 and RUN2 data.
 - No obvious excess has been observed.
 - limits have been set from O(pb) to O(fb)
 - The best limit for non-resonance is 13XSM.
- More results will be come very soon with RUN2 data.