The Niels Bohr Institute # Searches for High Mass Resonances at ATLAS Flavia de Almeida Dias on behalf of the ATLAS Collaboration DIS2018 19 April 2018 ## LHC and ATLAS ## LHC Run 2 - Increase in energy from 8 → 13 TeV - Major new-physics sensitivity has opened up, specially at high masses - Exceptional LHC performance in 2016 and 2017 following 13 TeV commissioning in 2015 - Integrated luminosity so far: 86 fb⁻¹ recorded (80 fb⁻¹ physics) ## **Exotic Diboson Searches** - Historically connected to electroweak symmetry breaking models - Scenarios - → Spin 0: Heavy scalars in extended Higgs sector - Spin 1: Extended gauge models (W', Z' in SSM/ HVT) - → Spin 2: Kaluza-Klein gravitons (bulk RS) - Look into many final states: - VV, VH, HH, ZH (H≠125), XH, Vγ,γγ in leptonic, semi-leptonic and fully hadronic final states - Some analyses also look at different production modes (qq/ggF/VBF/VH) - \rightarrow VV, Vγ analyses assume narrow width resonances; γγ also look into larger width (4 MeV to 10% width) | | W | Z | | |--------------------|------|------|------------------| | Charged
leptons | ~33% | ~10% | rare/clean | | Hadrons | ~67% | ~70% | common/
dirty | | Neutrinos | - | ~20% | | # **Boosted Boson Tagging** - Wide range of boson p_T: distinct topologies for hadronic decays - → Resolved: 2 small R jets (jj), anti-k_t R=0.4 - → Boosted: single large R jets (J), anti-k_t R=1.0 - Jet grooming algorithm: trimming - Boson tagging: 50% flat signal efficiency (~ 2% QCD eff.) - → Large-radius jet mass - ightharpoonup Energy correlation variable $D_2^{\beta=1}$ More on Jason Veatch's talk #### Phys. Lett. B 777 (2017) 91 JHEP 03 (2018) 042 #### WW VBF- Boosted high purity ## VV and VH Searches Complementarity in sensitivity amongst channels #### JHEP 10 (2017) 112 # $X \rightarrow Y$ #### Phys. Lett. B 775 (2017) 105 Theory (NNLO prediction $\pm 1\sigma$) 95% CL observed limit 95% CL expected limit $\pm 1\sigma$ 95% CL expected limit $\pm 2\sigma$ SU(2) doublet 10^{-2} ATLAS 10^{-3} $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 1-lepton + 0-lepton combination $700 \ 800 \ 900 \ 1000 \ 1100 \ 1200 \ 1300 \ 1400 \ 1500 \ m_T [GeV]$ #### ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits **ATLAS** Preliminary | Status: July 2017 | | | $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$ | $\sqrt{s} = 8, 13 \text{ TeV}$ | |-------------------|--|--|--|--------------------------------| | Model | ℓ , γ Jets \dagger E_{T}^{miss} $\int \!\! \mathcal{L} dt[fb^{-1}]$ | Limit | | Reference | | | | - | | | | | Model | ℓ, γ | Jets† | E _T miss | ∫£ dt[fb | J . | .2 – 37.0) tb ⁻ | $\sqrt{s} = 8$, 13 lev Reference | |------------------|---|--|---|--------------------------------|--|--|--|--| | Extra dimensions | ADD $G_{KK}+g/q$
ADD non-resonant $\gamma\gamma$
ADD QBH
ADD BH high $\sum p_T$
ADD BH multijet
RS1 $G_{KK} \to \gamma\gamma$
Bulk RS $G_{KK} \to WW \to qq\ell\nu$
2UED / RPP | 0 e, μ 2 γ - ≥1 e, μ - 2 γ 1 e, μ 1 e, μ | 1 - 4 j
-
2 j
≥ 2 j
≥ 3 j
-
1 J
≥ 2 b, ≥ 3 j | Yes Yes - Yes Yes | 36.1
36.7
37.0
3.2
3.6
36.7
36.1
13.2 | MD 7.75 TeV MS 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 4.1 TeV GKK mass 1.75 TeV KK mass 1.6 TeV | n=2
n=3 HLZ NLO
n=6
$n=6$, $M_D=3$ TeV, rot BH
$n=6$, $M_D=3$ TeV, rot BH
$k/\overline{M}_{Pl}=0.1$
$k/\overline{M}_{Pl}=1.0$
Tier $(1,1)$, $\mathcal{B}(A^{(1,1)}\to tt)=1$ | ATLAS-CONF-2017-060
CERN-EP-2017-132
1703.09217
1606.02265
1512.02586
CERN-EP-2017-132
ATLAS-CONF-2017-051
ATLAS-CONF-2016-104 | | Gauge bosons | $\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} V' \to WV \to qqqq \ \operatorname{model} \\ \operatorname{HVT} V' \to WH/ZH \ \operatorname{model} B \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \end{array}$ | $\begin{array}{ccc} & 1 & e, \mu \\ & B & 0 & e, \mu \\ & \text{multi-channel} \\ & 1 & e, \mu \end{array}$ | -
2 b
1 b, ≥ 1J/2
-
2 J
2 b, 0-1 j
≥ 1 b, 1 J | -
-
-
Yes
-
Yes | 36.1
36.1
3.2
3.2
36.1
36.7
36.1
20.3
20.3 | Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV W' mass 5.1 TeV V' mass 3.5 TeV V' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV | $\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$ | ATLAS-CONF-2017-027
ATLAS-CONF-2017-050
1603.08791
ATLAS-CONF-2016-014
1706.04786
CERN-EP-2017-147
ATLAS-CONF-2017-055
1410.4103
1408.0886 | | CI | Cl qqqq
Cl ℓℓqq
Cl uutt | –
2 e, μ
2(SS)/≥3 e,μ | 2 j
-
≥1 b, ≥1 j | –
–
Yes | 37.0
36.1
20.3 | Λ
Λ
Λ 4.9 TeV | 21.8 TeV η_{LL}^- 40.1 TeV $\eta_{LL}^ C_{RR} =1$ | 1703.09217
ATLAS-CONF-2017-027
1504.04605 | | MQ | Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM) | 0 e, μ, 1 γ | $\begin{array}{c} 1 - 4 \ j \\ \leq 1 \ j \\ 1 \ J, \leq 1 \ j \end{array}$ | Yes
Yes
Yes | 36.1
36.1
3.2 | m _{med} 1.5 TeV m _{mcd} 1.2 TeV M. 700 GeV | $\begin{split} &g_q \!=\! 0.25, g_\chi \!=\! 1.0, m(\chi) < 400 \; \mathrm{GeV} \\ &g_q \!=\! 0.25, g_\chi \!=\! 1.0, m(\chi) < 480 \; \mathrm{GeV} \\ &m(\chi) < 150 \; \mathrm{GeV} \end{split}$ | ATLAS-CONF-2017-060
1704.03848
1608.02372 | | 70 | Scalar LQ 1 st gen
Scalar LQ 2 nd gen
Scalar LQ 3 rd gen | 2 e
2 μ
1 e, μ | ≥ 2 j
≥ 2 j
≥1 b, ≥3 j | -
-
Yes | 3.2
3.2
20.3 | LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV | $eta=1 \ eta=1 \ eta=0$ | 1605.06035
1605.06035
1508.04735 | | Heavy quarks | $\begin{array}{l} \text{VLQ } TT \rightarrow Ht + X \\ \text{VLQ } TT \rightarrow Zt + X \\ \text{VLQ } TT \rightarrow Wb + X \\ \text{VLQ } BB \rightarrow Hb + X \\ \text{VLQ } BB \rightarrow Zb + X \\ \text{VLQ } BB \rightarrow Wt + X \\ \text{VLQ } QQ \rightarrow WqWq \\ \end{array}$ | 0 or 1 e, μ \geq 1 e, μ \geq 1 e, μ \geq 2/ \geq 3 e, μ 1 e, μ \geq 1 e, μ \geq 1 e, μ | ≥ 1 b, ≥ 3 j
1 b, ≥ 1J/2
≥ 2 b, ≥ 3 j
≥2/≥1 b | Yes
2j Yes
Yes | 13.2
36.1
36.1
20.3
20.3
36.1
20.3 | T mass 1.2 TeV T mass 1.16 TeV T mass 1.35 TeV B mass 700 GeV B mass 790 GeV B mass 1.25 TeV Q mass 690 GeV | $\mathcal{B}(T \to Ht) = 1$ $\mathcal{B}(T \to Zt) = 1$ $\mathcal{B}(T \to Wb) = 1$ $\mathcal{B}(B \to Hb) = 1$ $\mathcal{B}(B \to Zb) = 1$ $\mathcal{B}(B \to Wt) = 1$ | ATLAS-CONF-2016-104
1705.10751
CERN-EP-2017-094
1505.04306
1409.5500
CERN-EP-2017-094
1509.04261 | | Excited | Excited quark $q^* othe qg$
Excited quark $q^* othe q\gamma$
Excited quark $b^* othe bg$
Excited quark $b^* othe Wt$
Excited lepton ℓ^*
Excited lepton ν^* | -
1 γ
-
1 or 2 e, μ
3 e, μ
3 e, μ, τ | 2 j
1 j
1 b, 1 j
1 b, 2-0 j
– | -
-
Yes
- | 37.0
36.7
13.3
20.3
20.3
20.3 | q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.3 TeV b* mass 1.5 TeV \\$\tau^*\$ mass 3.0 TeV \\$\tau^*\$ mass 1.6 TeV | only u^* and d^* , $\Lambda=m(q^*)$ only u^* and d^* , $\Lambda=m(q^*)$ $f_{\bf g}=f_{\rm L}=f_{\cal R}=1$ $\Lambda=3.0~{\rm TeV}$ $\Lambda=1.6~{\rm TeV}$ | 1703.09127
CERN-EP-2017-148
ATLAS-CONF-2016-060
1510.02664
1411.2921
1411.2921 | | Other | LRSM Majorana ν Higgs triplet $H^{\pm\pm} \to \ell\ell$ Higgs triplet $H^{\pm\pm} \to \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles | 2 e, μ
2,3,4 e, μ (SS)
3 e, μ, τ
1 e, μ
-
-
-
S = 8 TeV | 2 j
-
1 b
-
-
√s = 13 | -
-
Yes
-
- | 20.3
36.1
20.3
20.3
20.3
7.0 | Nº mass H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass multi-charged particle mass 785 GeV monopole mass 1.34 TeV | $m(W_R)=2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell \tau)=1$ $a_{\mathrm{non-res}}=0.2$ DY production, $ q =5e$ DY production, $ g =1g_D$, spin $1/2$ | 1506.06020
ATLAS-CONF-2017-053
1411.2921
1410.5404
1504.04188
1509.08059 | ^{*}Only a selection of the available mass limits on new states or phenomena is shown. [†]Small-radius (large-radius) jets are denoted by the letter j (J). # Looking ahead - After the 8→13 TeV energy increase, no obvious new physics at high masses has been discovered so far - → More luminosity will not add a huge sensitivity improvement for the straightforward high-mass searches - Looking beyond means new techniques, new ideas, and increased precision in the Standard Model measurements to look for deviations https://hilumilhc.web.cern.ch/about/hl-lhc-project INNER DETECTOR # Looking Ahead - TCC jets - Track-CaloCluster for jet substructure - Correlates low-level objects (tracks, calorimeter energy deposits) before running jet algorithms - Different to ATLAS Particle Flow approach, which subtracts charged hadrons energy deposits - Improved resolution for substructure variables ## Summary and Outlook - Wide programme of searches for high mass resonances at ATLAS - Probe beyond the Standard Model frontiers at multi-TeV scale - Many more exciting analysis not covered here, please check the ATLAS public pages - Even higher masses and lower couplings to be probed by the end of Run 2 - **⇒** Expected luminosity ~120 fb⁻¹ at 13 TeV centre-of-mass energy - Improvements in object reconstruction (TCC jets, new b-tag algorithms,...) and analysis techniques (machine learning, reweighting,...) - Stay tuned for what the next years are going to unveil!