Evidence for Higgs boson production in association with a top quark pair

Arthur Chomont (LAL) On behalf of the ATLAS collaboration

DIS 2018

April 17th 2018

Introduction : $t\bar{t}H$ at LHC

- Top Yukawa coupling is the largest coupling of Higgs boson to fermion and a key parameter of SM
 - $y_t = \sqrt{2} * m_t / v \simeq 1$
 - Sensitive to BSM physics
- Indirectly obtained through measurement of top quark mass
- Indirectly observed through SM Higgs decaying in two photons and production of Higgs by gluon-gluon fusion
- Direct measurement possible through $t\bar{t}H$ production
 - Tree-level process
 - Run 1 results ATLAS+CMS: $\mu_{t\bar{t}H} = \sigma_{meas}/\sigma_{SM} = 2.3^{+0.7}_{-0.6}$

Arthur Chomont, DIS, 17/04/18

$t\bar{t}H$ experimental signature

Higgs Decay

- Possible final states
 - $H \rightarrow b\bar{b}$: 4b + 2W \rightarrow 1712.08895 (submitted to Phys.Rev.D.)
 - $H \rightarrow WW, \tau\tau, ZZ$: 2b + multileptons
 - In case of resonant $(H
 ightarrow ZZ
 ightarrow 4\ell)
 ightarrow$ 1712.02304 (submitted to JHEP)
 - Other final states \rightarrow 1712.08891 (submitted to Phys.Rev.D.)
 - $\blacktriangleright~~H
 ightarrow \gamma\gamma$: 2b $+~2\gamma$ ightarrow 1802.04146 (submitted to Phys.Rev.D.)

• The combination of all the final states will also be described \rightarrow 1712.08891 (submitted to Phys.Rev.D.)

$tar{t}H~(H ightarrow bar{b})$: Classification and analysis strategy

- Final state with largest BR from Higgs but with very large background contribution (*tt* +jets)
- Categorisation based on number of leptons, jets and b-tagged jets (using 4 b-tagging working points)
 - For both single lepton and dilepton final states → control regions used in the fit to constrain background modelling
 - One boosted category with single lepton included
- Strategy of analysis \rightarrow Classification BDT using intermediate MVA classifiers in Signal Regions:
 - Reconstruction BDT: reconstruct Higgs and top candidates
 - Likelihood and Matrix Element: classify signal vs background events

Arthur Chomont, DIS, 17/04/18

$t\bar{t}H (H ightarrow b\bar{b})$: Background modelling

- $t\overline{t}$ +jets is the main background
 - 85% to 95% of the background in the different regions
 - Control Regions enriched in either $t\bar{t} +\geq 1b$, $t\bar{t} +\geq 1c$, $t\bar{t} + \text{light to improve modelling}$
- Nominal tt
 +jets sample simulated at NLO with Powheg+Pythia8
 - tt +≥ 1b: relative contribution of each sub-component reweighted to predictions by Sherpa+OpenLoops (NLO, 4-flavour scheme)
 - Split by number of b and c jets based on additional b/c hadrons in the event
- Normalisation of tt +HF free-floating in fit (one normalisation for tt+>=1b and tt+>=1c)
- Systematics on $t\bar{t} + \geq 1b$ from comparisons with alternative simulations quite large

5/13

Arthur Chomont, DIS, 17/04/18

$t\bar{t}H (H \rightarrow b\bar{b})$: Results

- Final fit done on:
 - classification BDT output in SRs
 - ► H_T^{had} in tt̄ +(≥ 1c) CRs in 1ℓ channel, event yields in other CRs
- Normalisation factors on $t\bar{t} + HF$:
 - $t\bar{t} + (\geq 1b)$: 1.24 ± 0.10
 - $t\bar{t} + (\geq 1c)$: 1.63 ± 0.23
- Observed (expected) sensitivity at 1.4 (1.6)σ over SM background

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \ge 1b \mod{ling}$	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
$t\bar{t} + \ge 1c \mod$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + \text{light modeling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \ge 1b$ normalization	+0.09	-0.10
$t\bar{t} + \ge 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

Arthur Chomont, DIS, 17/04/18

$t\bar{t}H(multileptons)$: Classification and analysis strategy

- Target Higgs decays to WW, ZZ and ττ through leptonic final states
 - Less signal than in ttH (H→ bb) final states but less background contamination
- Categories defined following number, charge and flavour of the charged leptons
 - Target different decays of the Higgs
 - With additional requirements on number of light and b-tagged jets to reject VV and V+jets backgrounds
- Strategy:
 - MVA in lepton definitions to reject non-prompt and charge mis-id backgrounds
 - Event classified in the different regions using MVA (except 3ℓ + 1τ)

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS+1\tau_{had}$	$3\ell+1\tau_{had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$t\bar{t}Z$ / -	$t\bar{t}$	all	$t\bar{t}$	-
Discriminant	$2 \times 1D BDT$	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1 / 1	2	2	10	1
Control regions	-	4	-	-	-	-	-

$t\bar{t}H(multileptons)$: Background estimation

- Irreducible backgrounds: mostly ttV with prompt leptons
 - Estimated from MC and validated in CRs (in 3ℓ category)
- Reducible background: $t\bar{t}$ events with
 - mis-reconstructed leptons
 - Estimated through different data-driven methods
 - Non-prompt light leptons: originated from b-hadrons decay or photon conversion
 - q mis-id electrons: due to high p_T electrons or trident process

ttH(*multileptons*) : Results

- Observed (expected) significance at 4.1 (2.8)
 σ over SM background
- Alternative fit with free floating normalisation for tīV
 - Same central µ value for signal (degradation in sensitivity)
 - $\mu_{ttZ} = 1.17^{+0.25}_{-0.22}$ and $\mu_{ttW} = 0.92 \pm 0.32$

• Measured cross-section at $\sigma_{t\bar{t}H} = 790^{+230}_{-210}$ fb (expected: 507^{+35}_{-50} fb)

Uncertainty Source	$\Delta \mu$	
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Non-prompt light-lepton estimates	+0.15	-0.13
Jet flavor tagging and τ_{had} identification	+0.11	-0.09
$t\bar{t}W$ modeling	+0.10	-0.09
$t\bar{t}Z$ modeling	+0.08	-0.07
Other background modeling	+0.08	-0.07
Luminosity	+0.08	-0.06
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04
Fake τ_{had} estimates	+0.07	-0.07
Other experimental uncertainties	+0.05	-0.04
Simulation sample size	+0.04	-0.04
Charge misassignment	+0.01	-0.01
Total systematic uncertainty	+0.39	-0.30

Best-fit µ for m_H=125 GeV

$t\bar{t}H (H \rightarrow ZZ * \rightarrow 4\ell)$

- Rare decay but with very small background
- Higgs boson candidate with $118 < m_{4\ell} < 129$ GeV
- Additional requirement:
 - ► ≥ 1b-tagged jet
 - \geq 4 jets or \geq 2jet and 1 more lepton

• 0.4 $t\bar{t}H$ event and 0.08 background event expected and 0 data event observed

● µ < 1.9 (68% CL)

$t\bar{t}H (H \rightarrow \gamma\gamma)$

- Very rare decay but very pure signal
- Categories following number of leptons
 - \blacktriangleright $\geq 1\ell$, at least 2 jets and 1 b-tagged jet
 - 0 lepton, at least 3 jets and 1 b-tagged jet + BDT
- $t\bar{t}H$, tHq and WtH fitted together

• $\mu = 0.5 \pm 0.6$

Combination

- Combination of all previous final states
- Assumptions
 - tHqb, WtH treated as background (fixed to SM expectations within theory uncertainties)
 - BR of Higgs decay fixed to SM values
- Cross-section measured: 590⁺¹⁶⁰₋₁₅₀ fb (expected: 507⁺³⁵₋₅₀ fb)
- Observed (expected) significance:
 4.2 (3.8)σ

Channel	Best-fit μ		Significance	
	Observed	Expected	Observed	Expected
Multilepton	$1.6 \ ^{+0.5}_{-0.4}$	$1.0 \ ^{+0.4}_{-0.4}$	4.1σ	2.8σ
$H \rightarrow b \bar{b}$	$0.8 \ ^{+0.6}_{-0.6}$	$1.0 \ ^{+0.6}_{-0.6}$	1.4σ	1.6σ
$H \rightarrow \gamma \gamma$	$0.6 \ ^{+0.7}_{-0.6}$	$1.0 \ ^{+0.8}_{-0.6}$	0.9σ	1.7σ
$H\to 4\ell$	< 1.9	$1.0 \ ^{+3.2}_{-1.0}$		0.6σ
Combined	$1.2 \ ^{+0.3}_{-0.3}$	$1.0 \ ^{+0.3}_{-0.3}$	4.2σ	3.8σ

Uncertainty Source	$\Delta \mu$	
$t\bar{t}$ modeling in $H \rightarrow b\bar{b}$ analysis	+0.15	-0.14
$t\bar{t}H$ modeling (cross section)	+0.13	-0.06
Non-prompt light-lepton and fake τ_{had} estimates	+0.09	-0.09
Simulation statistics	+0.08	-0.08
Jet energy scale and resolution	+0.08	-0.07
$t\bar{t}V$ modeling	+0.07	-0.07
$t\bar{t}H$ modeling (acceptance)	+0.07	-0.04
Other non-Higgs boson backgrounds	+0.06	-0.05
Other experimental uncertainties	+0.05	-0.05
Luminosity	+0.05	-0.04
Jet flavor tagging	+0.03	-0.02
Modeling of other Higgs boson production modes	+0.01	-0.01
Total systematic uncertainty	+0.27	-0.23
Statistical uncertainty	+0.19	-0.19
Total uncertainty	+0.34	-0.30
		12/

Conclusion

- Evidence in the $t\bar{t}H$ search at ATLAS with $36.1 fb^{-1}$ at 4.2σ (3.8 σ expected)
 - Heavy use of MVA significantly improve sensitivity of the analysis
 - Still large uncertainties on modelling and some irreducible backgrounds such as tīV and tī +HF
- Measured cross-section: 590^{+160}_{-150} fb (expected: 507^{+35}_{-50} fb)
- Still some final states statistically limited such $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$ will significantly improve with 2017 data
- Increase in luminosity will also help in background modelling to reduce systematic uncertainties for the other final states (non-prompt estimates in multilepton channel ...)

Backup

Variable	Definition	$SR_{1,2,3}^{\ge 6j}$	$SR_{1,2}^{5j}$		
General kinematic variables					
ΔR_{bb}^{org}	Average ΔR for all b-tagged jet pairs	×	√		
$\Delta R_{bb}^{\max p_T}$	ΔR between the two b-tagged jets with the largest vector sum $p_{\rm T}$	1			
$\Delta \eta_{jj}^{max}$	Maximum $\Delta \eta$ between any two jets	1			
$m_{bb}^{\min \ \Delta R}$	Mass of the combination of two b tagged jets with the smallest ΔR	× -			
$m_{jj}^{\min \Delta R}$	Mass of the combination of any two jets with the smallest ΔR		~		
$N_{66}^{\rm Higgs~30}$	Number of b-tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	× .	~		
$H_{\rm T}^{\rm had}$	Scalar sum of jet p_T		1		
$\Delta R_{c,ub}^{min}$	ΔR between the lepton and the combination of the two b-tagged jets with the smallest ΔR		~		
Aplanarity	$1.5\lambda_2,$ where λ_2 is the second eigenvalue of the momentum tensor [100] built with all jets	~	~		
H_1	Second Fox–Wolfram moment computed using all jets and the lepton	×	√		
Variables from	reconstruction BDT				
BDT output	Output of the reconstruction BDT	<	×*		
m ^{Higgs}	Higgs candidate mass	1	~		
m _{H,biop, top}	Mass of Higgs candidate and b-jet from leptonic top candidate	1			
$\Delta R_{16}^{\text{Higgs}}$	ΔR between <i>b</i> -jets from the Higgs candidate	1	~		
$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	×*	×*		
$\Delta R_{H, \text{lep-top}}$	ΔR between Higgs candidate and leptonic top candidate	1			
$\Delta R_{H,b_{\text{hool top}}}$	ΔR between Higgs candidate and $b\text{-jet}$ from hadronic top candidate		\checkmark		
Variables from	likelihood and matrix element method calculations				
LHD	Likelihood discriminant	×	4		
MEM _{D1}	Matrix element discriminant (in $SR_1^{\geq 6j}$ only)	× -			
Variables from	i b-tagging (not in SR ^{≥6} ₁)				
$w_{b-\log}^{Higgs}$	Sum of b-tagging discriminants of jets from best Higgs candidate from the reconstruction BDT	1	1		
B_{jet}^3	3 rd largest jet b-tagging discriminant	1	<		
B_{jet}^4	4 th largest jet b-tagging discriminant	1			
B_{int}^5	5 th largest jet b-tagging discriminant	× -	1		

Variable	Definition	$\mathrm{SR}_1^{\geq 4j}$	$\mathrm{SR}_2^{\geq 4j}$	$\mathrm{SR}_3^{\geq 4j}$		
General kinematic variables						
m_{bb}^{\min}	Minimum invariant mass of a b-tagged jet pair	1	~	-		
m_{bb}^{max}	Maximum invariant mass of a b-tagged jet pair	-	-	~		
$m_{bb}^{\min} \Delta R$	Invariant mass of the b-tagged jet pair with minimum ΔR	1	-	~		
mina pr	Invariant mass of the jet pair with maximum p_{T}	~	-	-		
mins PT	Invariant mass of the b-tagged jet pair with maximum $p_{\rm T}$	~	-	~		
$\Delta \eta_{bb}^{avg}$	Average $\Delta \eta$ for all b-tagged jet pairs	~	~	~		
$\Delta \eta_{\ell,j}^{max}$	Maximum $\Delta \eta$ between a jet and a lepton	-	~	~		
$\Delta R_{bb}^{max\ p_T}$	ΔR between the b-tagged jet pair with maximum p_T		~	~		
$N_{bb}^{ m Higgs \ 30}$	Number of b-tagged jet pairs with invariant mass within 30 GeV of the Higgs-boson mass	~	~	-		
$n_{jets}^{p_T>40}$	Number of jets with $p_T > 40 \text{ GeV}$	-	~	~		
${\rm Aplanarity}_{\rm b,jet}$	$1.5\lambda_2,$ where λ_2 is the second eigenvalue of the momentum tensor [100] built with all b-tagged jets		~	-		
$H_{\rm T}^{\rm all}$	Scalar sum of $p_{\rm T}$ of all jets and leptons			~		
Variables from	reconstruction BDT					
BDT output	Output of the reconstruction BDT	1.00	<**	×		
m_{bb}^{Higgs}	Higgs candidate mass	1	-	~		
$\Delta R_{H,t\bar{t}}$	ΔR between Higgs candidate and $t\bar{t}$ candidate system	\sim	-	-		
$\Delta R_{B,\ell}^{\min}$	Minimum ΔR between Higgs candidate and lepton	~	~	~		
$\Delta R_{B,b}^{\min}$	Minimum ΔR between Higgs candidate and b-jet from top	~	~	-		
$\Delta R_{H,b}^{\max}$	Maximum ΔR between Higgs candidate and $b\text{-jet}$ from top		~	-		
$\Delta R_{bb}^{\rm Higgs}$	ΔR between the two jets matched to the Higgs candidate		~	-		
Variables from b-tagging						
$w_{b-t.ng}^{Higgs}$	Sum of b-tagging discriminants of jets from best Higgs can- didate from the reconstruction BDT	-	~	-		

ttH multilepton: BDT output

ATLAS

3/ SB

Post-Fit

25

vs = 13 TeV. 36.1

∎ tiH

tīΖ

Non-prompt

/// Uncertainty

0.8 0.9

BDT output

RDT output

Data

TTW

Other

Diboson

--- Pre-Fit Bkad

ttH multilepton

Channel	Selection criteria
Common	$N_{\text{icts}} \ge 2$ and $N_{b\text{-icts}} \ge 1$
2 <i>ℓ</i> SS	Two very tight light leptons with $p_T > 20$ GeV
	Same-charge light leptons
	Zero medium τ_{had} candidates
	$N_{\text{jets}} \ge 4$ and $N_{b\text{-jets}} < 3$
3.6	Three light leptons with $p_T > 10$ GeV; sum of light-lepton charges ± 1
	Two same-charge leptons must be very tight and have $p_T > 15 \text{ GeV}$
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
	Zero medium τ_{had} candidates
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
4ℓ	Four light leptons; sum of light-lepton charges 0
	Third and fourth leading leptons must be tight
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)
$1\ell + 2\tau_{had}$	One tight light lepton with $p_T > 27$ GeV
	Two medium η_{ind} candidates of opposite charge, at least one being tight
	$N_{jets} \ge 3$
$2\ell SS + 1\tau_{had}$	Two very tight light leptons with $p_T > 15$ GeV
	Same-charge light leptons
	One medium τ_{had} candidate, with charge opposite to that of the light leptons
	$N_{jets} \ge 4$
	m(ee) - 91.2 GeV > 10 GeV for ee events
$200S \pm 17_{had}$	Two loose and isolated light leptons with $p_T > 25$, 15 GeV
	One medium 7 _{had} candidate
	Opposite-charge light leptons
	Une medium η_{hed} candidate $\omega(f(\tau) > 10 \text{ GeV} = 10 \text{ GeV})$ at a GeV $z > 10 \text{ GeV}$ for the SDOC science
	m(v v) > 12 GeV and $pn(v v) = 91.2$ GeV $ > 10$ GeV for the SPOC pair N = > 9
26:1-	$\beta_{jets} \ge 0$ 26 coloridad anomala
JCT L'hod	or sciencion, except.
	the medium π_{-} , condidate with charge ennegite to the total charge of the light leptons
	One medium τ_{had} candidate, with charge opposite to the total charge of the light leptons. The two same charge light leptons must be tight and have $n_{\pi} > 10 \text{ GeV}$.

ttH multilepton

Systematic uncertainty	Type	Components
Luminosity	N	1
Pileup reweighting	SN	1
Physics Objects		
Electron	SN	6
Muon	SN	15
Thad	SN	10
Jet energy scale and resolution	SN	28
Jet vertex fraction	SN	1
Jet flavor tagging	SN	126
E_{T}^{miss}	SN	3
Total (Experimental)		191
Data-driven non-prompt/fake leptons and charge misassignment		
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	N	5
γ-conversion fraction	N	5
Fake τ_{had} estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)		83
ttH modeling		
Cross section	N	2
Renormalization and factorization scales	s	3
Parton shower and hadronization model	SN	1
Higgs boson branching fraction	N	4
Shower tune	SN	1
tW modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
tīZ modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
Other background modeling		
Cross section	N	15
Shower tune	SN	1
Total (Signal and background modeling)	-	41
Total (Overall)		315

Combination

 Different acceptances following Hggs decays in mutilepton channels allow for independent μ fit for each Higgs decay

Combination

