





1

# Measurements and searches of Higgs boson decays to two fermions

#### Carlo Schiavi (Università degli Studi di Genova & INFN Genova)

for the ATLAS Collaboration



## What We Talk About when we talk about Higgs to fermions



Higgs decays to pairs of fermions allow to test Standard Model Yukawa couplings and are characterised by very different branching ratios, ranging over four orders of magnitude!



Each decay mode also corresponds to very different experimental challenges, e.g.:

- beauty pairs are submerged in direct beauty quark pair production
- tau pairs require very good hadronic decay identification and leptonic decay reconstruction
- muon pairs have a clean signature, but are very rare
- charm pairs suffer from backgrounds as for beauty, but are more difficult to identify



## What We Talk About

when we talk about Higgs to fermions



Searches for these decays require to push to the limit the performance of all detectors and of combined reconstruction in different areas



Requires triggering and tracking with the Muon **Spectrometer**, inner tracking and isolation information

### ${ m H} ightarrow { m b} { m b} { m H} ightarrow { m c} { m ar c}$

Based on track and vertex reconstruction in the Inner **Detector**, to perform jet b/c flavour tagging even in very dense environments

 $\mathbf{H} \to \tau^+ \tau^-$ 

Uses both Inner Detector and Calorimeters, to identify hadronic tau decays and reconstruct leptonic decays (e.g. electron identification)



## What We Talk About

when we talk about Higgs to fermions



Yet another difference between Higgs measurements is the production channel under study



**Gluon fusion (ggF)** Largest production rate, but no distinctive feature





Vector-Boson fusion (VBF) Distinct topology, two VBF jets and low central activity, allows effective selection



Associated Vector Boson production (VH) Leptonic decays of the associated Vector Boson help triggering and selecting candidate events

### Associated top pair production

As the Higgs boson cannot decay to a top quark pair, this channel provides a **unique test of Higgs coupling to top quarks** Covered by Arthur Chomont (yesterday's morning session)





## Summary



ATLAS produced many results since Higgs boson discovery, in different production modes

| LEPTONIC FINAL STATES                                  |         |                     | QUARK FINAL STATES                              |        |                     |
|--------------------------------------------------------|---------|---------------------|-------------------------------------------------|--------|---------------------|
| <b>H→mumu</b><br>PRL 119 (2017) 051802                 | 13 TeV  | 36 fb <sup>-1</sup> | <b>VH, H→bb</b><br>JHEP 12 (2017) 024           | 13 TeV | 36 fb <sup>-1</sup> |
| <b>H→tautau</b><br>JHEP 04 (2015) 117                  | 7,8 TeV | 25 fb <sup>-1</sup> | <b>VBF H, H→bb</b><br>JHEP 11 (2016) 112        | 8 TeV  | 20 fb <sup>-1</sup> |
| <b>VH, H→tautau</b><br>PRD 93, 092005 (2016)           | 8 TeV   | 20 fb <sup>-1</sup> | <b>VBF H+gamma, H→bb</b><br>ATLAS-CONF-2016-063 | 13 TeV | 13 fb <sup>-1</sup> |
| <b>VBF H, H→tautau</b><br>Eur. Phys. J. C76 (2016) 658 | 8 TeV   | 20 fb <sup>-1</sup> | <b>ZH, H→cc</b><br>arXiv:1802.04329             | 13 TeV | 36 fb <sup>-1</sup> |



## Summary



ATLAS produced many results since Higgs boson discovery, in different production modes

| LEPTONIC FINAL STATES                                  |         |                     | QUARK FINAL STATES |                                                 |        |                     |
|--------------------------------------------------------|---------|---------------------|--------------------|-------------------------------------------------|--------|---------------------|
| <b>H→mumu</b><br>PRL 119 (2017) 051802                 | 13 TeV  | 36 fb <sup>-1</sup> |                    | <b>VH, H→bb</b><br>JHEP 12 (2017) 024           | 13 TeV | 36 fb <sup>-1</sup> |
| <b>H→tautau</b><br>JHEP 04 (2015) 117                  | 7,8 TeV | 25 fb <sup>-1</sup> |                    | <b>VBF H, H→bb</b><br>JHEP 11 (2016) 112        | 8 TeV  | 20 fb <sup>-1</sup> |
| <b>VH, H→tautau</b><br>PRD 93, 092005 (2016)           | 8 TeV   | 20 fb <sup>-1</sup> |                    | <b>VBF H+gamma, H→bb</b><br>ATLAS-CONF-2016-063 | 13 TeV | 13 fb <sup>-1</sup> |
| <b>VBF H, H→tautau</b><br>Eur. Phys. J. C76 (2016) 658 | 8 TeV   | 20 fb-1             |                    | <b>ZH, H→cc</b><br>arXiv:1802.04329             | 13 TeV | 36 fb <sup>-1</sup> |

This talk will focus on most recent results and, additionally, on





## Search for $H \rightarrow \mu^+ \mu^-$ : analysis outline



This decay channel provides a **very clean signature**, with easy access to efficient triggers At the same time, signal is diluted in an **overwhelming background (mainly Drell-Yan)** 

 $10^{7}$ Events / 2 GeV  $ggF \times 100$ 🕂 Data **ATLAS** Drell-Yan - VBF × 100 10<sup>6</sup>  $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ бр  $-VH \times 100$ Diboson 10<sup>5</sup> 10<sup>4</sup> 10<sup>3</sup> 10<sup>2</sup> Data/MC 1.4 1.2 0.8 0.6 160 120 135 145 150 155 110 115 125 130 140 m<sub>uu</sub> [GeV]

No assumption is made a priori on production and topology

Opposite sign **isolated muons** selected, and invariant mass is required to fall in 110-160 GeV

Background modelled with Breit-Wigner convoluted with Gaussian (Z-peak) + exponentially falling continuum

A Boosted Decision Tree (BDT) is trained to separate the VBF contribution from ggF

**Eight categories** are defined, based on kinematics and BDT

## Search for $H \rightarrow \mu^+\mu^-$ : categories



For events containing **at least two jets**, two **high BDT score** categories are defined **Other events** categorised using **dimuon traverse momentum pT**<sup>µµ</sup> **and muon pseudorapidity** 



Best signal (S) to bkg (B) found for highest BDT (VBF) and non-central high-pT (ggF) categories

|                                       | S   | В     | $S/\sqrt{B}$ | FWHM            | Data  |
|---------------------------------------|-----|-------|--------------|-----------------|-------|
| Non-central high $p_{\rm T}^{\mu\mu}$ | 40  | 13000 | 0.35         | $7.7~{ m GeV}$  | 12829 |
| VBF tight                             | 3.4 | 78    | 0.38         | $7.5~{\rm GeV}$ | 79    |



## Search for $H \rightarrow \mu^+ \mu^-$ : results



After combined mass fits, **no significant excess is observed** within the analysed mass range **Signal strength definition**:  $\mu = \sigma x BR / \sigma_{SM} x BR_{SM}$ 



Mass fit for best category (stat. errors on data)

The analysis is limited by available statistics rather than systematics

#### 95% upper limits

Observed: 3.0 x SM Expected: 3.1 x SM Signal strength  $\mu$  = -0.1±1.5

95% upper limits combined with Run 1

Observed: 2.8 x SM Expected: 2.9 x SM Signal strength µ = -0.1±1.4

#### **Prospects**

Could reach 1 x SM combining with CMS results by the end of Run 2

# $\underbrace{\overset{https://arxiv.org/abs//1708-0028993299}{\textbf{Evidence for VH, H} \rightarrow bb: analysish @ Uterhere (b) analysish (b) Uterhere (b) analysish (b) Uterhere (b) analysish (b) Uterhere (b) analysish (b) anal$

Associated VH production is the most sensitive probe of Higgs decays to beauty quark pairs Subdivided in three analysis channels, depending on vector boson decay modes



Н

Triggered by missing transverse energy (MET) or single leptons Main bkg from **Z + Heavy Flavour**, **W + Heavy Flavour**, **top pairs** is taken from simulation In all cases **2 b-tagged jets required** out of 2/3 jets (0,1-lepton), 2/≥3 jets (2-lepton)

# **Evidence for VH, H \rightarrow bb: categories**



For each lepton-number, a **BDT is trained using event kinematics, to be used as discriminant** Based on lepton-number, jet multiplicity and vector boson  $p_T$ , **8 signal categories are defined** 



In addition, **6 control regions are defined**, among which:

1-lepton control region used to constrain W+HF background

2-lepton (electron+muon) control region used to constrain top pair background

#### A simultaneous maximum likelihood fit to signal categories and control regions is performed

The fit extracts, at the same time, the signal strength and the **normalisations of the largest backgrounds (top pairs and Z/W+HF)** 

# **Evidence for VH, H \rightarrow bb: results**



#### Fit results are compared for each lepton-number category and separately for ZH and WH



Results are found to be **compatible with each other and with SM expectations** 

SignificanceObserved:  $3.5 \sigma$ Expected:  $3.0 \sigma$ Significance combined with Run 1Observed:  $3.6 \sigma$ Expected:  $4.0 \sigma$ 

Evidence for  $H \rightarrow bb$  decays!

Uncertainty is dominated by systematicsLeading contributions (in terms of  $\sigma_{\mu}$ )signal modelling0.17statistics in MC0.13b-tagging0.11

Driven by theory uncertainties: needs external input Under experimental control: can be improved within ATLAS

# **Evidence for VH, H \rightarrow bb: crosschecks**



#### The VZ, $Z \rightarrow bb$ data sample is used to validate the analysis procedure



Result is compatible with already measured SM WZ and ZZ production within  $1\sigma$  Observed significance:  $5.8\sigma$ 

Results compared with **cut-based analysis**, which also **adopts invariant mass as main discriminant** 





## Search for ZH, $H \rightarrow cc$



Most challenging decay channel presented here; **suffers from large backgrounds** and relies on the **subtle discrimination of charm jets** from light and beauty jets

Analysis focuses on **Z decays to two leptons** 

Data divided in four categories: Z  $p_T$  and number of c-tags

## Dijet invariant mass used as discriminating variable

#### Simultaneous fit in all categories, extracting signal yield and Z+jets normalisation

| Source                            | $\sigma/\sigma_{\rm tot}$ |
|-----------------------------------|---------------------------|
| Statistical                       | 49%                       |
| Floating $Z + jets$ normalization | 31%                       |
| Systematic                        | 87%                       |
| Flavor tagging                    | 73%                       |
| Background modeling               | 47%                       |
| Lepton, jet and luminosity        | 28%                       |
| Signal modeling                   | 28%                       |
| MC statistical                    | 6%                        |

**95% upper limits** Observed: 110 x SM Expected: 150 x SM



14



## Search for Z/H $\rightarrow \phi/\rho$ +gamma



**Not a direct measurement** of fermionic Higgs decays, but **sensitive to light quarks coupling**; requires a much larger dataset than the currently available one



| Branching Fraction Limit ( $95\%$ CL)                                                              | Expected            | Observed |          |
|----------------------------------------------------------------------------------------------------|---------------------|----------|----------|
| $\mathcal{B}\left(H\to\phi\gamma\right)\left[\ 10^{-4}\ \right]$                                   | $4.2^{+1.8}_{-1.2}$ | 4.8      | 208 x SM |
| $\mathcal{B}(Z \to \phi \gamma) \left[ 10^{-6} \right]$                                            | $1.3^{+0.6}_{-0.4}$ | 0.9      | 87 x SM  |
| $\mathcal{B}\left(H\to\rho\gamma\right)\left[\ 10^{-4}\ \right]$                                   | $8.4^{+4.1}_{-2.4}$ | 8.8      | 52 x SM  |
| $\mathcal{B}\left(Z\to\rho\gamma\right)\left[\ 10^{-6}\ \right]$                                   | $33^{+13}_{-9}$     | 25       | 597 x SM |
| $\mathcal{B}\left(Z \to \rho \gamma\right) \left[ \begin{array}{c} 10 & \circ \end{array} \right]$ | $33_{-9}^{+10}$     | 25       |          |

#### Main backgrounds:

gamma+jets and dijets

**Data-driven background** estimate generated from control regions

**Bkg normalisation and shape** extracted from fit to data





## CONCLUSIONS



Many results on fermionic decays of the Higgs boson, based on 7, 8, 13 TeV data published by ATLAS

Actually much more material than what can fit in this talk! Focus has been given to Run 2 results with data recorded at 13 TeV

Thanks to the continuous effort put in flavour tagging performance and calibration, ATLAS assessed evidence for  $H \rightarrow bb$  decays, which is likely to become an observation with the full Run 2 dataset!

One more search is possibly within reach for Run 2, combining all LHC data: this is the case of the search for  $2^{nd}$  generation leptons via  $H \rightarrow \mu^+ \mu^-$  decays

Other searches will require high luminosity LHC data to be accessible:

- first inclusive search for  $H \rightarrow cc$
- search for decays to elusive  $1^{st}/2^{nd}$  generation quarks  $H \rightarrow \phi/\rho$ +gamma

Rapidly increasing LHC dataset will further enhance our knowledge of the fermionic Higgs decays



### Extra info - $H \rightarrow \mu^+ \mu^-$

For jet-

related variables, only the two jets with highest  $p_T$  are considered, with the leading (subleading) jet denoted by  $j_1(j_2)$ . Among those variables, the most sensitive ones are dijet invariant mass  $(m_{jj})$ ,  $p_T^{\mu\mu}$ , difference in pseudorapidity  $\Delta \eta_{jj}$ , and angular distance  $\Delta R_{jj}$  between the two jets.

Other variables with less discriminating power include transverse momentum of the dijet system  $(p_T^{jj})$ ,  $E_T^{\text{miss}}$ , scalar  $p_T$  sum of muons and jets  $(S_T)$ ,  $p_T$  of the system containing two muons and one or two jets  $(p_T^{\mu\mu j_1}, p_T^{\mu\mu j_2}, \text{ and } p_T^{\mu\mu jj})$ , rapidity difference between the dimuon system and the jets  $(\Delta y_{\mu\mu,j_1}, \Delta y_{\mu\mu,j_2}, \text{ and } \Delta y_{\mu\mu,jj})$ , and "centrality", defined as the difference between the dimuon rapidity and the averaged jet rapidity divided by the absolute rapidity difference between  $j_1$  and  $j_2$ .

## Extra info - $H \rightarrow \mu^+ \mu^-$

|                                           | S   | В     | $S/\sqrt{B}$ | FWHM               | Data  |
|-------------------------------------------|-----|-------|--------------|--------------------|-------|
| Central low $p_{\rm T}^{\mu\mu}$          | 11  | 8000  | 0.12         | $5.6 \mathrm{GeV}$ | 7885  |
| Non-central low $p_{\rm T}^{\mu\mu}$      | 32  | 38000 | 0.16         | $7.0 \mathrm{GeV}$ | 38777 |
| Central medium $p_{\rm T}^{\bar{\mu}\mu}$ | 23  | 6400  | 0.29         | $5.7  {\rm GeV}$   | 6585  |
| Non-central medium $p_{\rm T}^{\mu\mu}$   | 66  | 31000 | 0.37         | $7.1~{\rm GeV}$    | 31291 |
| Central high $p_{\rm T}^{\mu\mu}$         | 16  | 3300  | 0.28         | $6.3~{ m GeV}$     | 3160  |
| Non-central high $p_{\rm T}^{\mu\mu}$     | 40  | 13000 | 0.35         | $7.7~{ m GeV}$     | 12829 |
| VBF loose                                 | 3.4 | 260   | 0.21         | $7.6 \mathrm{GeV}$ | 274   |
| VBF tight                                 | 3.4 | 78    | 0.38         | $7.5 \mathrm{GeV}$ | 79    |

| Process                                                      | ME generator               | ME PDF                                           | PS and               | UE model              | Cross-section ace2.5cm         |
|--------------------------------------------------------------|----------------------------|--------------------------------------------------|----------------------|-----------------------|--------------------------------|
|                                                              |                            |                                                  | Hadronisation        | $\operatorname{tune}$ | order                          |
| Signal                                                       |                            |                                                  |                      |                       |                                |
| $qq \rightarrow WH$                                          | Powheg-Box v2 $[19] +$     | NNPDF3.0NLO <sup>(<math>\star</math>)</sup> [20] | Рутніа8.212 [13]     | AZNLO [21]            | NNLO(QCD)+                     |
| $ ightarrow \ell  u b \overline{b}$                          | GoSAM [22] + MINLO [23,24] |                                                  |                      |                       | NLO(EW) [25,26,27,28,29,30,31] |
| $qq \rightarrow ZH$                                          | Powheg-Box v2 $+$          | NNPDF3.0NLO $(\star)$                            | Pythia8.212          | AZNLO                 | $NNLO(QCD)^{(\dagger)} +$      |
| $ ightarrow  u  u b ar{b}/\ell\ell b ar{b}$                  | GoSAM + MINLO              |                                                  |                      |                       | NLO(EW)                        |
| $gg \to ZH$                                                  | Powheg-Box v2              | NNPDF3.0NLO $^{(\star)}$                         | Pythia8.212          | AZNLO                 | NLO+                           |
| $ ightarrow  u  u b \overline{b} / \ell \ell b \overline{b}$ |                            |                                                  |                      |                       | NLL [32,33,34,35,36]           |
| Top quark                                                    |                            |                                                  |                      |                       |                                |
| $t ar{t}$                                                    | Powheg-Box v2 [37]         | NNPDF3.0NLO                                      | Pythia8.212          | A14 [38]              | NNLO+NNLL [39]                 |
| s-channel                                                    | Powheg-Box v1 [40]         | CT10 [41]                                        | Pythia6.428 [42]     | P2012 [43]            | NLO [44]                       |
| t-channel                                                    | Powheg-Box v1 [40]         | CT10f4                                           | Pythia6.428          | P2012                 | NLO [45]                       |
| Wt                                                           | Powheg-Box v1 [46]         | CT10                                             | Рутніа6.428          | P2012                 | NLO [47]                       |
| Vector boson + jet                                           | S                          |                                                  |                      |                       |                                |
| $W \to \ell \nu$                                             | Sherpa 2.2.1 [16,48,49]    | NNPDF3.0NNLO                                     | Sherpa 2.2.1 [50,51] | Default               | NNLO [52]                      |
| $Z/\gamma^* 	o \ell\ell$                                     | Sherpa 2.2.1               | NNPDF3.0NNLO                                     | Sherpa 2.2.1         | Default               | NNLO                           |
| $Z \rightarrow \nu \nu$                                      | Sherpa 2.2.1               | NNPDF3.0NNLO                                     | Sherpa 2.2.1         | Default               | NNLO                           |
| Diboson                                                      |                            |                                                  |                      |                       |                                |
| WW                                                           | Sherpa 2.1.1               | CT10                                             | Sherpa 2.1.1         | Default               | NLO                            |
| WZ                                                           | Sherpa 2.2.1               | NNPDF3.0NNLO                                     | Sherpa 2.2.1         | Default               | NLO                            |
| ZZ                                                           | Sherpa 2.2.1               | NNPDF3.0NNLO                                     | Sherpa 2.2.1         | Default               | NLO                            |

| Selection                                                                                 | 0-lepton                                                       | 1-lepton                              |                                    | 2-lepton                                          |  |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|------------------------------------|---------------------------------------------------|--|--|
|                                                                                           | 1                                                              | e sub-channel                         | $\mu$ sub-channel                  | 1                                                 |  |  |
| Trigger                                                                                   | $E_{\mathrm{T}}^{\mathrm{miss}}$                               | Single lepton                         | $E_{\mathrm{T}}^{\mathrm{miss}}$   | Single lepton                                     |  |  |
| Leptons                                                                                   | 0 loose leptons                                                | 1 tight electron                      | 1 medium muon                      | 2 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$   |  |  |
|                                                                                           | with $p_{\rm T} > 7 {\rm ~GeV}$                                | $p_{\rm T} > 27 { m ~GeV}$            | $p_{\rm T} > 25 { m ~GeV}$         | $\geq 1$ lepton with $p_{\rm T} > 27 { m GeV}$    |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                                                          | $> 150 { m ~GeV}$                                              | $> 30 { m GeV}$                       | _                                  | _                                                 |  |  |
| $m_{\ell\ell}$                                                                            | _                                                              |                                       | _                                  | $81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$ |  |  |
| Jets                                                                                      | Exactly                                                        | 2 or 3 jets                           |                                    | Exactly 2 or $\geq 3$ jets                        |  |  |
| Jet $p_{\rm T}$                                                                           | $> 20 { m ~GeV}$                                               |                                       |                                    |                                                   |  |  |
| b-jets                                                                                    | Exactly 2 $b$ -tagged jets                                     |                                       |                                    |                                                   |  |  |
| Leading <i>b</i> -tagged jet $p_{\rm T}$                                                  |                                                                | >                                     | $\cdot$ 45 GeV                     |                                                   |  |  |
| H <sub>T</sub>                                                                            | > 120 (2  jets), > 150  GeV (3  jets)                          |                                       | _                                  | _                                                 |  |  |
| $\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$                  | $> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$ |                                       | _                                  | _                                                 |  |  |
| $\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{bb})$                                 | $> 120^{\circ}$                                                |                                       | _                                  | _                                                 |  |  |
| $\Delta \phi(ec{b}_1,ec{b}_2)$                                                            | $< 140^{\circ}$                                                |                                       | _                                  | _                                                 |  |  |
| $\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{E}_{\mathrm{T,trk}}^{\mathrm{miss}})$ | < 90°                                                          |                                       | _                                  | _                                                 |  |  |
| $p_{\rm T}^V$ regions                                                                     | > 15                                                           | (75, 150]  GeV, > 150  GeV            |                                    |                                                   |  |  |
| Signal regions                                                                            | $\checkmark$                                                   | $m_{bb} \ge 75 \text{ GeV} \text{ c}$ | or $m_{\rm top} \le 225 { m ~GeV}$ | Same-flavour leptons                              |  |  |
|                                                                                           |                                                                |                                       | -                                  | Opposite-sign charge ( $\mu\mu$ sub-channel)      |  |  |
| Control regions                                                                           | _                                                              | $m_{bb} < 75 \text{ GeV}$ as          | nd $m_{\rm top} > 225 {\rm ~GeV}$  | Different-flavour leptons                         |  |  |

| Variable                            | 0-lepton                      | 1-lepton      | 2-lepton |
|-------------------------------------|-------------------------------|---------------|----------|
| $p_{\mathrm{T}}^{V}$                | $\equiv E_{\rm T}^{\rm miss}$ | ×             | ×        |
| $E_{\mathrm{T}}^{\mathrm{miss}}$    | ×                             | ×             | ×        |
| $p_{\mathrm{T}}^{b_1}$              | ×                             | ×             | ×        |
| $p_{\mathrm{T}}^{b_2}$              | ×                             | ×             | ×        |
| $m_{bb}$                            | ×                             | ×             | ×        |
| $\Delta R(\vec{b}_1, \vec{b}_2)$    | ×                             | ×             | ×        |
| $ \Delta\eta(ec{b}_1,ec{b}_2) $     | ×                             |               |          |
| $\Delta \phi (ec V, b ec b)$        | ×                             | ×             | ×        |
| $ \Delta\eta(ec V, bec b) $         |                               |               | ×        |
| $m_{ m eff}$                        | ×                             |               |          |
| $\min[\Delta \phi(ec{\ell},ec{b})]$ |                               | ×             |          |
| $m^W_{ m T}$                        |                               | ×             |          |
| $m_{\ell\ell}$                      |                               |               | ×        |
| $m_{ m top}$                        |                               | ×             |          |
| $ \Delta Y(\vec{V}, \vec{bb}) $     |                               | ×             |          |
|                                     | Only                          | v in 3-jet ev | vents    |
| $p_{\mathrm{T}}^{\mathrm{jet}_3}$   | ×                             | ×             | ×        |
| $m_{bbj}$                           | ×                             | ×             | ×        |

| Source of un                     | certainty         | $\sigma_{\mu}$ |  |  |  |
|----------------------------------|-------------------|----------------|--|--|--|
| Total                            |                   | 0.39           |  |  |  |
| Statistical                      |                   | 0.24           |  |  |  |
| Systematic                       |                   | 0.31           |  |  |  |
| Experimental uncertainties       |                   |                |  |  |  |
| Jets                             |                   | 0.03           |  |  |  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ |                   | 0.03           |  |  |  |
| Leptons                          |                   | 0.01           |  |  |  |
|                                  | b-iets            | 0.09           |  |  |  |
| b-tagging                        | c-iets            | 0.04           |  |  |  |
| 0.0000000                        | light iets        | 0.04           |  |  |  |
|                                  | extrapolation     | 0.01           |  |  |  |
| Pile-up                          |                   | 0.01           |  |  |  |
| Luminosity                       |                   | 0.04           |  |  |  |
| Theoretical a                    | and modelling und | certainties    |  |  |  |
| Signal                           | 0                 | 0.17           |  |  |  |
|                                  |                   | 0.07           |  |  |  |
| Floating nor $Z_{\perp}$ ista    | mansations        | 0.07           |  |  |  |
| Z + jets                         |                   | 0.07           |  |  |  |
| W + jets                         | 0.07              |                |  |  |  |
|                                  | 0.07              |                |  |  |  |
| Single top qu                    | 0.08              |                |  |  |  |
| Diboson                          |                   | 0.02           |  |  |  |
| multijet                         |                   | 0.02           |  |  |  |
| MC statistic                     | al                | 0.13           |  |  |  |

| Process                         | Normalisation factor |
|---------------------------------|----------------------|
| $t\overline{t}$ 0- and 1-lepton | $0.90 \pm 0.08$      |
| $t\overline{t}$ 2-lepton 2-jet  | $0.97 \pm 0.09$      |
| $t\bar{t}$ 2-lepton 3-jet       | $1.04 \pm 0.06$      |
| W + HF 2-jet                    | $1.22 \pm 0.14$      |
| W + HF 3-jet                    | $1.27 \pm 0.14$      |
| Z + HF 2-jet                    | $1.30 \pm 0.10$      |
| Z + HF 3-jet                    | $1.22\pm0.09$        |

### Extra info - H→bb



| Process                   | Event Generator    | Parton Shower    | PDF               | Tune           | Cross-section                    |
|---------------------------|--------------------|------------------|-------------------|----------------|----------------------------------|
|                           | (alternative)      | (alternative)    | (alternative)     |                |                                  |
| $q\bar{q} \rightarrow ZH$ | Powheg-BOX v2 [28] | Pythia 8         | PDF4LHC15NLO [33] | AZNLO [34]     | NNLO (QCD)*                      |
|                           | +GoSAM [35]        |                  | /CTEQ6L1 [36,37]  |                | +NLO (EW) [38,39,40,41,42,43,44] |
|                           | +MINLO [45,46]     | (Herwig 7  [47]) |                   | $(A14 \ [48])$ |                                  |
| $gg \to ZH$               | Powheg-BOX v2      | Pythia 8         | PDF4LHC15NLO      | AZNLO          | NLO+NLL (QCD) [49,50,51,15]      |
|                           |                    | (Herwig  7)      | /CTEQ6L1          | (A14)          |                                  |
| $t\overline{t}$           | Powheg-BOX v2      | Pythia 8         | NNPDF3.0NLO [52]  | A14            | NNLO+NNLL [53]                   |
|                           |                    | (Herwig  7)      | /NNPDF2.3LO       |                |                                  |
| ZW, ZZ                    | Sherpa 2.2.1 [29]  | SHERPA           | NNPDF3.0NNLO      | Sherpa         | NLO                              |
|                           | (Powheg-BOX)       | (Pythia 8)       |                   |                |                                  |
| Z+jets                    | Sherpa 2.2.1       | SHERPA           | NNPDF3.0NNLO      | Sherpa         | NNLO [54]                        |
|                           | (MG5_AMC)          | (Pythia 8)       | (NNPDF2.3LO)      | (A14)          |                                  |







## Extra info - $H \rightarrow \phi/\rho$ +gamma

| Source of systematic uncertainty | Yield uncertainty |
|----------------------------------|-------------------|
| Total $H$ cross section          | 6.3%              |
| Total $Z$ cross section          | 2.9%              |
| Integrated luminosity            | 3.4%              |
| Photon ID efficiency             | 2.5%              |
| Trigger efficiency               | 2.0%              |
| Tracking efficiency              | 6.0%              |

|              | Observed yields (Mean expected background) |       |                  |         | Expected signal yields |                           |                           |
|--------------|--------------------------------------------|-------|------------------|---------|------------------------|---------------------------|---------------------------|
|              | Mass range [GeV]                           |       |                  |         | H                      | Z                         |                           |
|              | All                                        |       | 81-101           | 120-130 |                        | $[\mathcal{B} = 10^{-4}]$ | $[\mathcal{B} = 10^{-6}]$ |
| $\phi\gamma$ | 12051                                      | 3364  | $(3500 \pm 30)$  | 1076    | $(1038 \pm 9)$         | $15.6 \pm 1.5$            | $83 \pm 7$                |
| $ ho\gamma$  | 58702                                      | 12583 | $(12660 \pm 60)$ | 5473    | $(5450 \pm 30)$        | $17.0 \pm 1.7$            | $7.5 \pm 0.6$             |