Double Higgs searches

 at CMSG. Ortona,
for the CMS collaboration

Outline

I. Introduction

2. Double Higgs searches in CMS:
A.bb $\gamma \gamma$
B.bbbb
C.bbWW
D.bb $\tau \tau$
3. Results from LHC Run2
4. Future possibilities and projections

Motivations: Resonant searches

MSSM/2HDM:Additional Higgs doublet \rightarrow CP-even scalar H.

- We can probe the low m_{A} /low $\tan \beta$ region where $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{h}(\mathrm{I} 25) \mathrm{h}(125))$ is sizeable.

Singlet model:Additional Higgs singlet with an extra scalar H .

- Sizeable BR beyond $2 \mathrm{xm}_{\text {top }}$, non negligible width at high m_{H}.

Warped Extra Dimensions:
spin-2 (KK-graviton) and spin-0 (radion) resonances.

- Different phenomenology if SM particles are allowed (bulk RS) or not (RSI model) in the extra dimensional bulk

Motivations: Non-resonant searches

$$
\sigma^{S M_{h h}}(13 \mathrm{TeV})=33.45 \mathrm{fb}^{+4.3 \%_{-6.0 \%}(\text { scale unc. }) \pm 3.1 \%\left(\mathrm{PDF}+\alpha_{s} \text { unc }\right)[1]}
$$

The non-resonant double Higgs production allows to directly probe the Higgs trilinear coupling $\left(\lambda_{\text {hhh }}\right)$.
The shape of the Higgs potential is determined by the self coupling value

Even if in Run2 we do not have full sensitivity to "measure" SM $\lambda_{\text {hhh }} \rightarrow$ The BSM physics can be modelled in EFT adding dim-6 operators ${ }^{[2]}$ to the SM Lagrangian, and the physics can be described with 5 parameters: $\lambda_{h h h}, y_{t}, c_{2}, c_{2 g}, c_{g}$

- Non SM top Yukawa and $\lambda_{\text {hhh }}$ couplings
- New diagrams and couplings in the game

[I] LHCHXSWG Yellow Report 4

CMS searches

4 main channels presented today:
-bbbb, bbWW, bb $\tau \tau$, bb $\gamma \gamma$
At least one $h \rightarrow b b$ to have large enough $B R$
Rare processes, low σ, complex environment
Covering both resonant and non-resonant searches

- Run2:
-bb $\boldsymbol{\sigma} \tau$ Resonant and non-resonant PLB 778 (2018) 10I/PAS-B2G-17-006
-bbWW Resonant and non-resonant JHEPOI (2018)054
- bby Resonant and non-resonant PAS-HIG-17-008
- bbbb Resonant PAS-HIG-17-009/arXiv:1710.04960 non-resonant PAS-HIG-16-026
- Runl:
- bbbb Resonant: PLB 749 (2015) 560, arXiv:1602:08762
- bb $\boldsymbol{\tau} \boldsymbol{\tau}$ Resonant: PLB 755 (2016) 217, PAS-EXO-15-008 Nonresonant PAS-HIG-15-013
- bby $\boldsymbol{\gamma}$ Resonant and Non-resonant: arxiv: 1603.06896

Trade-off between BR and contamination, complementarity among channels
$\bullet b b b b$ highest $B R$, high QCD/t̄ contamination
-bbWW: high $B R$, large irreducible $\overline{t t}$ background
-bb $\tau \tau$: relatively low background and BR
-bby\%: high purity, very low BR
$35.9 \mathrm{fb}^{-1}$ (2016). Low BR in the $212 v$ final state (2.72%)

- 2 OS leptons (ee, e $\mu, \mu \mathrm{e}, \mu \mu$)
-Focus on the bbWW channel, Invariant mass cut to remove Z(II) contributions
-Large background contamination from $\mathfrak{t t}, \mathrm{Z}+$ jets (from MC)

Parametrised DNNs used to discriminate against background
-Resonant: mx, non-resonant $\mathrm{k}_{\mathrm{t}}, \mathrm{k} \lambda$

- Limit extraction from DNN shape in 3 m_{jj} bins

Results
-SM $\sigma \times B R<72 \mathrm{fb}$

- Obs.(exp.): $\sigma / \sigma_{S M}<79$ (89)

Non-resonant bbbb

$2.3 \mathrm{fb}^{-1}$ (2015)

- Highest BR among HH searches
- 4 jets, $3 / 4$ b-tagged jets
-Pairing: 2 pairs closest in mass

Signal extraction:2D shape of leading vs. ${ }^{20 \text { bin }}$ ub-leading $m_{j j}$

SM $\operatorname{sinR}<3.9 \mathrm{pb}$
Obs.(exp.): $\sigma / \sigma_{\text {SM }}<342$ (308)

Large Multijet (and tt) backgrounds. We want reliable background estimation with large statistics \rightarrow Hemisphere mixing
-Data events cut in 2 hemispheres
-Hemisphere library \rightarrow recreate events

- Pairing: nearest neighbour (kinematics)
- Validated in BDT sideband
- Small bias \rightarrow systematic on bkg.
- Cut on BDT

Original dataset: bkgs and potentially a small signal fraction

Mixed dataset: new composed event that represent bkg-only

Resonant resolved bbbb

$35.9 \mathrm{fb}^{-1}$ (2016)

4 b-tagged jets, deepCSV algorithm
b-jet energy regression to improve resolution, Kinematic fit for $\mathbf{m н}$ Low Mass Region ($\mathrm{m}_{\mathrm{H}}<400$) and High Mass Region ($400<\mathrm{m}_{\mathrm{H}}<1200$) studied separately to exploit kinematic properties of the signal

Background shape estimation from data in LMR, HMR

Background estimation cross-checked - In <4 b-tag side bands

- With alternate SR definitions

Resonant boosted bbbb

$35.9 \mathrm{fb}^{-1}$ (2016)

- Search for a heavy (MX>800GeV) resonance
$\cdot 2$ "fat" jets ($\mathrm{R}=0.8$), with double b-tagging
-B-tag based categories (LL,TT)
-Use constituent jets properties ("soft-drop" mass, Nsubjettiness)
-Signal extraction \rightarrow reduced mass: $M_{\text {red }}=m_{j j}-\left(m_{j 1}-m_{H}\right)-\left(m_{j 2}-m_{H}\right)$

Multijet background estimation
$M_{\text {red }}<1200 \mathrm{GeV}$: refined $A B C D$ method
$-\mathrm{m}_{\mathrm{j} I}$ and b-tag sidebands

- Interpolate dependence on m_{j}
$M_{\text {red }}>1200 \mathrm{GeV}$:
- Parametric fit
- Same shape SB \& SR, yields from ABCD

$35.9 \mathrm{fb}^{-1}$ (2016)

3 final states ($\mathrm{e} \boldsymbol{\tau}_{\mathrm{H}}, \boldsymbol{\mu} \tau_{\mathrm{H}}, \tau_{\mathrm{H}} \boldsymbol{\tau}_{\mathrm{H}}$), covering 88% of the $B R$ 3rd lepton veto
Kinematic fit (SVFit) to reconstruct $\mathrm{m}(\tau \tau)$
Discriminant variable:

- Non-resonant: Stransverse mass MT2
- Resonant: Kinematic Fit of $m(j j \tau \tau)$

Main backgrounds: tt, Z+jets (from MC) DY, multijet (from data)
-BDTs (low/high mass) to reject tt in semileptonic categories

Resolved analysis:

- 2 categories (I or 2 b-jets)
- Elliptical cut in $\mathrm{m}(\tau \tau), \mathrm{m}(\mathrm{jj})$

Boosted (bb) analysis

- I ($R=0.8$ jet), subjet b-tagging -cut in $\mathrm{m}(\tau \tau), \mathrm{m}(\mathrm{j})$

bb $\tau \tau$ - Results

Non-resonant limits:
-SM $\sigma \times B R<75.4 f b$

- Obs.(exp.): $\sigma / \sigma_{s M}<30$ (25)

$35.9 \mathrm{fb}^{-1}$ (2016), search for heavy mass resonances Boosted b-jet (anti-kT,R=0.8) and boosted $\boldsymbol{\tau} \boldsymbol{\tau}\left(\mid \tau_{\mathrm{H}}, \boldsymbol{\tau}_{\mathrm{H}} \boldsymbol{\tau}_{\mathrm{H}}\right)$ Kinematic fit to reconstruct $50<m \tau \tau<150 \mathrm{GeV}$
>0 b-tagged sub-jet, $105<\mathrm{m}_{\mathrm{j}}<135 \mathrm{GeV}$

Main backgrounds: $\mathrm{tt}, \mathrm{t}+\mathrm{X}, \mathrm{V}+\mathrm{jets}$ - tt, $\mathrm{t}+\mathrm{X}$: Shape from MC simulation, normalisation from CR
-V+jets: from mj sidebands, shape corrected with simulation

Fit on the $m \times$ distribution

Search performed up to 4 TeV , excludes narrow width radion up to 2.5 TeV
$35.9 \mathrm{fb}^{-1}(2016)$
Low $B R$ (0.26%), excellent resolution, clear signature
2 photons, 2 b -tagged jets ($\mathrm{R}=0.4$)
Reduced mass: $M \tilde{x}=m_{j i r r}-m_{j i}-m_{y y}+250 \mathrm{GeV}$
BDT \times M \bar{x} categorization: medium/high BDT purity and low/ high reduced mass $M \check{x}<350 \mathrm{GeV} / \mathrm{M} \ddot{x}>350 \mathrm{GeV}$)

Main backgrounds: multijet, fake photons, SM Higgs production

bby - Results

Sensitivity to non-resonant

CMS Preliminary
$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

production dominated by the high mass/high purity category

Most performant CMS channel:
-SM $\sigma \times B R<1.67 \mathrm{fb}$

- Obs.(exp.): $\sigma / \sigma_{S M}<19.2$ (16.5)

Summary

No evidence for either spin-0 or spin-2 resonance up to 4 TeV

Excluded cross-section ranges from <lpb (300 GeV) to $\sim 4 \mathrm{fb}$ (3 TeV)

Sensitivity to non-resonant at ~20 times the SM expectation Anomalous Higgs trilinear coupling constrained in the region -8.8 $<\lambda / \lambda_{S M}<15$

Double Higgs at HL-LHC

LHC / HL-LHC Plan

New all-silicon tracker, $|\eta|<4$, track-trigger
Double Higgs searches are an important physics case for HL (and HE) LHC

CMS will undergo relevant upgrades for the HL-LHC phase.

Barrel calorimeters: new electronics
New endcap calorimeter (high granularity)
Muon detectors to $|\eta|<2.8$
Trigger: LI @ 750 kHz, HLT @ 7.5 kHz

Dedicated studies: PAS-FTR-15-002

bbүү, bbтt, bbVV(Ivlv, IVjj) ~50\% precision

Extrapolations of 2015 analyses: pAS-FTR-16-002
bbүY, bbтt, bbbb, bbVV(Ivlv)
Poor stat. for projections
CMS Projection $\sqrt{s}=13 \mathrm{TeV} \quad \mathrm{SM} \mathrm{gg} \rightarrow \mathrm{HH}$

Conclusions

Several competing analyses in different final states under study in CMS, providing excellent coverage in different decay modes.
Non resonant double Higgs production is the main way to measure Higgs self-coupling.

- At the moment, we can probe O (I0-I00xSM).
- More luminosity is needed to reach SM sensitivity, but we are starting to probe BSM and to constraint exotic BSM
- Outperforming Runl (scaled) results and projections.

Resonant searches can already provide important constrain on BSM physics (MSSM,WED, heavy scalars).

- KK-graviton excluded below $800 \mathrm{GeV}, \Lambda_{R}=1 \mathrm{TeV}$ Radion excluded below 2.5 TeV
-Boosted categories enhance sensitivity to high mass resonances
Further improvement awaited from the combination of the results among all channels

Exciting prospects for double Higgs searches

BACKUP

Why measure HH?

- Measurement of HH gives access to the magnitude of the Higgs self-interaction:

$$
V=\lambda v^{2} H^{2}+\lambda v H^{3}+\frac{\lambda}{4} H^{4}
$$

- Higgs trilinear coupling constant $\boldsymbol{\lambda}$ only depends on the Higgs fieldVEV and Higgs mass. Purely determined by EWSB (in the SM).
- Shape of the Higgs potential is determined by the self coupling value (EWPT)

$$
V(\phi)=\mu^{2}\left(\phi^{\dagger} \phi\right)+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

$\mathrm{gg} \rightarrow \mathrm{hh}$ parametrization

The relevant lagrangian terms of $\mathrm{gg} \rightarrow \mathrm{HH}$ production in $\mathrm{D}=6 \mathrm{EFT}$

$$
\begin{aligned}
& \mathcal{L}_{h h}=-\frac{m_{h}^{2}}{2 v}\left(1-\frac{3}{2} c_{H}+c_{6}\right) h^{3}+\frac{\alpha_{s} c_{g}}{4 \pi}\left(\frac{h}{v}+\frac{h^{2}}{2 v^{2}}\right) G_{\mu \nu}^{a} G_{a}^{\mu \nu} \\
& -\left[\frac{m_{t}}{v}\left(1-\frac{c_{H}}{2}+c_{t}\right) \bar{t}_{L} t_{R} h+\text { h.c. }\right]-\left[\frac{m_{t}}{v^{2}}\left(\frac{3 c_{t}}{2}-\frac{c_{H}}{2}\right) \bar{t}_{L} t_{R} h^{2}+\text { h.c. }\right]
\end{aligned}
$$

An EFT implementation for hh

$$
\begin{aligned}
R_{h h} \equiv \frac{\sigma_{h h}}{\sigma_{h h}^{S M}} \xlongequal{L O} & A_{1} \kappa_{t}^{4}+A_{2} c_{2}^{2}+\left(A_{3} \kappa_{t}^{2}+A_{4} c_{g}^{2}\right) \kappa_{\lambda}^{2}+A_{5} c_{2 g}^{2}+\left(A_{6} c_{2}+A_{7} \kappa_{t} \kappa_{\lambda}\right) \kappa_{t}^{2} \\
& +\left(A_{8} \kappa_{t} \kappa_{\lambda}+A_{9} c_{g} \kappa_{\lambda}\right) c_{2}+A_{10} c_{2} c_{2 g}+\left(A_{11} c_{g} \kappa_{\lambda}+A_{12} c_{2 g}\right) \kappa_{t}^{2} \\
& +\left(A_{13} \kappa_{\lambda} c_{g}+A_{14} c_{2 g} \kappa_{t} \kappa_{\lambda}+A_{15} c_{g} c_{2 g} \kappa_{\lambda} .\right.
\end{aligned}
$$

$$
\text { JHEP } 04 \text { (2016) } 126
$$

2D $\left(\mathrm{M}_{\mathrm{HH}, \cos } \boldsymbol{\vartheta}^{*}\right)$ signal shapes from different points in the 5D EFT phase space are clustered together.

12 clusters are identified according to there kinematical properties

Inside each cluster, a representative shape is identified, as the one with the minimum distance (in the test statistics) from all other shapes in the cluster

Each point of the phase space can be mapped by means of its cross-section and representative shape
bbт兀 (arXiv:1707.02909)

Beyond HL-LHC: HH@FCC-hh

FCC-hh Simulation (Delphes)

FCC-hh Simulation (Delphes)

Delphes based study for hypothetical FCC-hh detector. Not a CMS projection

