

Double Higgs searches at CMS

G. Ortona, for the CMS collaboration

Co-funded by the Horizon 2020 Framework Programme of the European Union

Outline

- I. Introduction
- 2. Double Higgs searches in CMS: A.bbyy B.bbbb C.bbWW
 - D.bbττ
- 3. Results from LHC Run2
- 4. Future possibilities and projections

MSSM/2HDM: Additional Higgs doublet \rightarrow CP-even scalar H. •We can probe the low m_A/low tan β region where BR(H \rightarrow h(125)h(125)) is sizeable.

Singlet model: Additional Higgs singlet with an extra scalar H. • Sizeable BR beyond $2 \times m_{top}$, non negligible width at high m_{H} .

Warped Extra Dimensions:

spin-2 (KK-graviton) and spin-0 (radion) resonances. • Different phenomenology if SM particles are allowed (bulk RS) or not

(RSI model) in the extra dimensional bulk

Motivations: Non-resonant searches

The non-resonant double Higgs production allows to directly probe the Higgs trilinear coupling (λ_{hhh}). The shape of the Higgs potential is determined by the self coupling value

 λ_{hhh} , y_t , C_2 , C_{2g} , C_g

9 0000

- $\sigma^{SM}_{hh}(13TeV) = 33.45fb^{+4.3\%}_{-6.0\%}(scale unc.) \pm 3.1\%(PDF+\alpha_{s} unc)^{[1]}$

 - Even if in Run2 we do not have full sensitivity to "measure" SM $\lambda_{hhh} \rightarrow \lambda_{hhh}$ The BSM physics can be modelled in EFT adding dim-6 operators^[2] to the SM Lagrangian, and the physics can be described with 5 parameters:
 - Non SM top Yukawa and λ_{hhh} couplings • New diagrams and couplings in the game

[I] LHCHXSWG Yellow Report 4 [2] *Phys. Rev.* **D91** (2015), no. 11, 115008

DIS2018 - Kobe - 16-23/04/2018

CMS searches

- 4 main channels presented today:
 - bbbb, bbWW, $bb\tau\tau$, $bb\gamma\gamma$

At least one $h \rightarrow bb$ to have large enough BR

Rare processes, low σ , complex environment

Covering both resonant and non-resonant searches

• Run2:

- bbττ Resonant and non-resonant PLB 778 (2018) 101/PAS-B2G-17-006
- bbWW Resonant and non-resonant JHEP01(2018)054
- bbγγ Resonant and non-resonant PAS-HIG-17-008
- bbbb Resonant PAS-HIG-17-009/arXiv:1710.04960 non-resonant PAS-HIG-16-026
- Run I:
 - bbbb Resonant: PLB 749 (2015) 560, arXiv: 1602:08762
 - bbττ Resonant: PLB 755 (2016) 217, PAS-EXO-15-008 Nonresonant PAS-HIG-15-013
 - bbγγ Resonant and Non-resonant: arxiv:1603.06896

Giacomo Ortona

Trade-off between BR and contamination, complementarity among channels

- highest BR, high QCD/tt •bbbb: contamination
- •bbWW: high BR, large irreducible tt background
- relatively low background and BR •bbττ:
- high purity, very low BR •bbyy:

bbVV(2l2 ν)

35.9 fb⁻¹ (2016). Low BR in the 2l2v final state (2.72%) •2 OS leptons (ee, $e\mu$, μe , $\mu\mu$)

- •Focus on the bbWW channel, Invariant mass cut to remove Z(II) contributions
- •Large background contamination from tt, Z+jets (from MC)

against background

- •Resonant: m_X , non-resonant k_t , $k\lambda$ •Limit extraction from DNN shape in 3
- m_{ii} bins

Results

- •SM $\sigma xBR < 72 fb$
- •Obs.(exp.): σ/σ_{SM}

Parametrised DNNs used to discriminate

Events

DIS2018 - Kobe - 16-23/04/2018

PAS-HIG-16-026

Non-resonant bbbb

 $SM\sigma xBR < 3.9 \text{ pb}$ Obs.(exp.): $\sigma/\sigma_{SM} < 342$ (308)

Giacomo Ortona

potentially a small signal fraction

Mixed dataset: new composed event that represent bkg-only

To be updated soon! Expect sensitivity close to $bb\tau\tau$

35.9 fb⁻¹ (2016)

- 4 b-tagged jets, deepCSV algorithm
- b-jet energy regression to improve resolution, Kinematic fit for m_{HH}
- Low Mass Region (m_H <400) and High Mass Region (400< m_H <1200) studied separately to exploit kinematic properties of the signal
- Background shape estimation from data in LMR, HMR

DIS2018 - Kobe - 16-23/04/2018

500

450

400

350

300

Resonant boosted bbbb

35.9 fb⁻¹ (2016)

- •Search for a heavy (MX>800GeV) resonance
- •2 "fat" jets (R=0.8), with double b-tagging
- •B-tag based categories (LL,TT)
- •Use constituent jets properties ("soft-drop" mass, Nsubjettiness)

Multijet background estimation

- M_{red} < 1200 GeV: refined ABCD method
- •m_{il} and b-tag sidebands
- •Interpolate dependence on m_i
- M_{red} > 1200 GeV:
- Parametric fit
- Same shape SB & SR, yields from ABCD

35.9 fb⁻¹ (2016)

- 3 final states ($e\tau_H$, $\mu\tau_H$, $\tau_H\tau_H$), covering 88% of the BR
- 3rd lepton veto
- Kinematic fit (SVFit) to reconstruct $m(\tau\tau)$
- Main backgrounds: tt, Z+jets (from MC) DY, multijet (from data)
- •BDTs (low/high mass) to reject tt in semileptonic categories

Resolved analysis:

- •2 categories (1 or 2 b-jets)
- •Elliptical cut in $m(\tau\tau), m(jj)$

Boosted (bb) analysis

• I (R=0.8 jet), subjet b-tagging

• cut in m($\tau\tau$),m(j)

bbττ

Discriminant variable:

- •Non-resonant: Stransverse mass M_{T2}
- Resonant: Kinematic Fit of $m(j \tau \tau)$

Giacomo Ortona

Resonant boosted bb\tau\tau

35.9 fb⁻¹ (2016), search for heavy mass resonances Boosted b-jet (anti-kT,R=0.8) and boosted $\tau\tau$ ($I\tau_{H},\tau_{H}\tau_{H}$) Kinematic fit to reconstruct 50<mrt<150GeV >0 b-tagged sub-jet, 105<m_i<135 GeV

- Main backgrounds: tt, t+X,V+jets tt, t+X: Shape from MC simulation,
- •V+jets: from mj sidebands, shape

Fit on the m_X distribution

Search performed up to 4TeV, excludes narrow width radion up to 2.5TeV

35.9 fb⁻¹ (2016)

Low BR (0.26%), excellent resolution, clear signature

2 photons, 2 b-tagged jets (R=0.4)

Reduced mass: $M_{\tilde{X}} = m_{ii\gamma\gamma} - m_{ii} - m_{\gamma\gamma} + 250 \text{ GeV}$

BDT x $M_{\tilde{X}}$ categorization: medium/high BDT purity and low/ high reduced mass $M_{\tilde{X}} < 350 \text{GeV}/M_{\tilde{X}} > 350 \text{GeV}$)

Main backgrounds: multijet, fake photons, SM Higgs production

2D parametric fit in (m_{jj},m_{YY}) for signal extraction

bbyy

DIS2018 - Kobe - 16-23/04/2018

Giacomo Ortona

bbyy - Results

Summary

No evidence spin-2 reson Excluded cro from < | pb ((3 TeV)

Sensitivity to ~20 times th Anomalous coupling cor region -8.8 < λ/λ_{SM} < 15

Giacomo Ortona

te for either spin-0 or nance up to 4 TeV		
ross-section ranges (300 GeV) to ~4 fb	Final state	Obs. (Exp.) limit α σ/σ _{SM}
· · ·	bbWW	79 (89) 3
to non-resonant at the SM expectation Higgs trilinear Instrained in the $< \lambda/\lambda_{SM} < 15$	bbbb	342 (308)
	bbττ	30 (25)
	bbγγ	19 (16)

Double Higgs at HL-LHC

LHC / HL-LHC Plan

Double Higgs searches are an important physics case for HL (and HE) LHC

CMS will undergo relevant upgrades for the HL-LHC phase.

- New all-silicon tracker, $|\eta| < 4$, track-trigger
- Barrel calorimeters: new electronics
- New endcap calorimeter (high granularity)
- Muon detectors to $|\eta| < 2.8$
- Trigger: LI @ 750 kHz, HLT @ 7.5 kHz

Double Higgs at HL-LHC, Projections

Dedicated studies: PAS-FTR-15-002

PAS-FTR-15-002

PAS-FTR-16-002

bbγγ, bbττ, bbVV(lvlv, lvjj) ~50% precision

Extrapolations of 2015 analyses: PAS-FTR-16-002

Conclusions

coverage in different decay modes.

- Non resonant double Higgs production is the main way to measure Higgs self-coupling. •At the moment, we can probe $O(10-100 \times SM)$.
 - •More luminosity is needed to reach SM sensitivity, but we are starting to probe BSM and to constraint exotic BSM
 - •Outperforming Run1 (scaled) results and projections.

scalars).

- •KK-graviton excluded below 800 GeV, Λ_R =ITeV Radion excluded below 2.5 TeV
- •Boosted categories enhance sensitivity to high mass resonances

Further improvement awaited from the combination of the results among all channels

Several competing analyses in different final states under study in CMS, providing excellent

Resonant searches can already provide important constrain on BSM physics (MSSM, WED, heavy

- Exciting prospects for double Higgs searches

BACKUP

Why measure HH?

 $V = \lambda v^2 H$

- mass. Purely determined by EWSB (in the SM).

• Measurement of HH gives access to the magnitude of the Higgs self-interaction:

$$H^2 + \lambda v H^3 + \frac{\lambda}{4} H^4$$

• Higgs trilinear coupling constant λ only depends on the Higgs field VEV and Higgs

Shape of the Higgs potential is determined by the self coupling value (EWPT)

gg→hh parametrization

The relevant lagrangian terms of $gg \rightarrow HH$ production in D=6 EFT

$$\mathcal{L}_{hh} = -\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6 \right) h^3 + \frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2} \right) G^a_{\mu\nu} G^{\mu\nu}_a$$
$$- \left[\frac{m_t}{v} \left(1 - \frac{c_H}{2} + c_t \right) \bar{t}_L t_R h + \text{h.c.} \right] - \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2} - \frac{c_H}{2} \right) \bar{t}_L t_R h^2 + \text{h.c.} \right]$$
arXiv:1410.3471

ttHH non-linear interaction

 $g \mod$ 9 0000

SM diagrams

Higgs-gluon contact interactions

An EFT implementation for hh

The double Higgs production cross section can be written as a function of the 5 EFT parameters: λ_{hhh} , **Y**t, **C**2, **C**2g, **C**g

2D (M_{HH}, $\cos \vartheta^*$) signal shapes from different points in the 5D EFT phase space are clustered together.

12 clusters are identified according to there kinematical properties

Inside each cluster, a representative shape is identified, as the one with the minimum distance (in the test statistics) from all other shapes in the cluster

> Each point of the phase space can be mapped by means of its cross-section and representative shape

Beyond HL-LHC: HH@FCC-hh

Delphes based study for hypothetical FCC-hh detector. Not a CMS projection

