Searches for ttH production at CMS

Arun Nayak
Institute of Physics
Bhubaneswar, India
(For CMS collaboration)

DIS – 2018 16th – 20th April, Kobe, Japan

Introduction

Probing Higgs to Top coupling (y_t):

- Production via gluon fusion
 - assumes no BSM coupling
- Associated production with top-quark pair
 - Direct measurement
 - Larger increase in signal than backgrounds from 8 to 13 TeV

Challenge:

- Large backgrounds: tt+jets, tt+bb, ttW, ttZ etc..
 - $\sigma(ttH) \sim 510$ fb, $\sigma(ttbar) \sim 830$ pb @13 TeV
- Large combinatorics of leptons and jets from top decay

Analysis Strategies:

- ttbar like selections with additional searches for Higgs decay products
- Event categorization based on top quark (W boson) and Higgs decay modes
- MVA techniques OR Matrix-Element-Methods used to extract signal

Measurements @ CMS

Variety of final states studied:

- tt+ bb (H→bb): Large branching fraction, but higher background rates
 - At least one W decaying to leptons (semilepton, dilepton)
 - Both W decaying to jets (fully hadronic)
- tt+leptons (H→WW*, ZZ*, ττ): smaller production rate, relative lower backgrounds
- $tt+\gamma\gamma$ (H $\rightarrow\gamma\gamma$): clean final state, but very small rate

ttH, H -> bb (leptonic W decay)

HIG-17-026

- Analysis channels:
 - ℓ+jets: tt→ℓνqq'bb, H→bb
 - dilepton: $tt \rightarrow \ell \nu \ell \nu bb$, $H \rightarrow bb$
- At least 4 jets, with at least 3 b-tagged
 (≥4 jets, ≥3 b-tagged)
- Poor H→bb mass resolution
- Exploiting Matrix-Element methods and Machine learning techniques to discriminate signal from background
- Major backgrounds: tt+jets (especially tt+bb)

5

CMS-PAS-HIG-17-026

Dilepton channel: tt→ℓνℓνbb, H→bb

- MVA (BDT) and Matrix-Element methods used to discriminate signal from background
- BDT trained for each of the two (btagged) jet categories
 - Inputs: object kinematics, event shapes, b-tag discriminants
- BDT as final discriminant in 3 b-tag category
 - Discrimination against tt+jets
- >=4 b-tags category splitted to two sub-categories based on BDT output
- MEM as final discriminant in each of the two sub-categories
 - Discrimination against tt+bb

CMS

HIG-17-026

35.9 fb⁻¹ (13 TeV)

Dilepton channel: $tt \rightarrow \ell \nu \ell \nu bb$, $H \rightarrow bb$

≥4j, 3b ≥4j, ≥4b

BDT

MEM

Split at BDT median

≥4j, 3b ≥4j, ≥4b, high BDT

1 + 2 categories

HIG-17-026

 ℓ +jets channel: tt $\rightarrow \ell \nu$ qq'bb, H \rightarrow bb

Single lepton

4j, ≥3b

5j, ≥3b

≥6j, ≥3b

DNN (MEM is input)

į

Categorise by most probable process ttH, tt+bb/b/2b/cc/lf

3 x 6 categories

- Events divided to 3 jet-multiplicity categories
- Multi-classification Deep-Neural Network (DNN) for each jetmultiplicity category
 - Same input variables as BDT + MEM discriminant
- DNN associates a set of probabilities describing the probability of the events being either signal ttH or one of the tt+X background like.
- In each jet-process categories, the DNN output distribution of the node that matches the process category is used as final discriminant

ℓ+jets channel: tt→ℓνqq'bb, H→bb

HIG-17-026

4j, ≥3b

5j, ≥3b

≥6j, ≥3b

DNN (MEM is input)

i

Categorise by most probable process ttH, tt+bb/b/2b/cc/lf

3 x 6 categories

ttH, H -> bb (leptonic) results

Combined 2ℓ and ℓ +jets channels

HIG-17-026, Submitted to JHEP

Channel	95% CL upper limit		Best-fit μ	
	observed	expected	$\pm tot (\pm stat \pm syst)$	
Single-lepton	1.75	$1.03^{+0.44}_{-0.29}$	$0.84^{+0.52}_{-0.50}\ \left(^{+0.27}_{-0.26}\ ^{+0.44}_{-0.43}\right)$	
Dilepton	2.34	$2.48^{+1.17}_{-0.76}$	$-0.24^{+1.21}_{-1.12}\ \left(^{+0.63}_{-0.60}\ ^{+1.04}_{-0.95}\right)$	
Combined	1.51	$0.92^{+0.39}_{-0.26}$	$0.72^{+0.45}_{-0.45}$ $\begin{pmatrix} +0.24 & +0.38 \\ -0.24 & -0.38 \end{pmatrix}$	

Best fit $\mu = 0.72 \pm 0.45$

Observed (expected) Significance = 1.6 (2.2) σ

Major systematic uncertainties:

- tt + HF prediction
- Jet energy scale & btagging

ttH, H -> bb (Fully Hadronic)

HIG-17-022

 Trigger: ≥ 6 jets, large H_T, ≥1 or 2 b-tagged jets

Major Challenge:

- Large backgrounds from QCD multi-jets, tt+jets, and the irreducible tt+bb
- Large combinatorics of jets
- Poor bb mass resolution
- However,
 - Larger signal contribution
 - Possibility to fully reconstruct the event

- A quark-gluon discriminant is used to differentiate quarks jets from gluon jets
 - Discrimination against QCD multijets
- Dedicated Matrix-Element (MEM)
 discriminants to discriminate signal
 against tt+jets and tt+bb

HIG-17-022

Events divided in 8 exclusive categories

Signal Regions: 7, 8, ≥9 jets, 3, ≥4 b-tags

Control region for QCD bkg estimation : ≥ 7 jets, 2 b-tagged

b-tagging using CSVM discriminator

QCD multijet events are suppressed using a Quark – Gluon Likelihood (QGL) discriminant

HIG-17-022

Control region for QCD bkg estimation

QCD multijet events are suppressed using a Quark – Gluon Likelihood (QGL) discriminant

Signal Extraction

HIG-17-022

- Matrix-Element (MEM) discriminant to discriminate signal against backgrounds
- Constructed from LO matrix elements for the ttH signal and tt+bb backgrounds
- Also performs well against the tt+lf jets and QCD multi-jets backgrounds

Results

HIG-17-022 Submitted to JHEP

35.9 fb⁻¹ (13 TeV)

The ratio of the signal to background yields in each bin of the six MEM discriminant histograms, obtained from a combined fit constrained to the SM cross section of $\mu = 1$

- Consistent with the SM expectation, driven by ≥4b categories
- Major systematic uncertainties: Multijet estimation, tt+HF prediction, b-tagging and JES etc..

ttH, H -> multi-leptons

- Multi-lepton final states constitute Higgs decay to W+W-, ZZ, and $\tau^+\tau^-$
- Events categorized based on number of leptons and τ_h candidates
- BDT and MEM discriminants to discriminate signal from backgrounds

HIG-17-018

Search performed in 6 exclusive event categories:

- One lepton and two τ_h (1 ℓ + 2 τ_h) [two τ_h to be of opposite charge]
- Two same-sign leptons and zero τ_h (2 ℓ ss)
- Two same-sign leptons and one τ_h (2 ℓ ss + 1 τ_h) [τ_h charge is opposite to ℓ]
- Three leptons and zero τ_h (3 ℓ) [| Σ charge | = 1]
- Three leptons and one τ_h (3 ℓ + 1 τ_h)) [| Σ charge | = 0]
- Four leptons (4 ℓ) [| Σ charge | = 0]

```
\ell = e \text{ or } \mu
```

Additional Event Selections:

- 1 tight or 2 loose b-tagged jets
- At least 2 to 4 jets, depending on event category
- Cut on L_D (0.6 × p_T^{miss} + 0.4 × H_T^{miss}) and/or Z-veto depending on categories, lepton flavour etc..

HIG-17-018

Backgrounds:

- ttV, di-boson (irreducible) and tt+jets (misidentified leptons) are major backgrounds
- Irreducible backgrounds are modeled using MC simulation, and validated in dedicated control regions
- Background from misidentified leptons and/or τ_h is measured from data using a fake factor method, applied to each category separately
 - Fake probabilities are measured in dedicated control regions as function of p_T and η.
- The background with misidentified lepton charge, to $2\ell ss \& 2\ell ss + 1\tau_h$ categories, are also measured from data similarly
 - Charge misidentification probabilities are measured in Z→ee and Z→μμ events

Signal Extraction:

- $2\ell ss + 1\tau_h$: MEM discriminant to separate signal from ttZ and tt+jets
- $1\ell + 2\tau_h$: 1 BDT against tt+jets
- 2 ℓ ss, 3 ℓ , 3 ℓ +1 τ_h : Separate BDTs for ttH vs ttV and ttH vs tt+jets
 - Matrix-Element weights as input to BDT in 3\ell category
 - 2 BDTs are mapped to a single discriminant (D_{MVA}), used for final signal extraction
- 4ℓ : simple counting due to small statistics

Simultaneous Maximum Likelihood fit to discriminating variables in all categories

17th

Analysis Strategy

HIG-17-018

ttH, H -> multi-leptons (Results)

HIG-17-018, Submitted to JHEP

Evidence for the ttH production in leptonic final states: 3.2σ (obs) / 2.8σ (exp) significance

Cross check analysis with ttV as signal, with normalization constrained using control regions: $\mu = 1.04^{+0.50}_{-0.36}$, significance = 2.7σ

ttH Combination

CMS-PAS-HIG-17-031

Combination of ttH analyses, along with other Higgs measurements, for 13 TeV data

ttH						
Best fit Uncertainty						
value		Stat.	Syst.			
1.18	$^{+0.31}_{-0.27}$	$+0.16 \\ -0.16$	$+0.26 \\ -0.21$			
	$\binom{+0.28}{-0.25}$	$\binom{+0.16}{-0.16}$	$\binom{+0.23}{-0.20}$			

ttH ($\Delta\mu_{ttH}$) production cross section modifier from perproduction mode fit

$$\Delta\mu_{ttH}\approx 30\%$$

Observation of ttH production

Combination of measurements in 7, 8, & 13 TeV data

Significance: 5.2σ (4.2σ Exp)

HIG-17-035 Submitted to PRL (arXiv: 1804.02610)

Summary

- Results presented for ttH searches with 35 fb⁻¹ of pp collision data @ 13 TeV
 - Lots of improvement in analysis techniques compared to run-1
 - Addition of new challenging final states: fully hadronic mode, final states with hadronic decaying τ leptons
 - Top-Higgs couplings constrain to about ~15% with direct measurements
 - Working on further improvements in analysis sensitivity
- Observation of ttH production, combining 7, 8, and 13 TeV analyses

BACKUP

ttH Combination

CMS-PAS-HIG-17-031

Combination of ttH analyses, along with other Higgs measurements, for 13 TeV data

ttH+tH ($\Delta\mu_{ttH}$) production cross section modifier from per-production μ_{ttH} mode fit

ttH					
Best fit Uncertainty					
value		Stat.	Syst.		
1.18	$^{+0.31}_{-0.27}$	$^{+0.16}_{-0.16}$	$^{+0.26}_{-0.21}$		
	$\binom{+0.28}{-0.25}$	$\left(^{+0.16}_{-0.16}\right)$	$\binom{+0.23}{-0.20}$		

 $\Delta\mu_{ttH}\approx30\%$

top coupling modifier from κ-framework fit in the unresolved loops assumption:

	Uncertainty			
Best fit	Stat.	Syst.		
$1.09 \begin{array}{l} +0.14 \\ -0.14 \\ \left(^{+0.14}_{-0.15} \right) \end{array}$	$^{+0.08}_{-0.08}$ $^{+0.08}_{(-0.09)}$	$^{+0.12}_{-0.12}\atop \substack{-0.12\\ (+0.12\\ -0.12)}$		

ttH, H -> bb (Fully Hadronic) Results

Category	Best fit $\hat{\mu}$ and uncertainty $\hat{\mu}$ total (stat syst)	Observed UL	Expected UL	35.9 fb ⁻¹ (13 TeV
7j, 3b	$1.6 ^{+9.6}_{-12.0} \left(^{+2.7}_{-2.7} ^{+9.2}_{-11.7}\right)$	18.7	$17.6_{-4.4}^{+6.2}$	7j, 3b CMS
8j, 3b	$1.2 ^{+5.9}_{-6.4} \left(^{+2.2}_{-2.3} ^{+5.4}_{-5.9} \right)$	12.3	$11.5_{-3.1}^{+4.6}$	8j, 3b ≥9j, 3b
≥9j, 3b	-3.5 $^{+5.9}_{-6.5}$ $\begin{pmatrix} +2.4 & +5.4 \\ -2.4 & -6.0 \end{pmatrix}$	9.0	$10.7_{-3.1}^{+4.5}$	7j, ≥4b • • • Median expected
7j, ≥4b	$5.4 {}^{+2.9}_{-2.7} \left({}^{+1.8}_{-1.8} {}^{+2.3}_{-2.1} \right)$	10.6	$5.7^{+2.6}_{-1.7}$	8j, ≥4b 68% expected ≥9j, ≥4b 95% expected
8j, ≥4b	-0.2 $^{+2.8}_{-3.0}$ $\begin{pmatrix} +1.5 & +2.3 \\ -1.5 & -2.6 \end{pmatrix}$	5.5	$5.5^{+2.6}_{-1.6}$	3b cats 4b cats Expected (SM tĪH
≥9j, ≥4b	-0.4 $^{+2.1}_{-2.2}$ $\begin{pmatrix} +1.4 & +1.6 \\ -1.3 & -1.8 \end{pmatrix}$	4.0	$4.3_{-1.3}^{+1.9}$	Combined
Combined	$0.9 {}^{+1.5}_{-1.5} \left({}^{+0.7}_{-0.7} {}^{+1.3}_{-1.3} \right)$	3.8	$3.1^{+1.4}_{-0.9}$	0 5 10 15 20 25 30 95% CL limit on $\mu = \sigma/\sigma_{SM}$ at $m_{H} = 125$ GeV

ttH, H -> bb (Fully Hadronic) Results

Source	Range of	Distribution		Pro	ocess	
	uncertainty (%)		tŧH	Multijet	t t +jets	Other
Experimental uncertainties						
Integrated luminosity	2.5	No	\checkmark	*	\checkmark	\checkmark
Trigger efficiency	1–2	Yes	\checkmark	*	\checkmark	\checkmark
Pileup	0.2-5	Yes	\checkmark	*	\checkmark	\checkmark
JES	3–11	Yes	\checkmark	*	\checkmark	\checkmark
JER	2–11	Yes	\checkmark	*	\checkmark	\checkmark
b tagging	4–40	Yes	\checkmark	*	\checkmark	\checkmark
QGL reweighting	4–11	Yes	\checkmark	*	\checkmark	\checkmark
Top quark p_T reweighting	1–2	Yes	_	*	\checkmark	
Multijet estimation						
CSVL correction		Yes		\checkmark		
MEM first bin		Yes		\checkmark		
H_{T} reweighting		Yes	_	\checkmark		
Normalization	∞	No	_	\checkmark		
Theoretical uncertainties						
tt+bb normalization	50	No	_	*	\checkmark	
tt+2b normalization	50	No		*	\checkmark	
tt+b normalization	50	No		*	\checkmark	
tī+cc normalization	50	No		*	\checkmark	
$\mu_{\rm F}/\mu_{ m R}$ scales for signal	6–9	No	\checkmark	_		
$\mu_{\rm F}/\mu_{ m R}$ scales for background	1–13	No		*	\checkmark	\checkmark
PDFs	2–4	No	\checkmark	*	\checkmark	\checkmark
Simulated sample size	2–40	Yes	√	*	√	√

ttH, H -> bb (Leptonic) Results

Uncertainty source	$\pm \Delta \mu$ (observed)	$\pm \Delta \mu$ (expected)
Total experimental	+0.15/-0.16	+0.19/-0.17
b tagging	+0.11/-0.14	+0.12/-0.11
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
Total theory	+0.28/-0.29	+0.32/-0.29
tī+hf cross section and parton shower	+0.24/-0.28	+0.28/-0.28
Size of the simulated samples	+0.14/-0.15	+0.16/-0.16
Total systematic	+0.38/-0.38	+0.45/-0.42
Statistical	+0.24/-0.24	+0.27/-0.27
Total	+0.45/-0.45	+0.53/-0.49

ttH, H -> bb (Leptonic) Results

•		\
Source	Туре	Remarks
Integrated luminosity	rate	Signal and all backgrounds
Lepton identification/isolation	shape	Signal and all backgrounds
Trigger efficiency	shape	Signal and all backgrounds
Pileup	shape	Signal and all backgrounds
Jet energy scale	shape	Signal and all backgrounds
Jet energy resolution	shape	Signal and all backgrounds
b tag hf fraction	shape	Signal and all backgrounds
b tag hf stats (linear)	shape	Signal and all backgrounds
b tag hf stats (quadratic)	shape	Signal and all backgrounds
b tag lf fraction	shape	Signal and all backgrounds
b tag lf stats (linear)	shape	Signal and all backgrounds
b tag lf stats (quadratic)	shape	Signal and all backgrounds
b tag charm (linear)	shape	Signal and all backgrounds
b tag charm (quadratic)	shape	Signal and all backgrounds
Renorm./fact. scales (ttH)	rate	Scale uncertainty of NLO ttH prediction
Renorm./fact. scales (tt)	rate	Scale uncertainty of NLO tt prediction
Renorm./fact. scales (tt+hf)	rate	Additional 50% rate uncertainty of tt+hf predictions
Renorm./fact. scales (t)	rate	Scale uncertainty of NLO single t prediction
Renorm./fact. scales (V)	rate	Scale uncertainty of NNLO W and Z prediction
Renorm./fact. scales (VV)	rate	Scale uncertainty of NLO diboson prediction
PDF (gg)	rate	PDF uncertainty for gg initiated processes except ttH
PDF (gg t t H)	rate	PDF uncertainty for ttH
PDF $(q\overline{q})$	rate	PDF uncertainty of $q\overline{q}$ initiated processes
\ 1 P		$(t\bar{t}+W,W,Z)$
PDF (qg)	rate	PDF uncertainty of qg initiated processes (single t)
$\mu_{\rm R}$ scale (t t)	shape	Renormalisation scale uncertainty of the tt ME gen-
pricocure (co)	Shape	erator, independent for additional jet flavours
$\mu_{\rm F}$ scale (t $ar{ m t}$)	shape	Factorisation scale uncertainty of the tt ME genera-
	1	tor, independent for additional jet flavours
PS scale: ISR (t t)	rate	Initial state radiation uncertainty of the PS (for tī
` '		events), jet multiplicity dependent rate uncertainty,
		independent for additional jet flavours
PS scale: FSR (tt)	rate	Final state radiation uncertainty (for tt events), jet
		multiplicity dependent rate uncertainty, indepen-
		dent for additional jet flavours
ME-PS matching (tt)	rate	NLO ME to PS matching, hdamp [?] (for tt events),
		jet multiplicity dependent rate uncertainty, indepen-
		dent for additional jet flavours
Underlying event (tt̄)	rate	Underlying event (for tt events), jet multiplicity
		dependent rate uncertainty, independent for addi-
		tional jet flavours
NNPDF3.0NLO (ttH, tt)	shape	Based on the NNPDF replicas, same for ttH and ad-
		ditional jet flavours
Bin-by-bin event count	shape	Statistical uncertainty of the signal and background
		prediction due to the limited sample size

ttH, H -> multi-leptons (Results)

ttH, H -> multi-leptons (Results)

Catagory	Observed limit on 11	Expected limit		
Category	Observed limit on μ	$(\mu = 0)$	$(\mu = 1)$	
$1\ell + 2\tau_{\rm h}$	2.7	$4.1^{+1.7}_{-1.4}$	$4.8^{+2.0}_{-1.9}$	
$2\ell ss$	2.8	$1.0^{+0.4}_{-0.2}$	$2.0^{+0.7}_{-0.3}$	
$2\ell ss + 1\tau_h$	2.5	$1.4^{+0.7}_{-0.3}$	$2.5^{+0.9}_{-0.5}$	
3ℓ	2.7	$1.6^{+0.8}_{-0.4}$	$2.9^{+1.1}_{-0.4}$	
$3\ell+1 au_{ m h}$	4.4	$2.8_{-0.6}^{+1.3}$	$4.1^{+1.5}_{-0.7}$	
4ℓ	6.5	$4.9^{+2.8}_{-1.1}$	$6.7^{+2.5}_{-0.8}$	
Combined	2.1	$0.8^{+0.3}_{-0.2}$	$1.7^{+0.5}_{-0.5}$	

Source	Uncertainty [%]	$\Delta\mu/\mu$ [%]
e, μ selection efficiency	2–4	11
$ au_{ m h}$ selection efficiency	5	4.5
b tagging efficiency	2–15 [?]	6
Reducible background estimate	10–40	11
Jet energy calibration	2–15 [?]	5
$ au_{ m h}$ energy calibration	3	1
Theoretical sources	≈ 10	12
Integrated luminosity	2.5	5

tHq, H -> leptons

Destructive interference in SM and Constructive interference in inverted top coupling (ITC) scenarios

Scenario	Channel	Obs. Limit	Exp. Limit (pb)		
		(pb)	Median	$\pm 1\sigma$	$\pm 2\sigma$
$\kappa t/\kappa_{\rm V} = -1$	μμ	1.00	0.58	[0.42, 0.83]	[0.31, 1.15]
	еμ	0.84	0.54	[0.39, 0.76]	[0.29, 1.03]
	$\ell\ell\ell$	0.70	0.38	[0.26, 0.56]	[0.19, 0.79]
	Combined	0.64	0.32	[0.22, 0.46]	[0.16, 0.64]
$\kappa t/\kappa_{\rm V}=1$	μμ	0.87	0.41	[0.29, 0.58]	[0.22, 0.82]
(SM-like)	еµ	0.59	0.37	[0.26, 0.53]	[0.20, 0.73]
	$\ell\ell\ell$	0.54	0.31	[0.22, 0.43]	[0.16, 0.62]
	Combined	0.56	0.24	[0.17, 0.35]	[0.13, 0.49]

17th April 2018