DIS2018

Kobe, Japan Apr 18, 2018

Search for rare and exotic Higgs boson decays with CMS

Chia Ming, Kuo National Central University, Taiwan

Motivation

Chia Ming, Kuo/NCU, Taiwan

- Higgs boson has been observed in several decay channels
 - current studies of its properties are consistent with the SM predictions
- Several rare decays have not been observed
 - an excess would be a clear indication of new physics
- Several BSM theories predict exotic decays
- potential invisible or undetectable B_{BSM} < 34% (39% exp.) @ 95% C.L. with Run-I data
 - still allow ample space to look for BSM Higgs decays
- provide an excellent opportunity to look for new physics !

erved in several roperties are predictions not been observed clear indication of

WW

2

recently updated results are ~1 month old

loop induced decay → sensitive to physics beyond SM

- Signature: an opposite-sign isolated lepton pair and an isolated photon
 - a clean final-state with good mass resolution
- the threshold, $m_{\parallel} = 50$ GeV, is used to separate $H \rightarrow Z\gamma$ and $H \rightarrow \gamma^* \gamma$

• In SM,
$$\frac{\Gamma(H \to \gamma^* \gamma \to \mu \mu \gamma)}{\Gamma(H \to \gamma \gamma)} = (1.69 \pm 0.10)\%, \frac{\Gamma(H \to Z\gamma \to \ell \ell \gamma)}{\Gamma(H \to \gamma \gamma)} = (2.27 \pm 0.14)\%$$

CMS HIG-17-007 $H \rightarrow Z Y \rightarrow I Y (I = e, \mu)$

- BR(H \rightarrow Zy) = 1.533 × 10⁻³
- signal yield is similar to $H \rightarrow ZZ \rightarrow 4I$ but suffers from large background ($Z\gamma$, Z+jets)
- 7 mutually exclusive categories used to differentiate production modes, increase S/B, and enhance the peak resolution
 - sensitivity enhanced by 18%

$H \rightarrow \gamma^* \gamma \rightarrow ll \gamma \ (l = \mu)$

- BR(H $\rightarrow\gamma^*\gamma\rightarrow\mu\mu\gamma$) = 3.83 × 10⁻⁵
- unique event topology \rightarrow two collimated leptons from γ^* decay
 - challenge in trigger and identification
 - smaller signal yield but better sensitivity than $H \rightarrow Z\gamma$
- reject J/ ψ + γ and Y+ γ with $m_{\mu\mu}$
- 4 mutually exclusive categories used to differentiate production modes, increase S/B, and enhance the peak resolution
 - sensitivity enhanced by 11%

background fit function minimizes the bias introduced by selected shape

Signal extraction

- data are fitted by smoothly falling functions to determine the background
- signal is modeled with a double sided Crystal Ball function and a Crystal Ball function plus an additional Gaussian function for $\gamma^*\gamma$ and $Z\gamma$

170

2018/4/18

35.9 fb⁻¹ (13 TeV)

Background Model

Expected Signal × 10

160

±1 st. dev. ±2 st. dev.

Data

Chia Ming, Kuo/NCU, Taiwan

2018/4/18

Results of $H \rightarrow ll\gamma$

8

- observed
 (expected) upper
 limit for σ/σ_{SM} is
 3.9 (2.0)
- corresponding to an observed (expected) pvalue of ~2σ (~1σ)

$H \rightarrow \mu \mu$

- BR(H \rightarrow µµ) = 2.18 × 10⁻⁴
- only accessible channel to test Higgs couplings to second generation fermions at LHC
- clean fermionic decay
- search for a small peak over a large DY background
- several BSM scenarios predict a higher BR
 - deviation from SM could be a sign for new physics

- BDT is used to improve the search sensitivity
- 15 categories are defined based on BDT score and µµ mass resolution
- BDT loosely correlated with VBF

Results of $H \rightarrow \mu \mu$

CMS HIG-17-019

Dataset	95% CL limit on σ/σ _{SM} observed (expected)	Significance observed (expected)
13 TeV (35.9/fb)	2.64 (2.08)	0.74 (0.98)σ
7 TeV + 8 TeV+ 13 TeV	2.64 (1.89)	0.98 (1.09)σ

• upper limit on BR($H \rightarrow \mu\mu$) is 5.7 × 10⁻⁴

H→invisible

2018/4/18

- BR(H \rightarrow ZZ \rightarrow 4v) = 0.1% in SM
- a number of BSM models allow for this
 - interactions between the Higgs and dark matter
 - complementary to direct detection
 - dark matter mass $< m_H/2$; $H \rightarrow DM$ kinematically open

$H \rightarrow invisible$: VBF tag

CMS HIG-17-023

2018/4/18

- most sensitive mode due to VBF topology
- reject extra leptons
- two strategies:
 - cut and count
 - shape analysis based on m_{jj}
 - use the full discrimination power of the invariant mass distribution
 - improve the search sensitivity

Chia Ming, Kuo/NCU, Taiwan

$H \rightarrow invisible : mono-V tag arXiv:1711.00431 arVix:1712.02345$

• Z(→II)+H

- smaller cross section than VBF
- clean final state with low background
- the multivariate BDT classifier is used to improve the search sensitivity by 10%
- V(→qq)+H
 - large background but relatively larger signal contribution
 - large radius jet (R = 0.8), $p_T > 250$ GeV
 - rely on jet substructure techniques

35.9 fb⁻¹ (13 TeV)

900 1000

 p_{T}^{miss} [GeV]

35.9 fb⁻¹ (13 TeV)

H→invisible : mono-jet tag arVix:1712.02345

- measure ggH process where the Higgs system is boosted and recoils against a jet
- events failing mono-V tag but satisfying jet p_T > 100 GeV (R = 0.4) are included
- large background
- improve V(jj)H sensitivity by 12.5% after adding this mode

$H \rightarrow invisible: combination cms hldshow c$

Analysis	Final state	Signal composition	Observed limit	Expected limit
qqH-tagged	VBF-jets + $p_{\rm T}^{\rm miss}$	52% qqH, 48% ggH	0.28	0.21
VH-tagged	$Z(\ell \ell) + p_{T}^{miss}$ [?]	79% qqZH, 21% ggZH	0.40	0.42
	$V(qq') + p_{\rm T}^{\rm miss}$ [?]	39% ggH, 6% qqH, 33% WH, 22% ZH	0.50	0.48
ggH-tagged	jets + $p_{\rm T}^{\rm miss}$ [?]	80% ggH, 12% qqH, 5% WH, 3% ZH	0.66	0.59

- No significant deviations from SM expectation are observed in any search mode
- The observed (expected) 95% CL limit on BR(H→inv) assuming SM is 0.24 (0.18)
- The results have been interpreted in Higgs portal model assuming the scalar or fermion nature of the DM
 - excluding the very low DM masses below 20 (fermion) or 7 (scalar) GeV

Chia Ming, Kuo/NCU, Taiwan

2018/4/18

Chia Ming, Kuo/NCU, Taiwan

Lepton flavor violating decays arVix:1712.07173

- a clear indication of BSM physics
- best sensitivity for H→eτ and H→μτ
 - look into multiple channels of the τ decay
- BDT is used to improve the search sensitivity
- no obvious excess observed
- set upper limits on branching ratios and nondiagonal elements of Yukawa coupling matrix

	Observed (expected) limits (%)		Best fit branching fraction (%)	
	BDT fit	$M_{\rm col}$ fit	BDT fit	$M_{\rm col}$ fit
$H \rightarrow \mu \tau$	<0.25 (0.25)%	<0.51 (0.49) %	0.00 ± 0.12 %	0.02 ± 0.20 %
$H \to e \tau$	<0.61 (0.37) %	<0.72 (0.56) %	0.30 ± 0.18 %	0.23 ± 0.24 %

	BDT fit	$M_{\rm col}$ fit
$\sqrt{ Y_{\mu\tau} ^2 + Y_{\tau\mu} ^2}$	$< 1.43 imes 10^{-3}$	$< 2.05 imes 10^{-3}$
$\sqrt{ Y_{\mathrm{e}\tau} ^2 + Y_{\mathrm{\tau}\mathrm{e}} ^2}$	$< 2.26 \times 10^{-3}$	$< 2.45 imes 10^{-3}$

2018/4/18

$h \rightarrow aa \rightarrow 2X2Y$

- well motivated by BSM theories such as 2HDM+S, ...
- X and Y can be any types of fermions, gluon or photon
- BR of "a" boson to SM particles depends on
 - mass of the "a" boson
 - models (i.e. types of the 2HDM)
 - model parameters (i.e. tanβ)

19.7 fb⁻¹ (8 TeV)

Chia Ming, Kuo/NCU, Taiwan

2018/4/18

CMS HIG-17-029

 $h \rightarrow aa \rightarrow \mu\mu\tau\tau$

- targets on non-boosted τ pairs, and requires 4 well reconstructed and isolated leptons
- main backgrounds (fake leptons or taus) estimated from data
- final observable is the mass of μμ
- no significant excess observed

$h \rightarrow aa \rightarrow TTbb$

- first probe of this final state
- large BRs in most models due to m_b and m_τ
- 3 ττ final states: $e\tau_h$, $\mu\tau_h$, $e\mu$
- at least 1 b-tagged jet ($p_T > 20 \text{ GeV}$)
- backgrounds estimated from MC or data depending on whether taus are real or fake
- final observable is the visible mass of $\tau\tau$
- the sensitivity at low(high) masses is reduced due to isolation inefficiencies of boosted "a" boson to $\tau\tau$ (higher backgrounds)
- the most stringent limits in 2HDM+S type II at the LHC so far

2018/4/18

35.9 fb⁻¹ (13 TeV)

new summary plot of $aa \rightarrow 2X2Y$

- the discovery of the Higgs boson opens a new opportunity to search for new physics via the rare or exotic decays!
- a broad program performed by CMS in this field
- observations are in agreement with SM
- still looking for it ...

Outlook of $H \rightarrow$ invisible

CMS DP-2016-064

SM BR(H→inv.) = 0.001

- S1 : all systematic uncertainties are fixed to 2015 values
- S2 : experimental systematic uncertainties decrease with L and theoretical ones are scaled by 1/2
 - → improved by a factor of 2 by the end of 2018 and 5 at HL-LHC

- type I: all SM particles couple to the first doublet
- type II: leptons and down-type quarks couple to the second doublet and up-type quarks couple to the first doublet
- type III: leptons couple to the second doublet and quarks to the first one
- type IV: down-type quarks couple to the second doublet, while leptons and up-type quarks couple to the first doublet