

Search for heavy resonances in diboson final states at CMS

Attilio Santocchia

for the CMS collaboration

XXVI International Workshop on Deep Inelastic Scattering and Related Subjects Kobe 19.04.2018

Why... Theoretical motivation

how can we explain the big difference between EW and gravitation?

$$m_H^2 = -2\mu^2 \sim 10^4 \,\mathrm{GeV}^2 \ll M_{\mathrm{Pl}}^2 \sim 10^{38} \,\mathrm{GeV}^2$$

natural explanation

SM is extended by another theory at the TeV scale

warped extra dimensions

- Tentative solution of the hierarchy problem
- Radion (spin 0) and graviton (spin 2) can decay to HH

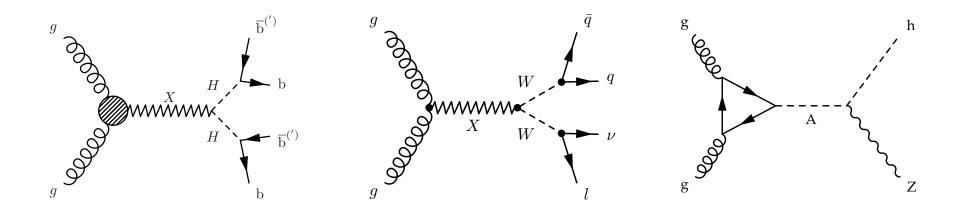
heavy vector triplet

- General Framework
- Include Little Higgs, Composite Higgs
- Introduction of spin-1 resonance

What... CMS performed an extensive multi-channel search

- Search for heavy resonances (m $_{\rm X}\gtrsim 800$ GeV) decaying into 2 bosons
- Several combination and decaying mode considered

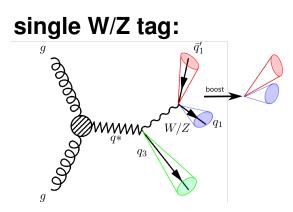
	$V ightarrow q \overline{q}$	W ightarrow l u	Z ightarrow ll	Z ightarrow u u	$H o b\overline{b}$	H ightarrow au au
$V ightarrow q \overline{q}$	B2G-17-001	B2G-16-029	B2G-17-013	B2G-17-005	B2G-17-002	B2G-17-006
W ightarrow l u	B2G-16-029				B2G-17-004	
Z ightarrow ll	B2G-17-013			B2G-16-023	B2G-17-004	
Z ightarrow u u	B2G-17-005		B2G-16-023		B2G-17-004	
$H ightarrow b\overline{b}$	B2G-17-002	B2G-17-004	B2G-17-004	B2G-17-004	B2G-16-026	B2G-17-006
H ightarrow au au	B2G-17-006				B2G-17-006	



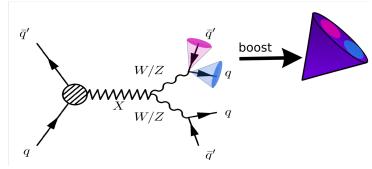
How...

How to detect these resonances at CMS

- Di-boson final states could help finding spin 0, 1 or 2 resonances
- Depending on model permeters, resonances may be narrow or wide
- Majority of analysis focus on narrow resonance



How to detect these resonances at CMS


- Bosons have been searched in all possible decay mode
 - W, Z in leptonic channels
 - W, Z in hadronic channels
 - Z invisible

How...

- H in $b\overline{b}$ e in $\tau^+\tau^-$
- For high mass resonances, bosons will be very energetic
 - Decay products are highly collimated
- Jets from partons are frequently merged
- Dedicated reconstruction algorithms needed for higt- p_T leptons
- Powerful τ -id needed

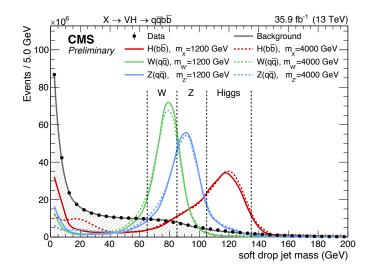
double W/Z tag:

How... How to trigger these resonances at CMS

All analysis use similar trigger strategies

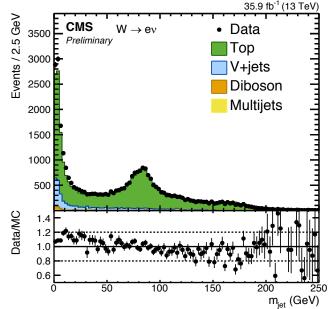
- Single electron and single muon trigger if a lepton in the final state
 - Typically $p_T^{ele} > 50$ GeV with additional ID and isolation cuts and $p_T^{mu} > 50$ GeV
- Missing energy trigger or missing hadronic activity requests if neutrinos in the final state
 - H_T^{mis} or $E_T^{mis} > 90$, 110, 120 or 170 GeV depending on luminosity and pre-scaling of the trigger path
- Several combination of Jet and HT trigger when no E_T^{mis} and no leptons in the final state
 - Jets from anti- k_T algorithm with R = 0.8 and p_T > 360 GeV
 - Scalar sum of all jet p_T above 650, 700 or 800 GeV depending on luminosity or additional requests on jets

How... Objects reconstruction


- A Particle Flow (PF) event algorithm is used to reconstruct and identify each individual particle
- All leptons are reconstructed with standard CMS cuts trying to maximize efficiency
 - Acceptance range is typically $|\eta| < 2.4$ for electrons, $|\eta| < 2.5$ for muons and $|\eta| < 2.3$ for hadronic taus
 - Requirements on minimum p_T for all leptons are applied
 - Isolation cuts as well as quality cuts are used to select only prompt leptons from bosons decays
 - A special reconstruction algorithm is used to identify hadronically decayed τ leptons
 - For leptonic decay of the Z boson, opposite charge is required
- Jets reconstruction uses anti- k_T algorithm with R=0.4 and 0.8 (fat-jet)
 - Jets p_T is corrected using the standard CMS energy scale (JES) prescription
- Missing transverse energy is calculated from all the PF particles
 - E_T^{mis} is corrected for JES and electrons and muons momentum scale
- Pile-up (PU) mitigation techniques are applied

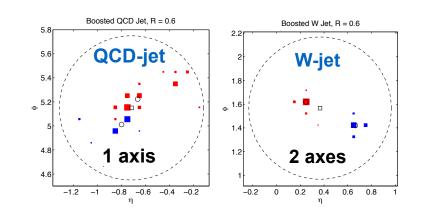
How... Merged jets techniques

- For resonances above 1 TeV, a significant fraction of bosons is reconstructed as a single jet
 - Using *R*=0.8 jets helps collecting the full boson decay within a fat jet
- Mass of the jet (corrected for soft radiation contribution) can be used to select jets from bosons
- Jet grooming remove soft and large angle radiation
 - Before grooming, PU is removed
 - Re-cluster iteratively particles in 2 sub-jet and remove softer contribution
 - Jet mass resolution is approximately 10%
 - No W/Z/H ambiguity after mass selection



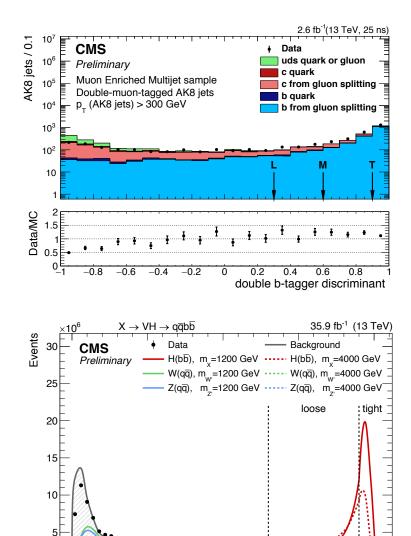
How... Merged jets techniques

- For resonances above 1 TeV, a significant fraction of bosons is reconstructed as a single jet
 - Using R=0.8 jets helps collecting the full boson decay within a fat jet
- Jet pruning was used till 2015 but soft drop more stable against PU and it is both infrared and collinear safe
- All 2016 analysis use soft-drop
- Control sample (high momentum $t\bar{t}$) are used to check data-simulation agreement



How... Merged jets techniques

- For resonances above 1 TeV, a significant fraction of cases is reconstructed as a single jet
 - Using *R*=0.8 jets helps collecting the full decay within a fat jet
- N-subjettiness is another technique to identify a fat jet with more than one sub-jet
- If more than one parton contribute to the fat jet...
 - Energy-flow align along more than 1 momentum direction
- New variable (sub-jettiness ratio) used to discriminate 1-subjet to 2subjets composition
 - Validation on data is needed
 - Uncertainties derived from $W \rightarrow q\bar{q}$ in $t\bar{t}$ enriched samples



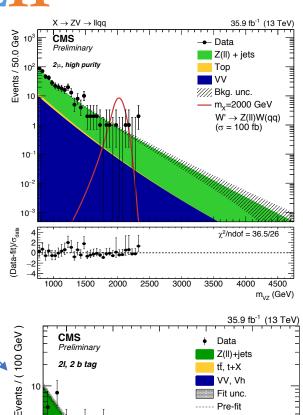
How... b-jets tagging

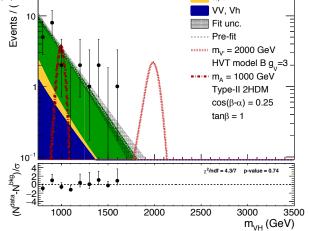
- Dedicated Higgs-tagger using double-b tagger applied to fat jets
 - Inputs based on observables from secondary vertices and tracks associated to each sub-jet axis
 - MVA algorithm gives a 80% (30%) Higgs-Jet tag efficiency for tight (loose) working point
- At the same signal efficiency, the mis-tag rate is lower by a factor of 2 compared to the sub-jet b tagging approach
 - Identify 2 sub-jet
 - b-tag each sub-jet

-0.5

0.5

b tagging discriminator

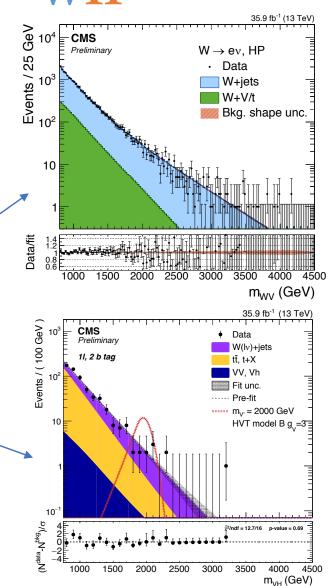



Resonances ZZ – ZW – ZH

Final state with $Z \rightarrow e^+e^-, \mu^+\mu^-$

Second boson decay

- 2q in 1 merged or 2 unmerged jets -
- 2 neutrinos
- 1 fat jet from 2 merged b from the Higgs
- A bump search has been used in the 2q and 2b analysis
 - Low and high mass signal extracted separately for 2q
 - Mass limits on W and spin-2 graviton signal extracted for 2q
 - Mass limits on Z', W' and the 2 Higgs doublet model for 2b
- A Jacobian edge has been searched for the 2 neutrinos analysis
 - Data driven bkgd estimation from γ +jets events
 - Good sensitivity for resonance below 1.5 TeV

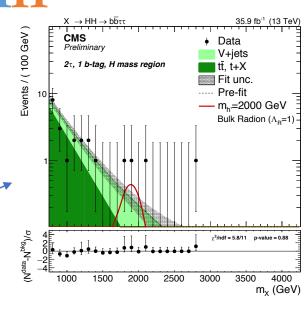


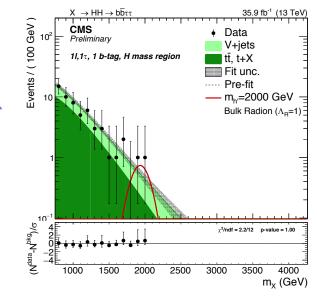
Resonances WZ – WW – WH

Final state with $W \rightarrow l_V$

Second boson decay

- 2q in 1 merged jet from Z or W
- 1 fat jet from 2 merged b from the Higgs
- The Higgs fat jet is required to have at least 1 *b*-tagged sub-jet
 - No significant deviation from the SM found
- Search in the 1.0 to 4.5 TeV range for Z and W as second boson
 - 4 categories depending on lepton flavor and sub-jettiness ratio
 - All distribution compatible with SM





Resonances HZ – **HW** – **HH** Final state with $H \rightarrow \tau^+ \tau^-$

- Boosted taus in the final state
- Higgs searched as a single fat jet
- If 2-sub-jet in the fat jet → τ-id applied → 2 τ-tagged sub-jet → event selected
- Event selected also if a Higgs candidate found in $e\tau_h$ or $\mu\tau_h$
- Second boson decay
 - Soft-drop algorithm & N-subjettiness
 - *b*-Tag applied to identify the Higgs boson

Resonances ZZ – ZW – ZH

Final state with $Z \rightarrow \nu \bar{\nu}$

- Large missing energy or missing hadronic activity
- Second boson decay
 - Largest fat jet and $p_T > 200 \text{ GeV}$
 - Soft-drop algorithm & N-subjettiness
 - *b*-Tag applied to identify the Higgs boson
- Transverse mass is used for the reconstruction of the *ZV ZH* candidate
 - Z boson \vec{p}_T is set equal to \vec{p}_T^{miss}
- Unbinned profile likelihood fit on the transverse mass diboson candidate
- No excess found with respect to SM predictions

(N^{data}-N^{bkg})/σ

1000

1500

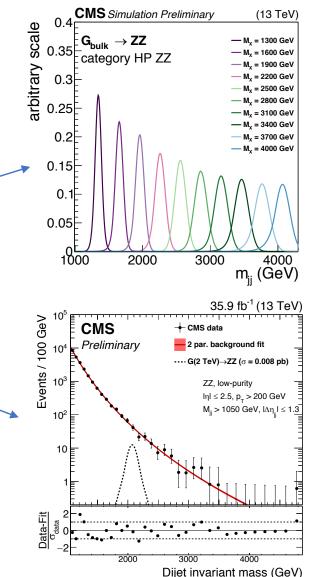
2000

2500

y²/ndf = 7.9/12 p-value = 0.79

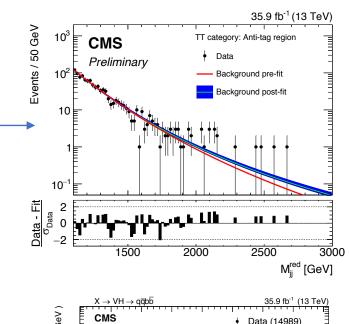
3000

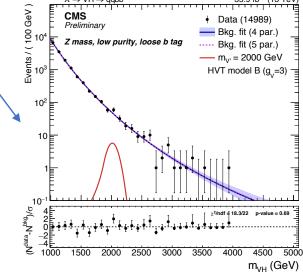
m_{VH} (GeV)


3500

Resonances ZZ - ZW - WWFinal state with $(q\bar{q})(q\bar{q})$

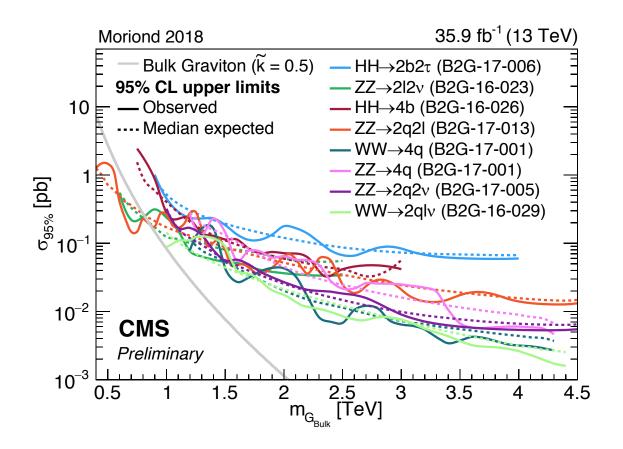
- Events with 2 fat jets are selected
 - Both fat jet with $p_T > 200 \text{ GeV}$
 - Soft-drop algorithm & N-subjettiness
 - No high p_T leptons
- Signal shape in di-jet invariant mass spectrum modelled with a Gaussian core and exponential tail
- Background modelled using smooth, parametrized, monotonically decreasing distribution
- Maximum likelihood fit performed on data, fixing the number of expected signal events to zero





Resonances HZ – **HW** – **HH** Final state with $H \rightarrow b\bar{b}$

- Second boson decay
 - If $H \rightarrow b\overline{b}$, 2 fat jets with with $p_T > 300$ GeV, soft-drop algo and double b-tagger for both jets
 - If $V \rightarrow q\bar{q}$, 2 fat jets with with $p_T > 200$ GeV, soft-drop algo and double b-tagger for the Higgs candidate
- Several categories defined in all 3 channels depending on the *b*-Tag working points and the soft-drop mass
- Separated unbinned profile likelihood fit on the background and signal shape

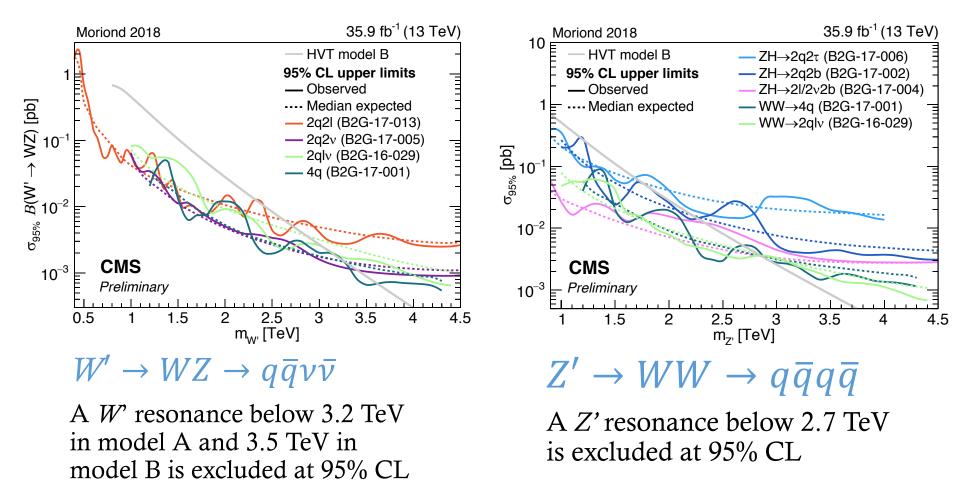


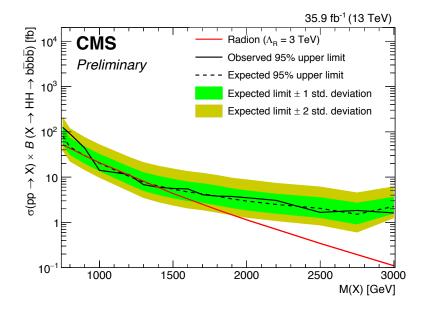
Limits Spin-2 bulk graviton

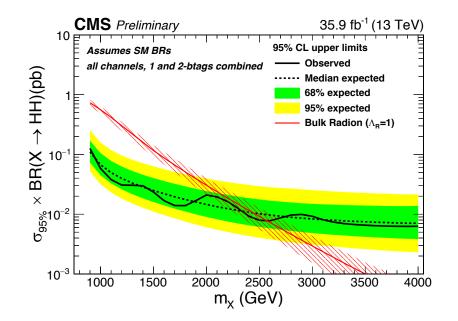
$X \to ZZ \to l l \nu \bar{\nu}$

For the narrow width resonances with $\tilde{k} = 0.5$, the masses below 800 GeV are excluded at 95% CL

$X \to WW \to l\nu q \bar{q}$


WW resonances with $\tilde{k} = 0.5$, the masses below 1TeV are excluded at 95% CL


Limits W' and Z' resonances in the HVT model A/B

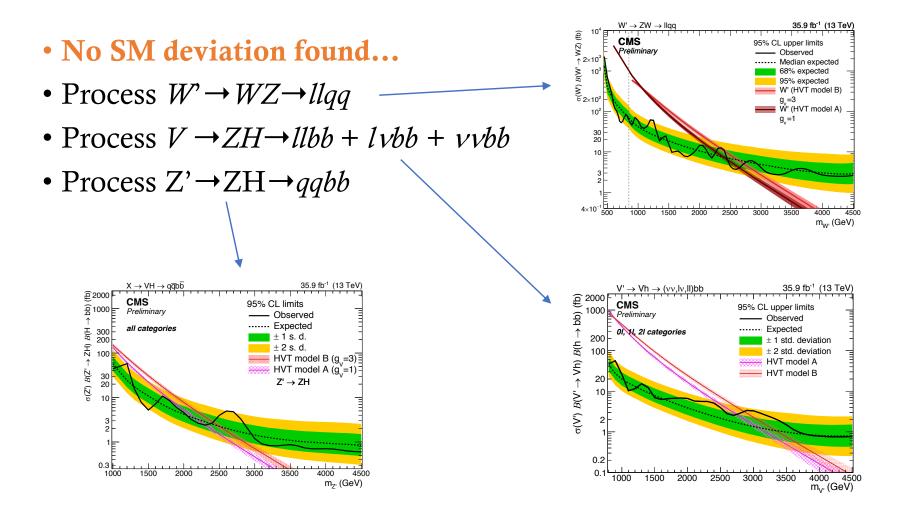


Limits Randall-Sundrum radion

$X \to HH \to b\bar{b}b\bar{b}$

For the mass scale $\Lambda_R = 3$ TeV, a radion of mass between 970 and 1450 GeV is excluded at 95% CL

$X \to HH \to b \bar{b} \tau^+ \tau^-$


Assuming $\Lambda_R = 1$ TeV. a radion resonance with mass lower than 2.5 TeV is excluded at 95% CL

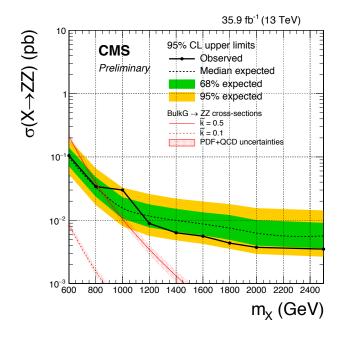
Limits The other analysis...

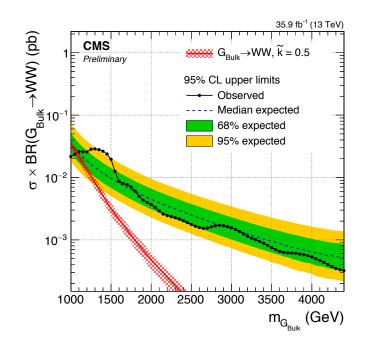
Conclusions and the future...

- Wide program of di-bosons resonance search at CMS presented
 - We are probing many BSM theories
 - None till now has been found working...
 - But higher statistics is coming!
- CMS is ready to improve its searches
 - More work to better understand jets substructure
 - Non stop work to improve *b*-Tag and τ -Tag techniques
 - Multi-dimensional fits to make best use of statistics

Well set up to make best use of full Run-2 data set

Bibliography


- <u>B2G-16-023</u> Search for diboson resonances in the 212ν final state
- <u>B2G-16-026</u> Search for heavy resonances decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at $s\sqrt{=13}$ TeV
- <u>B2G-16-029</u> Search for heavy resonances decaying to pairs of vector bosons in the 1 nu q qbar final state with the CMS detector in proton-proton collisions at sqrt s = 13 TeV
- <u>B2G-17-001</u> Search for massive resonances decaying into WW, WZ, ZZ, qW and qZ in the dijet final state at $\sqrt{s}=13$ TeV
- <u>B2G-17-002</u> Search for heavy resonances decaying into a vector boson and a Higgs boson in hadronic final states with 2016 data
- <u>B2G-17-004</u> Search for a heavy resonance decaying into a vector boson and a Higgs boson in semileptonic final states at $\sqrt{s} = 13$ TeV
- <u>B2G-17-005</u> Search for heavy resonances decaying into a Z boson and a vector boson in the vv qq final state
- <u>B2G-17-006</u> Search for heavy resonances decaying into two Higgs bosons or into a Higgs and a vector boson in proton-proton collisions at 13 TeV
- <u>B2G-17-013</u> Search for new heavy resonances decaying into a Z boson and a massive vector boson in the $2\ell 2q$ final state at $s\sqrt{=13}$ -TeV
- <u>LHC Seminar</u> Search for heavy resonances in diboson final states at CMS



Limits Spin-2 bulk graviton

$X \to ZZ \to l l \nu \bar{\nu}$

For the narrow width resonances with $\tilde{k} = 0.5$, the masses below 800 GeV are excluded at 95% CL

$X \to WW \to l \nu q \bar{q}$

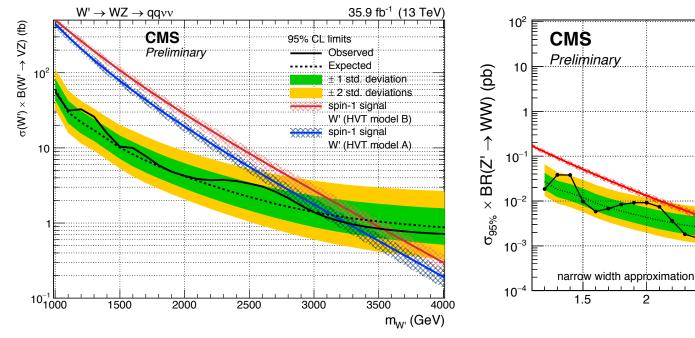
WW resonances with $\tilde{k} = 0.5$, the masses below 1TeV are excluded at 95% CL

35.9 fb⁻¹ (13 TeV)

Expected ± 1 std. deviation

Expected ± 2 std. deviation

WW+WZ+ZZ


3.5

σ_{TH}×BR(Z'→WW) HVT_B

HP+LP

Observed

Limits W' and Z' resonances in the HVT model A/B

$W' \to WZ \to q \bar{q} \nu \bar{\nu}$

A *W*' resonance below 3.2 TeV in model A and 3.5 TeV in model B is excluded at 95% CL

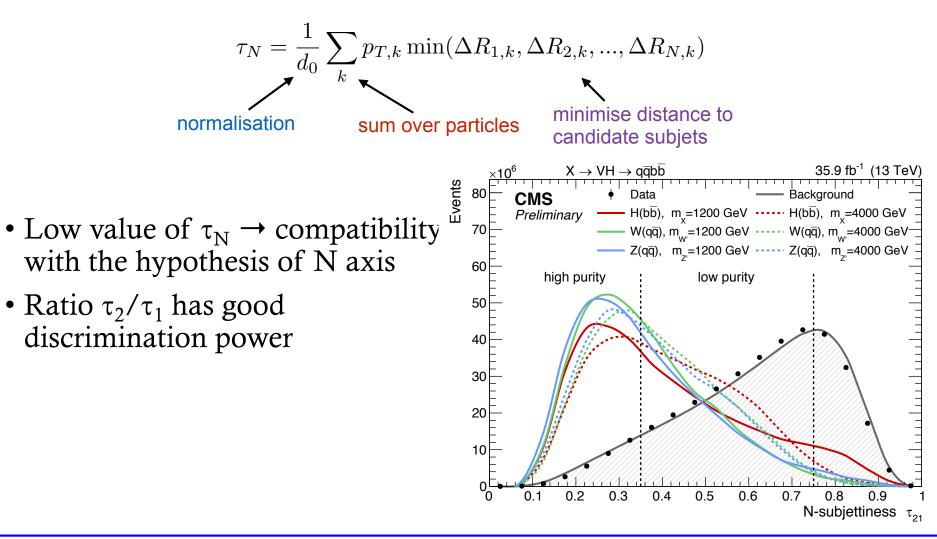
$Z' \to WW \to q \bar{q} q \bar{q}$

A Z' resonance below 2.7 TeV is excluded at 95% CL

2.5

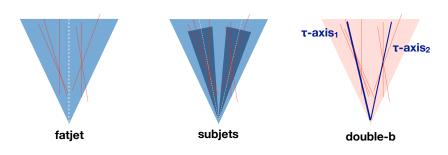
M_{z'} (TeV)

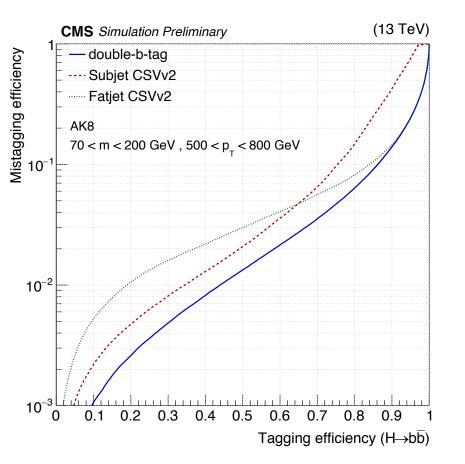
3


Jet grooming: soft drop algo

- The goal of jet grooming is to re-cluster the jet constituents while applying additional requirements that eliminate soft, large-angle QCD radiation that increases the jet mass compared to the initial V-boson, quark or gluon mass.
- Soft drop is both infrared and collinear safe in contrast the *jet pruning* algorithm used in 2015 CMS analysis, while providing similar discrimination power
- The soft-drop algorithm use from a Cambridge-Aachen jet clustered from the constituents of the original AK8 jet

Backup N-subjettiness ratio





Backup B-Tagging

CMS-PAS-BTV-15-002

Identification of double-b quark jets in boosted event topologies

