

Di-jets: The Path to the (un)Polarized Partonic Photon Structure at EIC

Xiaoxuan Chu

Key laboratory of Quark & Lepton Physics Institute of Particle Physics

Brookhaven National Lab

DIS 2018, 16-20 April Kobe, Japan

Outline

Introduction

Jets at EIC

- q/g jet discrimination
- Underlying events
- Photon structure at EIC
 - Unpolarized photon PDFs
 - Flavor tagging
 - Polarized photon PDFs

Summary

Part 1 Jets at EIC

Why jets?

- Partons produced in hard scattering
- Parton radiation
- Hadronization
- High possibility to get a spray of collimated particles with high momentum
- And also low momentum particle under wide angles
- The evidence of di-jet: two sprays of particles are detected.
- Jets carry more information on the original partons than hadrons

4

Di-jets at EIC from PYTHIA

Resolved

- > **PYTHIA** is used in the event generation. FastJet is used for jet reconstruction.
- > Anti- k_{T} algorithm is applied.
- > Di-jet events are selected by the cuts: trigger jet and associate jet p_T >4.5 GeV.
- Do geometry matching in the simulation, we can tag quark/gluon jets.
 - $\Delta R\{parton jet\} = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

q/g jet discrimination

TMVA Method

Plots are from Brian Page:

Toolkit for Multivariate Data Analysis with ROOT(TMVA) For current study, place cut where signal purity = signal efficiency

Underlying events (region method)

Underlying events: everything except the particles fragmented from the hard scatted partons

Toward: $|\Delta \Phi| < 60$ degree, Transverse: $60 < |\Delta \Phi| < 120$, Away: $|\Delta \Phi| > 120$

Trigger Jet is Jet with highest p_T $\Delta \Phi = \Phi_part - \Phi_Jet 1$

Measurements:

- 1. charged multiplicity density, sum pt density
- 2. Density difference in 3 regions

X Chu, DIS 2018

Underlying events

off-axis method

- \checkmark In each event, we analyze jets with high momentum, jet by jet. ✓ For each jet, we define two cones (r = 0.4).
- \checkmark Each cone is centered at the same as the jet but $\pm \pi/2$ away in Φ
- \checkmark Take the particles from the two cones as underlying event.

14

Results from the two different methods are consistent.

Compared with data from STAR.

Zilong Chang's talk tomorrow.

Part 2 Photon structure @ EIC

Di-jet in resolved/direct process

"Resolved process"

- Hadronic photon (with strcture)
- x_{γ} is smaller than 1
- Di-jet production

Similar with pp collision

- Separate di-jet produced in resolved and direct processes, to get clear resolved process
- Reconstruct x_{γ} by using di-jet as observables: $x_{\gamma}^{rec} = \frac{1}{2E_{\gamma}}(p_{T1}e^{-\eta_1})$
 - Two jets with highest P_T
 - Parton densities in the photon can be extracted by measuring
 di-jet cross section

$$\frac{d^2\sigma}{dx_{\gamma}dp_T} = \gamma_{flux} \otimes PDF_{\gamma}(x_{\gamma}, Q^2, \mu) \otimes PDF_p(x_p, \mu) \otimes d\sigma_{ij}(\theta^*, Q^2, \mu)$$

Reproduce HERA data

Kinematics cuts from HERA: 27.5GeV×820GeV, 0.2 < y < 0.83, $|\Delta \eta^{\text{jets}}| < 1, 0 < \eta^{\text{jet1}} + \eta^{\text{jet2}} < 4$ $E^{\text{jet1}}_{\text{T}}, E^{\text{jet2}}_{\text{T}} > 7.5 \text{ GeV}$, $E^{\text{jet1}}_{\text{T}} + E^{\text{jet2}}_{\text{T}} > 20 \text{ GeV}$, $|E^{\text{jet1}}_{\text{T}} - E^{\text{jet2}}_{\text{T}}| / (E^{\text{jet1}}_{\text{T}} + E^{\text{jet2}}_{\text{T}}) < 0.25$

Strong correlation observed between x_{γ}^{rec} and the input x_{γ}^{input} in the simulation indicates the di-jet observable is ideal to reconstruct x_{γ}

Reconstruction provides a good way to separate direct/resolved x_{γ}^{rec} contribution($x_{\gamma}^{rec} < 0.75$)

Our simulation results produce the existing data well

4/17/18

X Chu, DIS 2018

 $(E_{\tau}^{jets})^2 [GeV^2]$

Unpolarized photon structure @ EIC

20GeV×250GeV, 0.01<y<0.95, two highest $p_T jets$, $p^{jet1}_T > 5$ GeV, $p^{jet1}_T > p^{jet2}_T > 4.5$ GeV, $\eta^{jets} | < 4.5$, Inside the jet, stable particle $p_T > 250$ MeV

• Di-jet method provides a good way to reconstruct x^{rec}_{γ}

- Di-jet method can help us separate resolved/direct process $(x^{rec} < 0.6)$
- The simulation shows the capability to measure the cross section for di-jet production, with high accuracy in a wide kinematic range at EIC and extract the unpolarized photon PDFs from a global fit

Select jet from the photon side

Flavor tagging: quarks

Polarized cross section

$$\frac{d^2 \Delta \sigma}{dx_{\gamma} dp_T} = \gamma_{flux} \otimes \Delta PDF_{\gamma}(x_{\gamma}, Q^2, \mu) \otimes \Delta PDF_p(x_p, \mu) \otimes d\sigma_{ij}(\theta^*, Q^2, \mu)$$

-2

$$\Delta \sigma = \frac{1}{2} (\sigma^{++} - \sigma^{+-})$$

- The simulation shows the capability to measure the polarized cross section for dijet production, with high accuracy in a wide kinematic range at EIC
- First measurement of polarized photon PDFs with high precision
- Flavor tagging can also be applied in polarized case

Input: polarized proton-PDF: DSSV-14 photon-PDF: Phys. Lett. B 337 373-375 (1994)

X Chu, DIS 2018

Asymmetry

X Chu, DIS 2018

Advantages @ EIC

- High luminosity to define the uncertainty band
- First measurement of polarized photon
 PDFs with high precision
- Flavor tagging can also be applied in polarized case

Summary

• Jets are reconstructed @ EIC

➢ Quark jet and gluon jet discrimination

Underlying events

• Photon PDFs can be extracted by reconstructing x_{γ}

 $\succ x^{rec}_{\gamma}$ is correlated with input

➢ We can effectively access the underlying photon PDFs at EIC

- Flavor tagging can be applied to identify the flavor of the parton from the photon
- Pol. Photon PDF can the first time be measured in the world.

[Ref:Phys.Rev.D.96.074035]

Back up

Planed EIC @ BNL: eRHIC

Use simulation to reproduce data

PYTHIA is used in simulation to generate each event : all particle info during the whole collision process, we reproduce the world data, the simulation is reliable.

Proton partonic kinematics

Parton momentum fraction: photon gluon fusion

- To measure gluon, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed

4/17/18

Direct Vs resolved process

- Plot reconstructed X_γ for direct and resolved processes
- Direct processes should concentrate toward 1 while resolved processes are at lower values
- Direct processes dominate at higher Q² while resolved are more prevalent at low Q²
- Cut of $X_{\gamma} > 0.7$ enhances the direct fraction at all Q^2

PYTHIA simulation

$w = \hat{a}(\hat{s}, \hat{t}, \mu^2, Q^2) \bullet$	$\frac{\Delta f_a^{\gamma^*}(x_a,\mu^2)}{f_a^{\gamma^*}(x_a,\mu^2)} \bullet$	$\frac{\Delta f_b^N(x_b,\mu^2)}{f_b^N(x_b,\mu^2)}$

PYTHIA Input Set	
Q ²	10 ⁻⁵ - 1
Proton PDFs	CTEQ 5M
Photon PDFs	SAS

Polarized photon PDF(delta f_a)		
Minimal polarization	$\Delta f_a^{\gamma^*}(x_a,\mu^2) = 0$	
Maximal polarization	$\Delta f_a^{\gamma^*}(x_a,\mu^2) = f_a^{\gamma^*}(x_a,\mu^2)$	
	DCCV	

UnPolarized photon PDF(f_a)	CTEQ 5m
UnPolarized proton PDF(f_b)	SAS

Flavor tagging: quarks

28

Motivation

- Does the kink occur at the same Q² for eA and for polarized ep
- Photon structure as fct. of Q²

Kinematics cuts for di-jet methods

20GeV×250GeV, 0.01<y<0.95, two highest $p_T jets$, $p^{jet1}_T > 5$ GeV, $p^{jet1}_T > p^{jet2}_T > 4.5$ GeV, $|\eta^{jets}| < 4.5$, Inside the jet, stable particle $p_T > 250$ MeV

- At positive η_{LAB} , especially $\eta_{LAB} > 2$, the cross section is dominated by resolved process
- η^{asso}_{LAB} distribution of associate jet shows the same result

Probe the proton structure

Accessing proton with di-jets

Direct Vs resolved process

- Plot reconstructed X_γ for direct and resolved processes
- Direct processes should concentrate toward 1 while resolved processes are at lower values
- Direct processes dominate at higher Q² while resolved are more prevalent at low Q²
- Cut of $X_{\gamma} > 0.7$ enhances the direct fraction at all Q^2

Proton partonic kinematics

Parton momentum fraction: photon gluon fusion

- To measure gluon, need to probe the parton coming from the proton
- Momentum fraction of the parton from proton is well reconstructed

4/17/18

Polarized photon PDFs

Based on the unpolarized data from PYTHIA, we add a weight on an event-by-event basis just in analysis code to make it polarized.

 \blacktriangleright In resolved process, For each event, ab \longrightarrow cd process, the weight is calculated as:

$$w = \hat{a}(\hat{s}, \hat{t}, \mu^2, Q^2) \bullet \frac{\Delta f_a^{\gamma^*}(x_a, \mu^2)}{f_a^{\gamma^*}(x_a, \mu^2)} \bullet \frac{\Delta f_b^N(x_b, \mu^2)}{f_b^N(x_b, \mu^2)}$$
$$\hat{a}(\hat{s}, \hat{t}, \mu^2) = \Delta \hat{\sigma}/(2\hat{\sigma})$$

the input pol photon and proton PDFs, we can get delta_f

Hard subprocess **asymmetry** depending on the type of the 2-2 process, the parton kinematics described by Mandelstam variables and photon virtuality.

Unplo photon PDFs and Unpol proton PDFs, from LHAPDF to get the unpol photon PDFs

Histogram ->Fill(variable, weight)

 \land \land \land

Hard process Asymmetry $\stackrel{\wedge}{a}$ $w = \hat{a}(\hat{s}, \hat{t}, \mu^2, Q^2) \bullet \frac{\Delta f_a^{\gamma^*}(x_a, \mu^2)}{f_a^{\gamma^*}(x_a, \mu^2)} \bullet \frac{\Delta f_b^N(x_b, \mu^2)}{f_b^N(x_b, \mu^2)}$

Reaction	$d\hat{\sigma}/d\hat{t}$	$d\Delta\hat{\sigma}/d\hat{t}$
qg ightarrow qg	$(\hat{s}^2 + \hat{u}^2)[\frac{1}{\hat{t}^2} - \frac{4}{9\hat{s}\hat{u}}]$	$2(\hat{u}^2 - \hat{s}^2)[\frac{4}{9\hat{s}\hat{u}} - \frac{1}{\hat{t}^2}]$
$\bar{q}g ightarrow \bar{q}g$	$(\hat{s}^2 + \hat{u}^2)[\frac{1}{\hat{t}^2} - \frac{4}{9\hat{s}\hat{u}}]$	$2(\hat{u}^2 - \hat{s}^2)[\frac{4}{9\hat{u}\hat{s}} - \frac{1}{\hat{t}^2}]$
$gg \to q \bar{q}$	$\frac{\hat{u}^2 + \hat{t}^2}{6\hat{u}\hat{t}} - \frac{3}{8}\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2}$	$\frac{3}{4}\frac{\hat{t}^2+\hat{u}^2}{\hat{s}^2}-\frac{\hat{u}^2+\hat{t}^2}{3\hat{u}\hat{t}}$
gg ightarrow gg	$\frac{9}{2}(3 - \frac{\hat{t}\hat{u}}{\hat{s}^2} - \frac{\hat{s}\hat{u}}{\hat{t}^2} - \frac{\hat{s}\hat{t}}{\hat{u}^2})$	$9(-3+2\frac{\hat{s}^2}{\hat{u}\hat{t}}+\frac{\hat{u}\hat{t}}{\hat{s}^2})$
$q_a q_b ightarrow q_a q_b$	$\frac{4}{9} \left[\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \delta_{ab} \left(\frac{\hat{s}^2 + \hat{t}^2}{\hat{u}^2} - \frac{2\hat{s}^2}{3\hat{t}\hat{u}} \right) \right]$	$\frac{8}{9} \left[\frac{\hat{s}^2 - \hat{u}^2}{\hat{t}^2} - \delta_{ab} \left(\frac{\hat{t}^2 - \hat{s}^2}{\hat{u}^2} + \frac{2\hat{s}^2}{3\hat{t}\hat{u}} \right) \right]$
$q_a \bar{q}_b \rightarrow q_c \bar{q}_d$	$\frac{4}{9}\left[\delta_{ac}\delta_{bd}\frac{\hat{u}^2}{\hat{t}^2} + \delta_{cd}\delta_{ab}\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} - \right]$	$\frac{8}{9}[-\delta_{ac}\delta_{bd}\frac{\hat{u}^2}{\hat{t}^2} - \delta_{cd}\delta_{ab}\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^2} +$
	$\delta_{ad}\delta_{cd}\frac{2\hat{u}^2}{3\hat{s}\hat{t}}+\delta_{ab}\delta_{bd}\frac{\hat{s}^2}{\hat{t}^2}]$	$\delta_{ad}\delta_{cd}rac{2\hat{u}^2}{3\hat{s}\hat{t}}+\delta_{ab}\delta_{bd}rac{\hat{s}^2}{\hat{t}^2}]$
$q\bar{q} \to gg$	$rac{32}{27}rac{\hat{t}^2+\hat{u}^2}{\hat{u}\hat{t}}-rac{8}{3}rac{\hat{t}^2+\hat{u}^2}{\hat{s}^2}$	$-rac{64}{27}rac{\hat{t}^2+\hat{u}^2}{\hat{u}\hat{t}}+rac{16}{3}rac{\hat{t}^2+\hat{u}^2}{\hat{s}^2}$

$$\hat{a}(\hat{s}, \hat{t}, \mu^{2}) = \Delta \hat{\sigma} / (2 \hat{\sigma})$$

$$\hat{s} = (p_{a} + p_{b})^{2}, \hat{t} = (p_{a} - p_{c})^{2}, \hat{u} = (p_{a} - p_{d})^{2}$$

[ref: Phys. Rev. Lett. 101 (2008) 72001; Phys. Rev. D 80 (2009) 034030]

EIC Advantage

How to match di-jet with two final partons

Geometric match:

 $\Delta R\{parton - jet\} = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ $\Delta E \{ parton - jet \}$ 10 counts ∆ E{parton-PhotonJet} 8 **10**⁴ <u> ...h..h..h..h..h..h..h..</u> trigger jet and its parton 6 10² associte jet and its parton 10³ 0 10² 10 -2 10 -6 1 -8 1 -10 2 3 6 0 1 4 5 0.5 1.5 2 2.5 3 1 $\Delta \mathbf{R}$ Δ R{parton-PhotonJet} beamparton match **Two final** Di-jet partons tgtparton

4/17/18

X Chu, DIS 2018

x^{rec} , separation

• Di-jet method shows better separation of resolved and direct photon

X Chu, DIS 2018

tgtparton – index 10

h_{IAB} separation

For both methods:

➤ - At positive η_{LAB} , especially $\eta_{LAB} > 2$, the cross section is dominated by resolved process.

 η^{asso}_{LAB} distribution of associate hadron/jet shows the same results

2 interaction regions

Introduction of photon structure

- Behavior of the exchanged photon: Bare photon state, Hadronic photon state
 - Photon can be superposition of above states! $(t \approx E/M^2)$
 - The "internal structure" of photons is a manifestation of **quantum fluctuations**: Photon splits into parton content
 - We measure the photon structure in **photoproduction**: Low Q² events
- Photon Parton Distribution Functions (PDFs): Density of the partons $q(x,Q^2)$

$$f(x,Q^2) = \begin{bmatrix} \overline{q}(x,Q^2) \\ g(x,Q^2) \end{bmatrix}$$

- Unpolarized photon structure: arXiv:9504004, arXiv:9710018, Eur. Phys. J. C 10, 363-372 (1999), DESY 97-164
- **Polarized photon structure:** (critical input for ILC γγ option) Experiment: no data Theory: Z. Phys. C 74, 641—650 (1997) and arXiv:971125

 x_{γ} is defined as the momentum fraction of the parton from the photon

HERA data: gluon density of the photon

Parton-jet match

- As we have known how to separate "direct" and "resolved" process, then we measure jet kinematics in resolved process
- Basic info about resolved process and how to tag di-jet back to two final partons
- "Path" to do parton-jet match:
 - beamparton one final parton one jet of di-jet

tgtparton - another final parton - another jet of di-jet

Jet from photon sideJet from proton side

Geometric match $\Delta R \{ parton - jet \} = \sqrt{\Delta \phi^2 + \Delta y^2}$ $\Delta E \{ parton - jet \}$

4/17/18

Tagging gluon jet

Leading Pion (the highest pt pion) pt fraction compared to the jet pt

- Leading pion plots show better sensitivity
- It's easy to identify quark jet, but not for gluon jet