Searches for additional Higgs bosons in the MSSM with the ATLAS detector

Alvaro Lopez Solis

On behalf of the ATLAS collaboration

DIS 2018 - Kobe - Japan 18th April 2018

erc

Introduction

Discovery of a new scalar in 2012 at the LHC at m_h = 125 GeV.

Masses, spin/parity and couplings compatible with the SM Higgs boson.

Possibility that there are more Higgs bosons → Still not ruled out by measurements.

In the MSSM, two Higgs doublets $\Phi_u = (\Phi_u^+ \Phi_u^0)$ and $\Phi_d = (\Phi_d^0 \Phi_d^-) \rightarrow 5$ mass eigenstates: h (SM Higgs), H, A, H+,H-

18th April 2017 A.Lopez Solis - DIS 2018

Run I legacy

No new resonances were found during Run I. Main interpretation using hMSSM \rightarrow Phenomenology approximately described by tan β and m_A.

In Run II, results are public with partial 2015+2016 dataset or full 2015+2016 luminosity (36.1 fb⁻¹)

Focusing on charged Higgs and A/H searches → High-mass searches/di-Higgs/Higgs couplings talks during the workshop.

Charged Higgs searches: H^{+,-} → τ ν

ATLAS-CONF-2016-088

TC+

 $\mathcal{L} = 14.7 \text{ fb}^{-1}$

Final state with hadronic τ 's and at least 3 jets from tbH+ production (at least 1b-tagged) and E_T^{miss}

- Main backgrounds are the $t\bar{t}$, jet $\to \tau$, W $\to \tau v$ and Z $\to \tau \tau$.
 - Data-driven jet $\rightarrow \tau$ fake factors estimated on multijet enriched CRs.
 - e/μ misidentification rate estimated on $Z \rightarrow ee$ events.
 - Other backgrounds: shape from simulation and validated in data control regions.

• Main uncertainties related to jet $\rightarrow \tau$ fake factors, jet energy scale and tt parton shower model.

Sample	Event yield
True $\tau_{\rm had}$	Syst. Stat.
$t\bar{t}$ & single-top-quark	$2880 \pm 770 \pm 25$
W o au u	$265 \pm 51 \pm 18$
Z o au au	$43 \pm 6.8 \pm 7.6$
diboson (WW, WZ, ZZ)	$13.8 \pm 2.2 \pm 1.7$
Misidentified $e, \mu \rightarrow \tau_{\text{had-vis}}$	$126 \pm 24 \pm 6.5$
Misidentified jet $\rightarrow \tau_{\text{had-vis}}$	$1170 \pm 110 \pm 16$
All backgrounds	$4500 \pm 800 \pm 36$
H^+ (200 GeV), hMSSM tan $\beta = 60$	$523 \pm 86 \pm 4$
H^+ (1000 GeV), hMSSM tan $\beta = 60$	$7.5 \pm 0.6 \pm 0.05$
Data	4645

Charged Higgs searches: $H^{+,-} \rightarrow \tau \nu$

ATLAS-CONF-2016-088

 $\mathcal{L} = 14.7 \text{ fb}^{-1}$

Final state with hadronic τ 's and at least 3 jets from tbH+ production (at least 1b-tagged) and E_T^{miss}

- Main backgrounds are the $t\bar{t}$, jet $\to \tau$, W $\to \tau v$ and Z $\to \tau \tau$.
 - Data-driven jet $\rightarrow \tau$ fake factors estimated on multijet enriched CRs.
 - e/μ misidentification rate estimated on $Z \rightarrow ee$ events.
 - Other backgrounds: shape from simulation and validated in data control regions.

• Main uncertainties related to jet $\rightarrow \tau$ fake factors, jet energy scale and tt parton shower model.

Sample	Event yield
True $\tau_{\rm had}$	Syst. Stat.
<i>tī</i> & single-top-quark	$2880 \pm 770 \pm 25$
W o au u	$265 \pm 51 \pm 18$
Z o au au	$43 \pm 6.8 \pm 7.6$
diboson (WW, WZ, ZZ)	$13.8 \pm 2.2 \pm 1.7$
Misidentified $e, \mu \rightarrow \tau_{\text{had-vis}}$	$126 \pm 24 \pm 6.5$
Misidentified jet $\rightarrow \tau_{\text{had-vis}}$	$1170 \pm 110 \pm 16$
All backgrounds	$4500 \pm 800 \pm 36$
H^+ (200 GeV), hMSSM tan $\beta = 60$	$523 \pm 86 \pm 4$
H^{+} (1000 GeV), hMSSM tan $\beta = 60$	$7.5 \pm 0.6 \pm 0.05$
Data	4645

Charged Higgs searches: $H^{+,-} \rightarrow \tau \nu$ ATLAS-CONF-2016-088

- Fits on SR m_T distribution defined to get one medium ID hadronic τ plus E_T^{miss} and b-jets.
- No BSM is observed → Limits on cross-section

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\tau,E_{\rm T}^{\rm miss}})}$$

 $\mathcal{L} = 13.2 \text{ fb}^{-1}$

- Similar production than $H^{\downarrow} \rightarrow \tau \nu \rightarrow \text{Final state}$: 2 top-quark and 2-b-quarks
- At least 4 jets, at least two b-jets and 1 lepton.
- Main background is tt. divided according to additional jet flavour.
- Profit of the high number of jets and b-jets in the signal.
 - Define SRs and CRs depending of the N_{bjet} and N_{jet}
 - Trained BDTs for each simulated signal
- Dominated by tt+1b modeling, normalization and b-tagging efficiency

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Uncertainty Source	$\Delta\mu$ (1	H_{300}^{+})	$\Delta\mu$ (1	H_{800}^{+})
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$t\bar{t}+ \ge 1b$ modelling	+0.53	-0.53	+0.07	-0.07
Background model statistics +0.19 -0.19 +0.05 -0.05 Jet energy scale and resolution +0.18 -0.17 +0.03 -0.03 $t\bar{t}$ +light modelling +0.16 -0.16 +0.03 -0.03 Other background modelling +0.15 -0.14 +0.03 -0.03 Jet-vertex association, pileup modelling +0.12 -0.11 +0.01 -0.01 Luminosity +0.12 -0.12 +0.01 -0.01 Light lepton (e, μ) ID, isolation, trigger +0.01 -0.01 < +0.01	Jet flavour tagging	+0.30	-0.29	+0.07	-0.07
Jet energy scale and resolution $+0.18$ -0.17 $+0.03$ -0.03 $t\bar{t}$ +light modelling $+0.16$ -0.16 $+0.03$ -0.03 Other background modelling $+0.15$ -0.14 $+0.03$ -0.03 Jet-vertex association, pileup modelling $+0.12$ -0.11 $+0.01$ -0.01 Luminosity $+0.12$ -0.12 $+0.01$ -0.01 Light lepton (e, μ) ID, isolation, trigger $+0.01$ -0.01 $< +0.01$ < -0.01 Total systematic uncertainty $+0.72$ -0.79 $+0.13$ -0.11 $t\bar{t}$ + ≥ 1b normalisation $+0.36$ -0.36 $+0.03$ -0.03 $t\bar{t}$ + ≥ 1c normalisation $+0.15$ -0.14 $+0.02$ -0.02 Total statistical uncertainty $+0.44$ -0.43 $+0.08$ -0.08	$t\bar{t}+ \ge 1c$ modelling	+0.23	-0.22	+0.03	-0.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Background model statistics	+0.19	-0.19	+0.05	-0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jet energy scale and resolution	+0.18	-0.17	+0.03	-0.03
Jet-vertex association, pileup modelling +0.12 -0.11 +0.01 -0.01 Luminosity +0.12 -0.12 +0.01 -0.01 Light lepton (e, μ) ID, isolation, trigger +0.01 -0.01 < +0.01	$t\bar{t}$ +light modelling	+0.16	-0.16	+0.03	-0.03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Other background modelling	+0.15	-0.14	+0.03	-0.03
Light lepton (e, μ) ID, isolation, trigger $+0.01$ -0.01 $< +0.01$ < -0.01 Total systematic uncertainty $+0.72$ -0.79 $+0.13$ -0.11 $t\bar{t}+ \geq 1b$ normalisation $+0.36$ -0.36 $+0.03$ -0.03 $t\bar{t}+ \geq 1c$ normalisation $+0.15$ -0.14 $+0.02$ -0.02 Total statistical uncertainty $+0.44$ -0.43 $+0.08$ -0.08	Jet-vertex association, pileup modelling	+0.12	-0.11	+0.01	-0.01
Total systematic uncertainty $+0.72$ -0.79 $+0.13$ -0.11 $t\bar{t}+ \geq 1b$ normalisation $+0.36$ -0.36 $+0.03$ -0.03 $t\bar{t}+ \geq 1c$ normalisation $+0.15$ -0.14 $+0.02$ -0.02 Total statistical uncertainty $+0.44$ -0.43 $+0.08$ -0.08	Luminosity	+0.12	-0.12	+0.01	-0.01
$t\bar{t}+ \geq 1b$ normalisation $+0.36$ -0.36 $+0.03$ -0.03 $t\bar{t}+ \geq 1c$ normalisation $+0.15$ -0.14 $+0.02$ -0.02 Total statistical uncertainty $+0.44$ -0.43 $+0.08$ -0.08	Light lepton (e, μ) ID, isolation, trigger	+0.01	-0.01	< +0.01	< -0.01
$t\bar{t}+ \geq 1c$ normalisation $+0.15$ -0.14 $+0.02$ -0.02 Total statistical uncertainty $+0.44$ -0.43 $+0.08$ -0.08	Total systematic uncertainty	+0.72	-0.79	+0.13	-0.11
Total statistical uncertainty $+0.44 -0.43 +0.08 -0.08$	$t\bar{t} + \geq 1b$ normalisation	+0.36	-0.36	+0.03	-0.03
2	$t\bar{t}+ \geq 1c$ normalisation	+0.15	-0.14	+0.02	-0.02
Total +0.84 -0.90 +0.15 -0.13	Total statistical uncertainty	+0.44	-0.43	+0.08	-0.08
	Total	+0.84	-0.90	+0.15	-0.13

- Simultaneous fit to all SRs and CRs distributions
 - Discriminant variable in SRs: BDTs
 - Discriminant variables in CRs: H_T^{had}

Post-fit N_{events} for CRs and SRs

m_{ы⁺} [GeV]

Neutral Higgs searches: H/A → ττ

JHEP 1801 (2018) 055

 $\phi = h/A/H$

 $\phi = h/A/H$

 $\mathcal{L} = 36.1 \text{ fb}^{-1}$

Searching for two τ 's in the final state. Two τ decays are triggered: $\tau(\text{lep})\tau(\text{had})$ and $\tau(\text{had})\tau(\text{had})$

- $\tau(had)\tau(had)$ selecting two jets passing τ -ID criteria
- \bullet $\tau(lep)\tau(had)$, 1 lepton +1 τ -jet candidate back-to-back.
- b-veto and b-tag to enhance significant for each production mode.
- Main backgrounds come from misidentification of τ and $Z \to \tau\tau$
 - Jet → τ : fake factors depending on jet p_T estimated on data
 CRs enriched with multijet events.
 - τ (lep): e/ $\mu \to \tau$ fakes coming mainly from W+jets, tt and lepton+jets events.
 - Important experimental uncertainties.

g 20000000

A.Lopez Solis - DIS 2018

- Considering ggF and b-associated production: categories with no b-jet or with b-jet.
- No BSM excess is found
 - Discriminant variable is m_Ttot

Neutral Higgs searches: A → Zh

CERN-EP-2017-250

g 200000000

9 00000000

 $\mathcal{L} = 36.1 \text{ fb}^{-1}$

Α

Production via gluon-fusion or bbA. Considering the $Z \rightarrow vv$, ll decays and $h \rightarrow bb$.

- The range of m_A could provide boosted Higgs bosons → Both b-jets merged in a large one.
 - Merged: searching for a large-R (1.0) b-jet. Resolved: searching for two R=0.4 b-jets.
- Arr Z ightharpoonup II, vv: 2-leptons and 0-lepton categories.
- bbA search: requiring one more small b-jet (merged and resolved categories + >=1 b-jet)
- Main uncertainties from jet energy estimation, large-R jet mass calibration and b-tagging efficiency.

CERN-EP-2017-250

- \bullet Discriminant variables are m_{TZh} (OL) and m_{Zh} (2L)
- Combined fits on all categories with 2 small b-jets (1 large-R b-jet) for ggF production
- Fit on additional categories for bbA production

Fitted regions for ggF production Fitted regions for bbA production Events/GeV Events/GeV Events/GeV data **ATLAS** ATLAS bbA (500 GeV) 10⁵ 1.5 TeV HVT x 10 tt, single top 1.5 TeV HVT x 10 \sqrt{s} = 13 TeV, 36.1 fb⁻¹ \sqrt{s} = 13 TeV . 36.1 fb⁻¹ \sqrt{s} = 13 TeV, 36.1 fb⁻¹ tt, single top Z+(bb,bc,cc) tt, single top 2 lep., ≥ 2 jets, ≥ 3 b-tags W+(bb,bc,cc) Z+(bl,cl), Z+l *0 lep.*, ≥ *2 jets*, *2 b-tags* 2 lep., ≥ 1 large-R jets W+(bb,bc,cc) W+(bl,cl), W+I W+(bb,bc,cc) 100 GeV < m_{ii} < 145 GeV 110 GeV < m_{ii} < 140 GeV Z+(bb,bc,cc) 2 b-tags, 0 add. b-tags Z+(bb,bc,cc) Z+(bl,cl), Z+l Z+(bl,cl), Z+l 75 GeV < m , < 145 GeV other other uncertainty uncertainty 10 10 10 10^{-2} 10 10 10^{-2} 10 10^{-4} 10 10^{-5} 1.5 data / bkg 0.5 0.5 200 300 2000 300 400 500 1000 1000 2000 3000 1000 2000 $m_{T,Vh}$ [GeV] m_{Vh} [GeV] m_{Vh} [GeV] $m_{\text{T},Vh} = \sqrt{(E_{\text{T}}^h + E_{\text{T}}^{\text{miss}})^2 - (\vec{p}_{\text{T}}^h + \vec{E}_{\text{T}}^{\text{miss}})^2},$ $m_{Vh} = \sqrt{(E_h + E_{\ell^+\ell^-})^2 - (\vec{p}_h + \vec{p}_{\ell^+\ell^-})^2}$

Additional searches: high-mass searches

Summary plot of Run II results

Limits and reinterpretation of limits of the searches into the plane $[m_A, \tan \beta]$ in the hMSSM framework.

18th April 2017 A.Lopez Soils - DIS 2018 15

Summary plot of Run II results

18th April 201/

Limits and reinterpretation of limits of the searches into the plane $[m_A, \tan \beta]$ in the hMSSM framework.

A.Lopez Soiis - DIS 2018 16

Prospects for next LHC upgrades

Still a large region of the parameter space can be explored

Conclusions

- Presented a small selection of additional Higgs boson searches in ATLAS at 13 TeV.
 - Many other searches also have results interpretable in terms of an additional Higgs production
- By now, there are no significant excesses from additional Higgs bosons in ATLAS data.
- Results presented here correspond to an integrated luminosity of 36.1 fb -1 collected during 2015+2016
- New techniques are being developed: jet color-flow, neural networks ...

Additional material

Charged Higgs phenomenology

https://arxiv.org/pdf/0710.1761.pdf

Neutral heavy Higgses phenomenology

A.Djouadi et al. (arXiv:1307.5205)

The Higgs sector and the MSSM

Assuming that:

A.Djouadi et al. (arXiv:1307.5205)

Observed Higgs is the lightest one (h)

- A.Djouadi et al. (arXiv:1307.5205)
- Only radiative corrections from top and stop are not negligible
- All other SUSY heavy particles are heavy enough to neglect contributions on couplings

$$M_{S}^{2} = M_{Z}^{2} \begin{pmatrix} c_{\beta}^{2} & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & s_{\beta}^{2} \end{pmatrix} + M_{A}^{2} \begin{pmatrix} s_{\beta}^{2} & -s_{\beta}c_{\beta} \\ -s_{\beta}c_{\beta} & c_{\beta}^{2} \end{pmatrix} + \begin{pmatrix} \Delta \mathcal{M}_{11}^{2} & \Delta \mathcal{M}_{12}^{2} \\ \Delta \mathcal{M}_{12}^{2} & \Delta \mathcal{M}_{22}^{2} \end{pmatrix}$$

Radiative corrections

$$\begin{split} M_H^2 &= \frac{(M_A^2 + M_Z^2 - M_h^2)(M_Z^2 c_\beta^2 + M_A^2 s_\beta^2) - M_A^2 M_Z^2 c_{2\beta}^2}{M_Z^2 c_\beta^2 + M_A^2 s_\beta^2 - M_h^2} \\ \alpha &= -\arctan\left(\frac{(M_Z^2 + M_A^2) c_\beta s_\beta}{M_Z^2 c_\beta^2 + M_A^2 s_\beta^2 - M_h^2}\right) \end{split}$$

	g_{VV}	g_{uu}	$gdd,\ell\ell$
\overline{A}	0	$\cot \beta$	$\tan \beta$
H	$\cos(\beta - \alpha)$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
h	$\sin(\beta - \alpha)$	$\cos \alpha / \sin \beta$	$-\sin\alpha/\cos\beta$

18th April 2017

A.Lopez Solis - DIS 2018

H/A \rightarrow τ(lep)τ(had) : jet bkg estimation

Region	Selection
SR	ℓ (trigger, isolated), τ_1 (medium), $q(\ell) \times q(\tau_1) < 0$, $ \Delta \phi(\mathbf{p}_T^{\ell}, \mathbf{p}_T^{\tau_1}) > 2.4$,
	$m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}) < 40 \mathrm{GeV}, \mathrm{veto} 80 < m(\mathbf{p}^{\ell}, \mathbf{p}^{\tau_{1}}) < 110 \mathrm{GeV} (\tau_{e}\tau_{\mathrm{had}} \mathrm{channel only})$
CR-1	Pass SR except: τ_1 (very-loose, fail medium)
CR-2	Pass SR except: τ_1 (very-loose, fail medium), ℓ (fail isolation)
MJ-FR	Pass SR except: τ_1 (very-loose), ℓ (fail isolation)
W-FR	Pass SR except: $70(60) < m_{\rm T}(\mathbf{p}_{\rm T}^{\ell}, \mathbf{E}_{\rm T}^{\rm miss}) < 150{\rm GeV}$ in $\tau_e \tau_{\rm had} (\tau_\mu \tau_{\rm had})$ channel
CR-T	Pass SR except: $m_{\rm T}(\mathbf{p}_{\rm T}^{\ell}, \mathbf{E}_{\rm T}^{\rm miss}) > 110(100){\rm GeV}$ in the $\tau_e \tau_{\rm had}(\tau_\mu \tau_{\rm had})$ channel,
	b-tag category only
L-FR	ℓ (trigger, selected), jet (selected), no loose $\tau_{\rm had\text{-}vis}, m_{\rm T}(\mathbf{p}_{\rm T}^{\ell}, \mathbf{E}_{\rm T}^{\rm miss}) < 30{\rm GeV}$

Low transverse mass

Low transverse mass

High transverse mass Pass lepton isolation

H/A \rightarrow τ(had)τ(had) : jet \rightarrow τ fake estimation

Region	Selection
SR	τ_1 (trigger, medium), τ_2 (loose), $q(\tau_1) \times q(\tau_2) < 0$, $ \Delta \phi(\mathbf{p}_{\rm T}^{\tau_1}, \mathbf{p}_{\rm T}^{\tau_2}) > 2.7$
CR-1	Pass SR except: τ_2 (fail loose)
DJ-FR	jet trigger, $\tau_1 + \tau_2$ (no identification), $q(\tau_1) \times q(\tau_2) < 0$, $ \Delta \phi(\mathbf{p}_{\mathrm{T}}^{\tau_1}, \mathbf{p}_{\mathrm{T}}^{\tau_2}) > 2.7$, $p_{\mathrm{T}}^{\tau_2}/p_{\mathrm{T}}^{\tau_1} > 0.3$
W-FR	μ (trigger, isolated), τ_1 (no identification), $ \Delta\phi(\mathbf{p}_{\mathrm{T}}^{\mu}, \mathbf{p}_{\mathrm{T}}^{\tau_1}) > 2.4$, $m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\mu}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}) > 40\mathrm{GeV}$
	b-veto category only
T-FR	Pass W-FR except: b -tag category only

24

18th April 2017