Double parton scattering measurements at CMS

Gábor Veres DIS 2018 Kobe, Japan, 17th April, 2018

Eötvös Loránd University Budapest MTA-ELTE Lendület CMS Particle and Nuclear Physics Group

Multiple parton interactions

- Theoretical idea dates back to the parton model
- Double parton scattering signatures: 4 jets, 2 jets and W, 3 jets and photon, etc...
- LHC is especially abundant in MPI
 high energy final states
- Complicated correlation effects are still unexplored
- The effective cross section: overlap of the spatial distributions of partons in the transverse plane
- Experimental challenges:
 - DPS final states can also be produced by SPS
 - Sometimes complicated multivariate analyses

2 jets + 2 b-jets in pp collisions at 7 TeV

- Kinematical distributions between 2 b-jets and 2 light jets
- Data well described by pQCD @NLO with PS and MPI
- Jet correlations do not agree with no-MPI models

CERN

2 jets + 2 b-jets in pp collisions at 7 TeV

- $\sigma(pp \rightarrow bb+jj+X)=69\pm3(st)\pm24(sy)$ nb for p_T>20 GeV and $|\eta_{b(i)}|<2.4(4.7)$
- ΔS : azimuthal angle between two dijet pairs

CERN

CMS

DPS in W+2jets in pp collisions at 7 TeV

- $W \rightarrow \mu \nu$ deay with two associated jets, 5 fb⁻¹ data, template fit
- Fraction of W from DPS: 0.055 \pm 0.002 (stat) \pm 0.014 (syst)
- MadGraph5+PYTHIA8 and POWHEG2 + PYTHIA6: MPI is needed
- From that, σ_{eff} = 20.7 \pm 0.8 (stat) $\pm\,$ 6.6 (syst) mb

JHEP 1403 (2014) 032 CMS-FSQ-12-028 Gabor Veres, DIS2018, 17th April 2018

- W[±]W[±] studied in the $\mu^{\pm}\mu^{\pm}$ and $e^{\pm}\mu^{\pm}$ final states. 2016 data
- Single parton scattering (SPS): 2 jets in the final state!

CMS-PAS-FSQ-16-009 Gabor Veres, DIS2018, 17th April 2018

6

- W[±]W[±] studied in the $\mu^{\pm}\mu^{\pm}$ and $e^{\pm}\mu^{\pm}$ final states. 2016 data
- Single parton scattering (SPS): 2 jets in the final state!
- Therefore, the event selection uses a jet veto:

two leptons:
$$e^{\pm}\mu^{\pm}$$
 or $\mu^{\pm}\mu^{\pm}$
 $p_T^{\ell 1} > 25 \text{ GeV}$, $p_T^{\ell 2} > 20 \text{ GeV}$
 $|\eta_e| < 2.5$, $|\eta_\mu| < 2.4$
 $E_T^{\text{miss}} > 15 \text{ GeV}$
 $N_{\text{jets}} < 2 (p_T > 30 \text{ GeV})$
 $N_{\text{b-jets}} = 0 (p_T > 25 \text{ GeV})$
veto on additional leptons
veto on hadronic τ lepton decays

CMS-PAS-FSQ-16-009

A multivariate classifier is used to distinguish signal and bkgd

CMS-PAS-FSQ-16-009

A multivariate classifier is used to distinguish signal and bkgd

CMS-PAS-FSQ-16-009 Gabor Veres, DIS2018, 17th April 2018

• BDT classifier output for $e^-\mu^-$ and $e^+\mu^+$

• BDT classifier output for $\mu^{-}\mu^{-}$ and $\mu^{+}\mu^{+}$

 Expected background and signal yields, and observed number of data events in 35.9 fb⁻¹:

	$\mu^+\mu^+$	$\mu^-\mu^-$	$e^+\mu^+$	$e^{-}\mu^{-}$
fakes	151.1 ± 26.6	132.7 ± 23.4	412.7 ± 47.2	341.4 ± 39.0
WZ	277.2 ± 28.1	164.5 ± 16.7	355.9 ± 36.1	228.1 ± 23.2
ZZ	24.8 ± 7.0	18.7 ± 5.3	57.8 ± 16.4	55.8 ± 15.8
$W\gamma*$	85.9 ± 27.5	73.1 ± 23.4	142.8 ± 45.7	127.7 ± 40.9
other rare	39.7 ± 15.0	20.2 ± 7.7	83.7 ± 31.7	49.4 ± 18.8
charge flips			20.4 ± 0.0	21.5 ± 0.0
background	578.6 ± 50.3	409.2 ± 38.2	1073.3 ± 83.0	824.0 ± 65.8
DPS WW	41.1 ± 1.0	20.6 ± 0.5	48.7 ± 1.2	24.1 ± 0.6
observed	604	411	1091	869

CMS-PAS-FSQ-16-009

- Fit to the constrained BDT classifier
- Result: 1.09^{+0.50}-0.49 pb (2.23σ), PYTHIA 8 prediction: 1.64 pb

	expected	observed
$\sigma_{ m DPSWW}^{ m pythia}$	1.64 pb	$1.09^{+0.50}$ pb
$\sigma_{\mathrm{DPSWW}}^{\mathrm{factorized}}$	0.87 pb	$1.0^{7}-0.49$ PD
significance for $\sigma_{\text{DPSWW}}^{\text{pythia}}$	3.27 <i>o</i>	223σ
significance for $\sigma_{\text{DPSWW}}^{\text{factorized}}$	1.81 σ	2.200
UL in the absence of signal	< 0.97 pb	< 1.94 pb

CMS-PAS-FSQ-16-009

- W±W± events in 19.7 fb⁻¹ of data at 8 TeV
- Our first search for same-sign WW production via DPS
- Event selection:

Dimuon channel		Electron-muon channel			
Pair of same-sign leptons					
Lea	ading lepton $p_{\rm T} > 20 {\rm GeV}$	7			
Subleading lepton $p_{\rm T} > 10 {\rm GeV}$					
No third isolated and identified lepton with $p_{\rm T} > 10 {\rm GeV}$					
	$p_{\rm T}^{\rm miss} > 20 { m GeV}$				
	$m_{\ell\ell} > 20 \mathrm{GeV}$				
$m_{\ell\ell} \notin [75, 105] \mathrm{GeV}$					
$ p_{T_{\mu_1}} + p_{T_{\mu_2}} > 45 \text{GeV}$					
	No b-tagged jet with $p_{\rm T}$	$\gamma > 30 \text{GeV}$ and $ \eta < 2.1$			

JHEP 1802 (2018) 032 CMS-PAS-FSQ-16-005

• Distribution of the BDT discriminant in the $\mu^{\pm}\mu^{\pm}$ and $e^{\pm}e^{\pm}$ events

- No significant excess observed above the SPS process
- 0.32 pb is the upper limit (95% CL) for DPS
- Therefore a **lower limit of 12.2 mb** is set for the effective DPS cross section parameter (95% CL)

Effective cross section compilation

• Summary of the effective DPS cross section measurements

σ_{eff} extractions (vector boson final states)

Summary

- Multi Parton Interactions can be studied in many ways, in various channels
 - Multiple jets
 - Vector bosons and multijets
 - vector boson pairs...
- Challenges:
 - Complicated **multivariate** analysis methods
 - Finding appropriate and sensitive **observables** is nontrivial
 - High **luminosity** is often essential
- Very active field and important new observations:
 - Tiny cross sections, extreme tests of the Standard Model,...

With more date collected, new opportunities!

BACKUP

The CMS experiment

The CMS Experiment

DPS in γ +3 jets in pp collisions at 7 TeV

- 36 pb⁻¹ of data in 2010
- The photon and the leading jet are required to have $p_T > 75$ GeV
- Two other jets are in the p_T >20 GeV range

CMS-FSQ-12-017

DPS in γ +3 jets in pp collisions at 7 TeV

- Many kinematical distributions are compared to MC predictions
- For example, ΔS distributions are sensitive to DPS in the low ΔS region
- Higher order, parton showers affect the SPS contributions
- MC with and without MPI do not differ significantly
- Conclusion on DPS component is not possible within this given precision
- Let us look at other observables!

CMS-FSQ-12-017

Gabor Veres, DIS201