Study of hard double parton scattering in four-jet events with the ATLAS detector

M.C. Vetterli

Simon Fraser University and TRIUMF

- on behalf of the -

ATLAS Collaboration

DIS2018
April 16-20, 2018

See ATLAS Collaboration, JHEP11 (2016) 110

Motivation

- Measure the probability for the interaction of more than one pair of incident partons in the same proton-proton collision
- Study correlations in parton distributions
- Can be done in a variety of final states: 4 jets, 4 leptons (double Drell-Yan), 3 jets + γ , leptonically decaying gauge boson + 2 jets

Motivation

- Measure the probability for the interaction of more than one pair of incident partons in the same proton-proton collision
- Study correlations in parton distributions
- Can be done in a variety of final states: 4 jets, 4 leptons (double Drell-Yan), 3 jets + γ , leptonically decaying gauge boson + 2 jets
- As the CM energy increases, the average x of the partons involved in the collision decreases. Their density therefore increases, which makes it more probable that there will be more than one hard scattering. DPS more important @ the LHC
- A good description of the QCD contribution to multi-jet events is needed for searches for new physics at the LHC.

ATLAS 4-jet Event Display

Nice, clean event because of low pileup

Event Types

Single Parton Scattering (SPS)

Extra jets from radiation

Event Types

Single Parton Scattering (SPS)

Extra jets from radiation

Jets are ordered in pt

Event Types

Single Parton Scattering (SPS)

Extra jets from radiation

Jets are ordered in pt

Radiated jet with large pt

DPS Formalism

Factorised cross-section for simultaneous processes A & B

$$d\hat{\sigma}_{(A,B)}^{DPS}(s) = \frac{1}{1 + \delta_{AB}} \sum_{i,j,k,l} \int \underline{\Gamma_{ij}(x_1, x_2, r_\perp; Q_A, Q_B)} \, \underline{d\hat{\sigma}_{ik}^{(A)}(x_1, x_1')} \, \underline{d\hat{\sigma}_{jl}^{(B)}(x_2, x_2')}$$

$$\times \Gamma_{kl}(x_1', x_2', r_\perp; Q_A, Q_B) dx_1 dx_2 dx_1' dx_2' d^2 r_\perp.$$

 δ_{AB} is a symmetry term to avoid double-counting (=1 if A=B)

DPS Formalism

Factorised cross-section for simultaneous processes A & B

$$d\hat{\sigma}_{(A,B)}^{DPS}(s) = \frac{1}{1 + \delta_{AB}} \sum_{i,j,k,l} \int \underline{\Gamma_{ij}(x_1, x_2, r_\perp; Q_A, Q_B)} \underline{d\hat{\sigma}_{ik}^{(A)}(x_1, x_1')} \underline{d\hat{\sigma}_{jl}^{(B)}(x_2, x_2')}$$

 $\times \Gamma_{kl}(x'_1, x'_2, r_\perp; Q_A, Q_B) dx_1 dx_2 dx'_1 dx'_2 d^2r_\perp.$

 δ_{AB} is a symmetry term to avoid double-counting (=1 if A=B)

Factor out the longitudinal and transverse parton distributions:

$$\Gamma_{ij}(x_1,x_2,r_\perp;Q_{\rm A},Q_{\rm B})\simeq \underline{F(r_\perp)}D_{ij}(x_1,x_2;Q_{\rm A},Q_{\rm B}).$$

Integrate over the transverse distribution:

$$\sigma_{\rm eff}(s) = \left[\int d^2 r_{\perp} (F(r_{\perp}))^2 \right]^{-1} \begin{array}{l} \textit{Measure of the} \\ \textit{transverse parton} \\ \textit{correlations} \end{array}$$

Measure of the

DPS Formalism

- Further factor out x_1 , x_2 , x'_1 and x'_2 and integrate
- Write: $\sigma_{\text{DPS}} = f_{\text{DPS}} \cdot \sigma_{4j}$ to get $\sigma_{\text{eff}} = \frac{1}{1 + \delta_{\text{AB}}} \frac{1}{f_{\text{DPS}}} \frac{\sigma_{2j}^{\text{A}} \sigma_{2j}^{\text{B}}}{\sigma_{4j}}$
- And also use: $f_{
 m DPS} = f_{
 m cDPS} + f_{
 m sDPS}$

Determine σ_{eff} by measuring the 2-jet and 4-jet cross-section, and extracting f_{DPS}

Analysis Strategy

$$\sigma_{nj} = \frac{N_{nj}}{\mathcal{C}_{nj}\mathcal{L}_{nj}}$$

 $\sigma_{n exttt{j}} = rac{N_{n exttt{j}}}{\mathcal{C}_{n exttt{j}} \mathcal{L}_{n exttt{j}}}$ $C_{ exttt{n} exttt{j}}$: detector effects; $C_{ exttt{n} exttt{j}}$: luminosity

$$\mathcal{S}_{nj} = \frac{N_{nj}}{\mathcal{L}_{nj}}$$

$$S_{nj} = \frac{N_{nj}}{\mathcal{L}_{nj}} \qquad \alpha_{2j}^{4j} = \frac{C_{4j}}{C_{2j}^{A}C_{2j}^{B}} = 0.93 \pm 0.01$$

Systematics cancel

$$\sigma_{\text{eff}} = \frac{1}{1 + \delta_{\text{AB}}} \frac{\alpha_{2j}^{4j}}{f_{\text{cDPS}} + f_{\text{sDPS}}} \frac{\mathcal{S}_{2j}^{\text{A}} \mathcal{S}_{2j}^{\text{B}}}{\mathcal{S}_{4j}}$$

Event Selection

- Dataset: full ATLAS 2010 data sample: \(\int s = 7 \text{ TeV; lumi = 37.3 pb-1; \(\mu \nabla \) = 0.4
- N_{PV} = 1 (5 tracks with p_t > 150 MeV); no pileup
- R = 0.6 anti-kt jets reconstructed
- p_t thresholds chosen so triggers are fully efficient Two classes of dijet events are used (A & B)

(dijet A)
$$N_{PV} = 1$$
, $N_{jet} = 2$, $p_T^{1,2} \ge 20 \text{ GeV}$, $|\eta_{1,2}| \le 4.4$,

(dijet B)
$$N_{PV} = 1$$
, $N_{jet} = 2$, $p_T^1 \ge 42.5 \text{ GeV}$, $p_T^2 \ge 20 \text{ GeV}$, $|\eta_{1,2}| \le 4.4$

(four-jet)
$$N_{PV} = 1$$
, $N_{jet} = 4$, $p_T^1 \ge 42.5 \text{ GeV}$, $p_T^{2-4} \ge 20 \text{ GeV}$, $|\eta_{1-4}| \le 4.4$

Kinematic Distributions

Event-type Discrimination

Use p_t balance and relative angular variables to discriminate between the three types of scattering

Discrimination Variables

$$\Delta_{ij}^{p_{\mathrm{T}}} = \frac{\left| \vec{p}_{\mathrm{T}}^{i} + \vec{p}_{\mathrm{T}}^{j} \right|}{p_{\mathrm{T}}^{i} + p_{\mathrm{T}}^{j}}; \quad \Delta\phi_{ij} = \left| \phi_{i} - \phi_{j} \right|; \quad \Delta y_{ij} = \left| y_{i} - y_{j} \right|; \left| \phi_{1+2} - \phi_{3+4} \right|; \quad \left| \phi_{1+3} - \phi_{2+4} \right|; \quad \left| \phi_{1+4} - \phi_{2+3} \right|;$$

- DPS jet pairs should each balance in $p_t(\Delta_{12}, \Delta_{34})$; no correlation between jet pairs
- Extra jets from SPS are from radiation; only approximate balance in 1-2 pair and no p_t balance in 3-4 pair
- Jets from each DPS pair should be back-to back; radiation jets should be collinear with originating jet in SPS
- Jets planes should not be correlated in DPS

Neural Net Output

Use an Artificial Neural Network:

21 inputs; 2 hidden layers; 3 outputs: ξ_{SPS} , ξ_{cDPS} , ξ_{sDPS}

Plotted as perpendicular distance from an edge of the triangle

Neural Net Output

Monte Carlo

SPS: leaks into sDPS region

cDPS: clear peak in lower RH corner

sDPS: mostly at the top but leaks into SPS & cDPS

Use an Artificial Neural Network:

21 inputs; 2 hidden layers; 3 outputs: ξ_{SPS} , ξ_{cDPS} , ξ_{sDPS}

Neural Net Output

Data 2010

- All 3 contributions are visible, with a clear cDPS component
- Do a multi-dimensional fit to extract ξ_{SPS} , ξ_{cDPS} , ξ_{sDPS}

NN Fits in Various Projections

Systematic Uncertainties

Source of systematic uncertainty	$\Delta f_{ m DPS}$	$\Delta lpha_{2 ext{j}}^{4 ext{j}}$	$\Delta\sigma_{ m eff}$
Luminosity			$\pm 3.5\%$
Model dependence for detector corrections		$\pm 2\%$	$\pm 2\%$
Reweighting of AHJ	$\pm 6\%$		$\pm 6\%$
Jet reconstruction efficiency			$\pm 0.1\%$
Single-vertex events selection			$\pm 0.1\%$
Jet energy and angular resolution	$\pm 15\%$	$\pm 3\%$	$\pm15\%$
JES uncertainty	$^{+32}_{-37}\%$	$\pm 12\%$	$^{+31}_{-19}\%$
Total systematic uncertainty	$^{+36}_{-40}\%$	$\pm13\%$	$^{+35}_{-25}\%$

Dominated by the Jet-Energy scale and resolution
Uncertainties on the acceptances and x-sections largely cancel in ratios

Results

$$f_{\text{DPS}} = 0.092 \, {}^{+0.005}_{-0.011} \, (\text{stat.}) \, {}^{+0.033}_{-0.037} \, (\text{syst.})$$

 $\approx 40\%$ from sDPS

$$\sigma_{\text{eff}} = 14.9 \, {}^{+1.2}_{-1.0} \, (\text{stat.}) \, {}^{+5.1}_{-3.8} \, (\text{syst.}) \, \text{mb}$$

 σ_{eff} is $21^{+7}_{-6}\%$ of the inelastic cross-section measured by ATLAS at 7 TeV

year) state, final Experiment (energy,

ATLAS ATLAS ($\sqrt{s} = 7 \text{ TeV}$, 4 jets, 2016) CDF ($\sqrt{s} = 1.8 \text{ TeV}, 4 \text{ jets}, 1993$) UA2 ($\sqrt{s} = 630 \text{ GeV}, 4 \text{ jets}, 1991$) AFS ($\sqrt{s} = 63 \text{ GeV}, 4 \text{ jets}, 1986$) DØ ($\sqrt{s} = 1.96 \text{ TeV}, 2\gamma + 2 \text{ jets}, 2016$) DØ ($\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2014$) DØ ($\sqrt{s} = 1.96 \text{ TeV}$, $\gamma + \text{ b/c} + 2 \text{ jets}$, 2014) DØ ($\sqrt{s} = 1.96 \text{ TeV}, \gamma + 3 \text{ jets}, 2010$) CDF ($\sqrt{s} = 1.8 \text{ TeV}, \gamma + 3 \text{ jets}, 1997$) ATLAS ($\sqrt{s} = 8 \text{ TeV}, Z + J/\psi, 2015$) CMS ($\sqrt{s} = 7 \text{ TeV}, W + 2 \text{ jets}, 2014$) ATLAS ($\sqrt{s} = 7 \text{ TeV}$, W + 2 jets, 2013) DØ ($\sqrt{s} = 1.96 \text{ TeV}, J/\psi + \Upsilon, 2016$) LHCb ($\sqrt{s} = 7\&8 \text{ TeV}, \Upsilon(1S)D^{0,+}, 2015$) $H \rightarrow H$ DØ $(\sqrt{s} = 1.96 \text{ TeV}, J/\psi + J/\psi, 2014)$ LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi \Lambda_c^+, 2012$) LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi D_s^+, 2012$) LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi D^{+}, 2012$) LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi D^0, 2012$) 10 15 20

Current data are consistent with the fact that σ_{eff} does not depend on the scattering process or the CM energy

 $\sigma_{\rm eff}$ [mb]

$\sigma_{\rm eff}$ vs \sqrt{s}

→ ATLAS (4 jets) → D0 (2γ + 2 jets) → D0 (J/ψ + Υ) → LHCb (Υ(1S)D^{0,+}, \sqrt{s} = 7 & 8 TeV) ······ ATLAS (Z + J/ψ - lower limit) → D0 (J/ψ + J/ψ) → D0 (γ + 3 jets, 2014) → D0 (γ + b/c + 2 jets) → CMS (W + 2 jets) → ATLAS (W + 2 jets) → LHCb (J/ψD⁰) → D0 (γ + 3 jets) → CDF (γ + 3 jets) → CDF (4 jets) — UA2 (4 jets - lower limit)

Conclusions

- 4-jet production has been used at ATLAS to study Double Parton Interactions in 7 TeV pp collisions
- An artificial neural network was used to extract the fraction of the 4-jet cross-section due to DPS, which was found to be about 9%
- The effective cross-section σ_{eff}, which is a measure of the transverse correlations of partons in the proton, was found to be consistent with previous measurements at other CM energies and using various final states.
- · Work is continuing on the 13 TeV dataset

Backup

ATLAS Spectrometer in a Nutshell

Inner Tracker: Pixels, SCT, TRT

Calorimeters:

EM, Hadronic, FCAL

Muon Spectrometer

Hermetic (almost):
Good MET
measurement
=> crucial for
searches for new
physics

Monte Carlo Generators

- Main: Alpgen (2.14) + Herwig (6.520) + Jimmy \rightarrow AHJ CTEQ6L1 PDFs and the AUET2 tune (MLM matching scale set to 15 GeV – partons of interest come from the ME) 5 Alpgen samples: $2 \rightarrow n$ (n = 2,3,...,6); combined using ME x-sections

- Geometrical Acceptance: Pythia 6.425

with MRST LO* PDFs and the AMBT1 tune

- Alternative: Sherpa 1.4.2 with CT10 PDFs
CKKW matching scale set to 15 GeV
Compared to AHJ for the SPS sample

- ATLAS detector: GEANT4

Validity of Dijet Overlay

