

Exclusive and Diffractive Processes with the ATLAS detector

Andrew Foster (University of Birmingham) On behalf of the ATLAS Collaboration

DIS 2018 – 16–20th April 2018 – Kobe, Japan

Exclusive and Diffractive Processes

- Identified through the presence of rapidity gaps, forward protons and the absence of charged particles in the tracking detector
- In the absence of proton tagging, part of signature and corresponding information 'lost' with the proton(s)
- Present overview of previous ATLAS exclusive and diffractive analyses and outline prospects for the use of 'proton-tagging'

\sqrt{s} = 7 & 13 TeV Exclusive Dilepton Production

EM field of colliding protons acts as γ beam

- LHC can be treated as a high energy γγ collider using the photons produced by the protons' EM fields as a quasi-real beam of photons with small virtuality of Q² < 0.1 GeV² (Equivalent photon approximation – EPA)
- Exclusivity requirement on charged particle tracks with near dilepton vertex;
 - Remove 70 < m(l+l-) < 105 GeV;
 - $p_T(l^+l^-) < 1.5$ GeV to remove dissociative backgrounds
- Fit to acoplanarity distribution used to scale background contributions

[7 TeV] Phys.Lett. B749 (2015) 242-261; [13 TeV] Phys.Lett. B777 (2018) 303-323

\sqrt{s} = 7 & 13 TeV Exclusive Dilepton Production

Cross-section measured, and $d\sigma/dm(\mu\mu)$

- Exclusive dilepton cross-section predicted within QED with less than 2% uncertainty
- 10–20% suppression due to proton absorptive effects
 - Largely due to additional interactions between gluons in the protons/remnants
 - Good agreement provided by finite-size approach to correction which only allows photons outside of $r_p = 0.64$ fm to initiate two-photon interaction
- Dominant uncertainty from template fit to acoplanarity shape (reducible with proton tagging)

Exclusive and Diffractive Processes at ATLAS

$\sqrt{s} = 8$ TeV Exclusive W+W- Production

Can search for aQGC

- Measure rate of opposite sign/flavour charged leptons in final state
 - Rejects same-sign Drell-Yann and exclusive production
- Exclusivity requirement on charged particle tracks
- To reduce $\gamma \gamma / Z / \gamma^* \rightarrow \tau \tau$, require $p_T^{e\mu} > 30 \text{ GeV}$
- $\sigma(\gamma\gamma \rightarrow W^+W^- \rightarrow e^{\pm}\mu^{\mp}) = 6.9 \pm 2.2(\text{stat.}) \pm 1.4(\text{syst.}) \text{ fb}$
 - Corresponds to 3σ evidence for SM production
 - No evidence of excess in the anomalous Quartic Gauge Coupling (aQGC) enhanced region (extracted at p_T^{eµ} > 120 GeV to reduce SM contribution)

Phys.Rev. D94 (2016) no.3, 032011

$\sqrt{s} = 7$ TeV Diffractive Dijets

Dijet cross-section measured as a function of rapidity gap and $\boldsymbol{\xi}$

- Single dissociative diffraction topology but with hard scattering between Pomeron and proton
- Dijet cross-section measurement as a function rapidity gap and $\boldsymbol{\xi}$
 - ξ calculated from calorimeter clusters
 - $\Delta \eta^F$ measured between calorimeter edge and clusters/tracks with p_T > 200 MeV
 - Performed at low pile up, $\sqrt{s} = 7 \text{ TeV}$
- Diffraction dominant at $\Delta \eta > 2$

$$\tilde{\xi}\simeq M_{\rm X}^2/s=\sum p_{\rm T}e^{\pm\eta}/\sqrt{s}$$

Phys.Lett. B754 (2016) 214-234

Exclusive and Diffractive Processes at ATLAS

$\sqrt{s} = 7$ TeV Diffractive Dijets

Rapidity gap survival probability measured

- Rapidity gap survival probability accounts for additional exchanges 'spoiling' the rapidity gap
 - Same as proton absorptive effects considered in exclusive dilepton analyses
- Extracted from lowest ξ bin due to smallest ND contribution using POMWIG (not modelled in POMWIG, but exists in data)
 - $S^2 = 0.16 \pm 0.04(stat.) \pm 0.08(syst.)$
 - · Large model uncertainties
 - Consistent with CMS,
 S² = 0.12 ± 0.05 (LO)
 (https://arxiv.org/pdf/1209.1805.pdf)

Phys.Lett. B754 (2016) 214-234

AFP Overview

New ATLAS Forward Proton Detectors

- Operates in compliment to other ATLAS forward detectors (especially ALFA)
- Pairs of Roman Pot detectors with silicon precision tracking detectors and Cerenkov time of flight detectors
- AFP fully integrated into ATLAS TDAQ system
 - Can deliver first level triggers within 85 bunch crossing latency (fast air-core cables)

CERN-LHCC-2015-009, ATLAS-TDR-024

DIS2018

AFP Detectors

Tracking detectors in operation; Timing detectors to be installed AFP tracker module Tracker + TOF

- Tracking detectors performed well in • 2017
 - 3D silicon pixels (50 x 250 µm)
 - Resolution: in $x \sim 6\mu m$; in $y \sim 30\mu m$
 - Tilted by 14° to improve x (ξ) resolution
- Time of flight system is being • commissioned – plans for this year
 - Will provide time of arrival resolution of ~ 25ps
 - Enables vertex discrimination in high pile up events of several mm

DIS2018

Exclusive and Diffractive Processes at ATLAS

9

AFP Prospects: Special Runs

Low pile up enables inclusive studies

- Improvements on previous diffractive analyses with a single tag:
 - Single diffractive dissociation with rapidity gaps
 - Diffractive dijets
- Use double tag to measure inclusive central diffraction and exclusive production
 - Resonance searches eg. glueballs
- Charged particle distributions in diffractive collisions
- Ultraperipheral collisions -> diffractive photoproduction

AFP Prospects: Nominal Runs

Testing new regions of QCD; rare EW physics; new physics

- Central exclusive QCD production (dijets)
- Exclusive production from $\gamma\gamma$
 - Dilepton; diboson (aQGC)
 - AFP can provide large background and systematic uncertainty reduction on previous measurements (dominant uncertainties in 7TeV dilepton, 8TeV WW and 13TeV dimuon)
- Searches for heavy new particles (heavy axions, WIMPS, charged Higgs, pairproduced BSM)

AFP Operation thus far

Data collected during special runs and nominal running

- Data collected during special runs (low pile up)
 - 2016 (√s = 13 TeV), only one sided tagging available
 - 2017 (√s = 13 TeV), one and two sided tagging available
- **2017** Nominal Running ($\sqrt{s} = 13$ TeV):
 - Fully installed (one and two sided tagging)
 - · ~32fb⁻¹ with μ ~ 50
 - Tracking and DAQ working well
 - TOF still commissioning

12

AFP First Analysis

First physics study: Single diffractive dijets

- Special run taken in October 2016, $\mu \sim 0.3$, $\beta^* = 0.4$
- Analysis strategy: compare an AFP + jet (p_T > 10 GeV) triggered sample with minbias (scintillating tiles within central detector) + jet (p_T > 10 GeV) triggered sample
- Event selection:
 - + At least one jet with $p_{\rm T}$ > 20GeV and $|\eta|$ < 3.0
 - Exactly one reconstructed primary vertex
 - \geq 2 tracks associated with primary vertex
 - Offline clean track in AFP required in AFP triggered sample

ATL-PHYS-PUB-2017-012

AFP First Analysis

AFP selects diffractively scattered events

- Same method of ξ reconstruction as in $\sqrt{s} = 7$ TeV dijets analysis
- Observe clear enhancement in low ξ region in AFP triggered sample, when compared to minbias sample

- Correlation between x-pixel position and $\boldsymbol{\xi}$

Exclusive and Diffractive Processes at ATLAS

14

AFP First Analysis

Observe diffractive events at large rapidity gaps

- $\Delta \eta^F$ defined by size of region in η between calorimeter acceptance $(\eta = -4.9)$ and first cluster/track with $p_T > 200$ MeV (very similar to $\sqrt{s} = 7$ TeV analysis $\Delta \eta^F$)
- See clear **enhancement in large gaps region** in AFP triggered sample
 - Displays correlation between gaps and proton tags, as expected in diffractive scattering

DIS2018

Summary

Things are looking good for forward physics at ATLAS!

- Exclusive and diffractive processes measured at ATLAS
 - Exclusive dilepton production cross-sections in good agreement with theory, 3σ evidence for exclusive WW production; rapidity gap survival probability estimated in diffractive dijets
- AFP installed on both sides of ATLAS in 2017
 - Collected 32 fb⁻¹ data during nominal (high pile up) running as well as special (low pile up) runs
 - Time of flight detectors still being commissioned
- Demonstrated that AFP is capable of selecting a highly diffractive-enriched sample
- Lots of prospects for improvement on current measurements and brand new analysis with AFP during LHC Run–II and beyond!

DIS2018

DIS2018

7TeV Dilepton

8TeV WW production

Dominant systematic: Background determination and exclusivity selection

 $a_{0,C}^W/\Lambda^2 \rightarrow \frac{a_{0,C}^W}{\Lambda^2} \frac{1}{\left(1 + \frac{m_{\gamma\gamma}^2}{\Lambda^2}\right)^2}$

	W^+W^- selection	Higgs boson selection	
	Oppositely charged $e\mu$ final states		
Preselection	$p_{\mathrm{T}}^{\ell 1}$ > 25 GeV and $p_{\mathrm{T}}^{\ell 2}$ > 20 GeV	$p_{\rm T}^{\ell 1}$ > 25 GeV and $p_{\rm T}^{\ell 2}$ > 15 GeV	
	$m_{e\mu} > 20 \text{ GeV}$	$m_{e\mu} > 10 \text{ GeV}$	
	$p_{\rm T}^{e\mu} > 30 { m ~GeV}$		
	Exclusivity se	Exclusivity selection, Δz_0^{iso}	
aQGC signal	$p_{\rm T}^{e\mu} > 120 { m ~GeV}$	_	
Spin-0 Higgs boson	_	$m_{e\mu} < 55 \text{ GeV}$	
	_	$\Delta \phi_{e\mu} < 1.8$	
	_	$m_{\rm T} < 140 { m ~GeV}$	

Table 3: Selection criteria for the two analysis channels.

Exclusive and Diffractive Processes at ATLAS

8TeV WW production

Why $p_T^{e\mu} > 30$ GeV:

Figure 7: Distribution of track multiplicities after requiring the exclusive W^+W^- preselection (left) with no number of track dependent correction, and the $p_T^{e\mu}$ distribution of candidates that have 1–4 extra tracks (right), with the simulation including all appropriate correction factors such as $f_{nTracks}^{sim}$ (Table 4) for Drell-Yan and inclusive $W^+W^$ production. The enriched inclusive W^+W^- control region is the 1–4 extra-track region above $p_T^{e\mu} > 30$ GeV. The band around the Data/SM ratio of one illustrates the systemic uncertainties. The upward red arrows indicate ratios outside the plotting range.

DIS2018

13TeV Dimuon

Event selection

AFP Acceptance

Good acceptance at high ξ

divergence \propto

- Acceptance varies with LHC beam conditions •
 - High β^* results in small beam divergence

Acceptances shown for different setups (without LHC collimator restriction at high ξ) ullet

Pixel hit distribution in AFP

From AFP tagged sample in dijets analysis