# Strange and non-strange quark distributions

S.Alekhin (*Univ. of Hamburg & IHEP Protvino*)

- Strange and non-strange sea disentangling sa, Blümlein, Moch PLB 777, 134 (2018)
- d/u ratio at large x sa, Kulagin, Petti work in progress
- NLO ABMP16 sa, Blümlein, Moch hep-ph/1803.07537



Strange sea is the most uncertain PDF

S.Schmitt, this conference J.Kretzschmar, this conference

## Strange sea from the vN DIS



Two decay modes of **c**-quark are used: hadronic (emulsion experiments) and semi-leptonic (electronic experiments)



Fig. 3. The quark sea distribution  $x\bar{q}(x, \mu^2 = 4.0 \text{ GeV}^2/\text{c}^2)$  determined at next-to-leading order and leading order



Fig. 4. The strange quark distribution  $xs(x, \mu^2 = 4.0 \,\text{GeV}^2/\text{c}^2)$  determined at next-to-leading order (described in section 4.1) and leading order. The band around the NLO curve indicates the  $\pm 1\sigma$  uncertainty in the distribution CCFR ZPC 65, 189 (1995)

Primary source for the strange sea was for a long time neutrino-induced charm production measured by CCFR/NuTeV at Fermilab preferring a suppression of ~0.5 w.r.t. non-strange sea

#### NuTeV/CCFR data in the PDF fit framework



- CCFR and NuTeV are in a good agreement
- Charge asymmetry in the strange sea is consistent with 0 within uncertainties

sa, Kulagin, Petti PLB 675, 433 (2009)

$$\kappa_s(\mu^2) = \frac{\int\limits_0^1 x[s(x,\mu^2) + \bar{s}(x,\mu^2)] dx}{\int\limits_0^1 x[\bar{u}(x,\mu^2) + \bar{d}(x,\mu^2)] dx}$$

Integral suppression factor  $K_s(20 \text{ GeV}^2)=0.62\pm0.04 \text{ is obtained}$ 



#### NOMAD charm data



NOMAD NPB 876, 339 (2013)

- The data on ratio 2µ/incl. CC ratio with the 2µ statistics of 15000 events (much bigger than in earlier CCFR and NuTeV samples).
- Systematics, nuclear corrections, etc. cancel in the ratio
- Pull down strange quarks at x>0.1 with a sizable uncertainty reduction

The semi-leptonic branching ratio B<sub>u</sub> is a bottleneck

- weighted average of the charmed-hadron rates

$$B_{\mu}(E_{\nu}) = \sum_{h} r^{h}(E_{\nu})B^{h} = a/(1+b/E_{\nu})$$

 fitted simultaneously with the PDFs, etc. using the constraint from the emulsion data

> sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Plačakytė PRD 91, 094002 (2015)



## ATLAS strange enhancement



The epWZ16 strange-sea determined from analysis of the combined HERA-ATLAS data is enhanced as compared to other (earlier) determinations

ABM strange sea determination is in particular based on the dimuon neutrino-nucleon DIS production (NuTeV/CCFR and NOMAD) that gives a strange sea suppression ~0.5 at x~0.2

- Disentangling d- and s- contribution?
- Impact of the nuclear corrections?

• .....?



Nuclear effects greatly cancel in the  $2\mu$ /incl. CC ratio

#### Details of the epWZ and ABMP16 fits

|           | epWZ16                                                                                                                                                                                                                                                                                                                                                                                                                                               | ABMP16                                                                                                                                                                                                                                             |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data      | HERA, ATLAS W&Z                                                                                                                                                                                                                                                                                                                                                                                                                                      | HERA, LHC and Tevatron W&Z, fixed-target DIS and charm production, fixed-target DY,                                                                                                                                                                |
| PDF shape | $\begin{split} xu_{\rm V}(x,\mu_0^2) &= A_{u_{\rm V}} x^{B_{u_{\rm V}}} (1-x)^{C_{u_{\rm V}}} (1+E_{u_{\rm V}} x^2), \\ xd_{\rm V}(x,\mu_0^2) &= A_{d_{\rm V}} x^{B_{d_{\rm V}}} (1-x)^{C_{d_{\rm V}}}, \\ x\bar{u}(x,\mu_0^2) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}}, \\ x\bar{d}(x,\mu_0^2) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}, \\ xg(x,\mu_0^2) &= A_g x^{B_g} (1-x)^{C_g} - A_g' x^{B_g'} (1-x)^{C_g'}, \end{split}$ | $\begin{split} xq_v(x,\mu_0^2) &= \frac{2\delta_{qu} + \delta_{qd}}{N_q^v} (1-x)^{b_{qv}} x^{a_{qv} P_{qv}(x)}, \\ xq_s(x,\mu_0^2) &= A_{qs} (1-x)^{b_{qs}} x^{a_{qs} P_{qs}(x)}, \\ xg(x,\mu_0^2) &= A_g (1-x)^{b_g} x^{a_g P_g(x)}, \end{split}$ |
|           | $x\bar{s}(x,\mu_0^2) = A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}},$                                                                                                                                                                                                                                                                                                                                                                               | $P_p(x) = (1 + \gamma_{-1,p} \ln x) \left( 1 + \gamma_{1,p} x + \gamma_{2,p} x^2 + \gamma_{3,p} x^3 \right),$                                                                                                                                      |
|           | 15 free parameters                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 free parameters                                                                                                                                                                                                                                 |

ABMP16 PDFs are selected more flexible in order to accommodate more data as compared to the EpWZ16 fit, which was evolved form the HERA data analysis

#### Test fit (the PDF shape comparison)



FRAMEWORK: collider data discarded and replaced by the deuteron ones (fit is consistent with the nominal ABMP16 at x>0.01) sa, Kulagin, Petti hep-ph/1704.00204

The strange sea is enhanced for the epWZ shape despite the ATLAS data are not used. However, the dimuon data description is not deteriorated:  $\chi^2$ =167 versus 161 for the ABMP shape  $\Rightarrow$  enhancement is achieved by the price of the d-quark sea suppression

sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Plačakytė PRD 91, 094002 (2015)

#### E866 data in the test fit



The E866 data on p/d DY cross sections are sensitive to the iso-spin sea asymmetry

The epWZ shape does not allow to accommodate E866 data:  $\chi^2/NDP=96/39$  versus 49/39 for the ABMP shape; the errors in epWZ predictions are suppressed at small x, evidently due to over-constrained PDF shape at small x

## Consistency of ATLAS and E866 data



- The uncertainties in epWZ predictions are quite narrow and several σ off the E866 data ⇒
   E866 cannot be accommodated into the fit
- The ABMP16 shape gives much wider error band  $\Rightarrow$  E866 data are well accommodated:  $\chi^2/NDP=48/39$  and 40/34 for the E866 and ATLAS, respectively

## Impact of ATLAS data with flexible PDF shape

|                     | $\kappa_{s}(\mu^{2}=20 \text{ GeV}^{2})$ |
|---------------------|------------------------------------------|
| HERA+ATLAS          | 0.81(18)                                 |
| HERA+ATLAS+E866     | 0.72(8)                                  |
| ABMP16(incl. NOMAD) | 0.66(3)                                  |

 $\kappa_s$  is integral strange sea suppression factor:

$$\kappa_s(\mu^2) = \frac{\int\limits_0^1 x[s(x,\mu^2) + \bar{s}(x,\mu^2)] dx}{\int\limits_0^1 x[\bar{u}(x,\mu^2) + \bar{d}(x,\mu^2)] dx}\,,$$



- $\bullet$  For the flexible PDF shape the strangeness is in a broad agreement with the one extracted from the dimuon data; small enhancement only is observed at x $\sim$ 0.01
- The E866 data are consistent with the ATLAS(2016) set:  $\chi^2$ /NDP=48/39 and 40/34, respectively.

## ATLAS data on the W&Z central production



- The updated ATLAS data on W<sup>±</sup> production are in a good agreement with the earlier ATLAS sample; the data on Z production go higher, particularly at large rapidity  $\Rightarrow$  impact on the strange sea at  $x \sim 0.01$
- Different trends for the central and forward Z-boson data

#### Impact of fixed-target deuteron data



Nuclear corrections extracted from the deuteron data are in good agreement with the results obtained from the heavy-target ones  $\Rightarrow$  universality of the off-shell function is justified  $\Rightarrow$  application to the nucleon-nucleon collisions

Kulagin, Petti NPA 765, 126 (2006) Kulagin, Petti PRD 94, 113013 (2016)

At large x the deuteron data further disentangle d- and u-distributions

#### CJ15 results on the d/u ratio

Accardi, Brady, Melnitchouk, Owens, Sato PRD 93, 114017 (2016)

- NLO PDF fit including Tevatron data on W-asymmetry
- value of  $d/u\sim0.07$  at large x is obtained using flexible PDF shape
- NLO FEWZ predictions with CJ15 PDFs miss data at large x ?





W-asymmetry data go lower that predictions based on the e-asymmetry



- Account of the NNLO corrections moves d/u at large x down
- e-asymmetry data prefer lower d/u at x~0.3
- agreement with AKP results at large x; further comparison of deuteron correction in underway

#### ABMP16 in NLO

| Experiment                                | Process                                     | NDP  | $\chi^2$ |                 |
|-------------------------------------------|---------------------------------------------|------|----------|-----------------|
|                                           |                                             |      | NLO      | NNLO            |
| DIS                                       |                                             |      |          |                 |
| HERA I+II                                 | $e^{\pm}p \rightarrow e^{\pm}X$             | 1168 | 1528     | 1510            |
|                                           | $e^{\pm}p \rightarrow \stackrel{(-)}{\nu}X$ |      |          |                 |
| Fixed-target (BCDMS, NMC, SLAC)           | $l^{\pm}p \rightarrow l^{\pm}X$             | 1008 | 1176     | 1145            |
| DIS heavy-quark production                |                                             |      |          |                 |
| HERA I+II                                 | $e^{\pm}p \rightarrow e^{\pm}cX$            | 52   | 58       | 66 <sup>a</sup> |
| H1, ZEUS                                  | $e^{\pm}p \rightarrow e^{\pm}bX$            |      | 21       | 21              |
| Fixed-target (CCFR, CHORUS, NOMAD, NuTeV) | $\stackrel{(-)}{\nu}N \to \mu^{\pm}cX$      | 232  | 173      | 178             |
| DY                                        |                                             |      |          |                 |
| ATLAS, CMS, LHCb                          | $pp \to W^{\pm}X$                           | 172  | 229      | 223             |
|                                           | $pp \rightarrow ZX$                         |      |          |                 |
| Fixed-target (FNAL-605, FNAL-866)         | $pN \rightarrow \mu^+\mu^- X$               | 158  | 219      | 218             |
| Top-quark production                      |                                             |      |          |                 |
| ATLAS, CMS                                | $pp \rightarrow tqX$                        | 10   | 5.7      | 2.3             |
| CDF&DØ                                    | $\bar{p}p \to tbX$                          | 2    | 1.9      | 1.1             |
|                                           | $\bar{p}p \to tqX$                          |      |          |                 |
| ATLAS, CMS                                | $pp \to t\bar{t}X$                          | 23   | 14       | 13              |
| CDF&DØ                                    | $\bar{p}p \to t\bar{t}X$                    | 1    | 1.4      | 0.2             |
| Total                                     |                                             | 2855 | 3427     | 3378            |

<sup>&</sup>lt;sup>a</sup>This value corrects a misprint in Table V of Ref. [4].

# Masses and $\alpha_s$





- $_{\text{o}}$  Strong correlation between  $\text{m}_{_{t}}$  and  $\alpha_{_{s}}$
- Big difference in m<sub>c</sub> between the orders (compensation of NNLO correction)

#### Summary

- Some features of the quark PDFs have been clarified:
  - The ATLAS analysis based on the combination of Drell-Yan and HERA DIS data demonstrates strange sea enhancement by the price of disagreement with the Fermilab fixed-target Drell-Yan data (E-866, E-906) and over-constrained PDF shape at small x.
  - Some strange-sea enhancement at  $x\sim0.01$  still persist; further comparison with the refined CMS data is desirable
  - The large-x enhancement of d/u ratio observed in the NLO CJ15 analysis is sensitive to the NLO corrections on the W-asymmetry. In case of its consistent treatment the ratio goes much lower than the reported CJ15 result.
- NLO ABMP16 PDF are released, LHAPDF updated

# **EXTRAS**

## Impact of the W-, Z-data in ABMP16 fit



W-, Z-data really control quark disentangling at small x



- Uncertainty of ~5% is achieved at x around 0.1
- NuTeV/CCFR data play no essential role → impact of the nuclear corrections is greatly reduced (NOMAD and CHORUS give the ratio CC/incl.)

#### CHORUS charm data



CHORUS data pull strangeness up, however the statistical significance of the effect is poor

sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Placakyte hep-ph/1404.6469

## Emulsion data on charm/CC ratio with the charmed hadron vertex measured

CHORUS NJP 13, 093002 (2011)

- full phase space measurements
- no sensitivity to B<sub>u</sub>
- low statistics (2013 events)



#### CMS W+charm data



- CMS data go above the NuTeV/CCFR by  $1\sigma$ ; little impact on the strange sea
- The charge asymmetry is in a good agreement with the charge-symmetric strange sea
- Good agreement with the CHORUS data

#### ATLAS W+charm data



## SeaQuest (FNAL-E906) prospects





- The existing PDF sets can be consolidated with the E906 data
- HERMES/COMPASS data confirm the strangeness suppression







## The ABMP16 fit ingredients

```
QCD:
       NNLO evolution
       NNLO massless DIS and DY coefficient functions
       NLO+ massive DIS coefficient functions (FFN scheme)
          – NLO + NNLO(approx.) corrections for NC
          - NNLO CC at Q>> m
          running mass
       NNLO exclusive DY (FEWZ 3.1)
       NNLO inclusive ttbar production (pole / running mass)
       Relaxed form of (dbar-ubar) at small x
DATA:
       DIS NC/CC inclusive (HERA I+II added)
       DIS NC charm production (HERA)
       DIS CC charm production (HERA, NOMAD, CHORUS, NuTeV/CCFR)
       fixed-target DY
       LHC DY distributions (ATLAS, CMS, LHCb)
       t-quark data from the LHC and Tevatron
       deuteron data are excluded
Power corrections:
                                           sa, Blümlein, Moch, Plačakytė PRD 96, 014011 (2017)
       target mass effects
       dynamical twist-4 terms
```

#### DY data selection in the ABMP16 fit

| Expe         | riment         | ATI                       | LAS                       | CI                           | MS                           | D                            | Ø                         |                              | LHCb                     |                              |
|--------------|----------------|---------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|--------------------------|------------------------------|
| $\sqrt{s}$ ( | (TeV)          | 7                         | 13                        | 7                            | 8                            | 1.9                          | 96                        | 7                            | 8                        | 3                            |
| Final        | states         | $W^+ \rightarrow l^+ \nu$ | $W^+ \rightarrow l^+ \nu$ | $W^+ \rightarrow \mu^+ \nu$  | $W^+ \rightarrow \mu^+ \nu$  | $W^+ \rightarrow \mu^+ \nu$  | $W^+ \rightarrow e^+ \nu$ | $W^+ \rightarrow \mu^+ \nu$  | $Z \rightarrow e^+e^-$   | $W^+ \rightarrow \mu^+ \nu$  |
|              |                | $W^- \rightarrow l^- \nu$ | $W^- \rightarrow l^- \nu$ | $W^- \rightarrow \mu^- \nu$  | $W^- \rightarrow \mu^- \nu$  | $W^- \rightarrow \mu^- \nu$  | $W^- \rightarrow e^- \nu$ | $W^- \rightarrow \mu^- \nu$  |                          | $W^- \rightarrow \mu^- \nu$  |
|              |                | $Z \rightarrow l^+ l^-$   | $Z \rightarrow l^+ l^-$   | (asym)                       |                              | (asym)                       | (asym)                    | $Z \rightarrow \mu^+ \mu^-$  |                          | $Z \rightarrow \mu^+ \mu^-$  |
| Cut on the   | e lepton $P_T$ | $P_T^l > 20 \text{ GeV}$  | $P_T^e > 25 \text{ GeV}$  | $P_T^{\mu} > 25 \text{ GeV}$ | $P_T^{\mu} > 25 \text{ GeV}$ | $P_T^{\mu} > 25 \text{ GeV}$ | $P_T^e > 25 \text{ GeV}$  | $P_T^{\mu} > 20 \text{ GeV}$ | $P_T^e > 20 \text{ GeV}$ | $P_T^{\mu} > 20 \text{ GeV}$ |
| Luminos      | sity (1/fb)    | 0.035                     | 0.081                     | 4.7                          | 18.8                         | 7.3                          | 9.7                       | 1                            | 2                        | 2.9                          |
| N            | DP             | 30                        | 6                         | 11                           | 22                           | 10                           | 13                        | 31(33) <sup>a</sup>          | 17                       | 32(34)                       |
|              | ABMP16         | 31.0                      | 9.2                       | 22.4                         | 16.5                         | 17.6                         | 19.0                      | 45.1(54.4)                   | 21.7                     | 40.0(59.2)                   |
|              | CJ15           | -                         | -                         | -                            | -                            | 20                           | 29                        | -                            | _                        | -                            |
|              | CT14           | 42                        | -                         | _ b                          | -                            | _                            | 34.7                      | _                            | _                        | _                            |
| H            | HERAFitter     | _                         | -                         | -                            | -                            | 13                           | 19                        | _                            | _                        | _                            |
|              | MMHT16         | 39 <sup>c</sup>           | -                         | -                            | 21                           | 21 <sup>c</sup>              | 26                        | (43)                         | 29                       | (59)                         |
|              | NNPDF3.1       | 29                        | _                         | 19                           | -                            | 16                           | 35                        | (59)                         | 19                       | (47)                         |

 $<sup>^{</sup>a}$  The values of NDP and  $\chi^{2}$  correspond to the unfiltered samples.

sa, Blümlein, Moch, Plačakytė PRD 94, 114038 (2016)

Many early low-statistical Tevatron and LHC data are not included into the fit

<sup>&</sup>lt;sup>b</sup> For the statistically less significant data with the cut of  $P_T^{\mu} > 35$  GeV the value of  $\chi^2 = 12.1$  was obtained. <sup>c</sup> The value obtained in MMHT14 fit.

#### LHC data on central Z-boson production



The CMS data go somewhat lower than the ATLAS ones, however, significance of discrepancy is marginal and further clarification is necessary



| • | <b>Forward</b> | <b>Z-boson</b> | data | pull | stran | geness | down |
|---|----------------|----------------|------|------|-------|--------|------|
|   |                |                |      |      |       |        |      |

Tension between central and forward Z-boson samples

|                     | central |       | central+<br>forward |
|---------------------|---------|-------|---------------------|
| X <sup>2</sup> /NDP | 40/34   | 36/31 | 76/43               |

| Data set                                                                        | ATLAS-epWZ16           |
|---------------------------------------------------------------------------------|------------------------|
|                                                                                 | $\chi^2/\text{n.d.f.}$ |
| ATLAS $W^+ \to \ell^+ \nu$                                                      | 8.4 / 11               |
| ATLAS $W^- \to \ell^- \bar{\nu}$                                                | 12.3 / 11              |
| ATLAS $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 4666 \text{ GeV})$     | 25.9 / 6               |
| ATLAS $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 66-116 \text{ GeV})$   | 15.8 / 12              |
| ATLAS forward $Z/\gamma^* \to \ell\ell$ ( $m_{\ell\ell} = 66116 \text{ GeV}$ )  | 7.4 / 9                |
| ATLAS $Z/\gamma^* \rightarrow \ell\ell \ (m_{\ell\ell} = 116150 \text{ GeV})$   | 7.1 / 6                |
| ATLAS forward $Z/\gamma^* \to \ell\ell$ ( $m_{\ell\ell} = 116150 \text{ GeV}$ ) | 4.0 / 6                |
| ATLAS Correlated + Log penalty                                                  | 27.2                   |
| ATLAS Total                                                                     | 108 / 61               |

**ATLAS arXiv:1612.03016** 









#### Impact of NOMAD data



- Evident room for the PDF improvement by adding NOMAD data to various PDF fits
- Big spread in the predictions ⇒ PDF4LHC averaging provides inefficient estimate

## $(\bar{d} - \bar{u})(x, Q_0^2) = A(1-x)^{\eta_{sea}+2} x^{\delta} (1 + \sum_{i=1}^4 a_i T_i (1 - 2x^{\frac{1}{2}})),$





| € 0.3          | N <sub>f</sub> =4, μ=2 GeV |
|----------------|----------------------------|
| - u(x))        | CT14                       |
| ((x)n - (x)p)x | NN3.0                      |
| 0.1            | MMHT14                     |
| 0              |                            |
| -0.1           |                            |
| -0.2           | ABMP16                     |
| -0.3 10 -5 1   | 0 -4 10 -3 10 -2 10 -1     |

Thorne, this conference

|                                       | no. points | $\operatorname{NLO}\chi^2_{pred}$ | NLO $\chi^2_{new}$ | NNLO $\chi^2_{pred}$ | NNLO $\chi^2_{new}$ |
|---------------------------------------|------------|-----------------------------------|--------------------|----------------------|---------------------|
| $\sigma_{tar{t}}$ Tevatron +CMS+ATLAS | 18         | 19.6                              | 20.5               | 14.7                 | 15.5                |
| LHCb 7 TeV $W+Z$                      | 33         | 50.1                              | 45.4               | 37.1                 | 36.7                |
| LHCb 8 TeV $W+Z$                      | 34         | 77.0                              | 58.9               | 76.1                 | 67.2                |
| LHCb 8TeV $e$                         | 17         | 37.4                              | 33.4               | 30.0                 | 27.8                |
| CMS 8 TeV ${\cal W}$                  | 22         | 32.6                              | 18.6               | 57.6                 | 29.4                |
| CMS7TeVW+c                            | 10         | 8.5                               | 10.0               | 8.7                  | 8.0                 |
| D0 e asymmetry                        | 13         | 22.2                              | 21.5               | 27.3                 | 22.9                |
| total                                 | 3738/3405  | 4375.9                            | 4336.1             | 3768.0               | 3739.3              |

$$xu_s(x,\mu_0^2) = \bar{u}_s(x,\mu_0^2) = A_{us}(1-x)^{b_{us}}x^{a_{us}P_{us}(x)},$$

$$xd_s(x,\mu_0^2) = \bar{d}_s(x,\mu_0^2) = A_{ds}(1-x)^{b_{ds}}x^{a_{ds}P_{ds}(x)}$$

dbar≠ubar at small x (the same applies for CT14)

The sum of  $\chi^2/NDP$  for the DY data by LHCB, CMS, and D0 from the table:

184/119 (MMHT16)

171/119 (ABMP16, no filtering), account of other DY data should increase the difference

#### Sea quark iso-spin asvmmetrv



sa, Blümlein, Moch PRD 89, 054028 (2014)

- At  $x\sim0.1$  the sea quark iso-spin asymmetry is controlled by the fixed-target DY data (E-866), weak constraint from the DIS (NMC)
- At x<0.01 Regge-like constraint like  $x^{(a-1)}$ , with a close to the meson trajectory intercept; the "unbiased" NNPDF fit follows the same trend

