

Jet Correlation Measurements at ATLAS and the determination of the strong coupling constant

DIS 2018

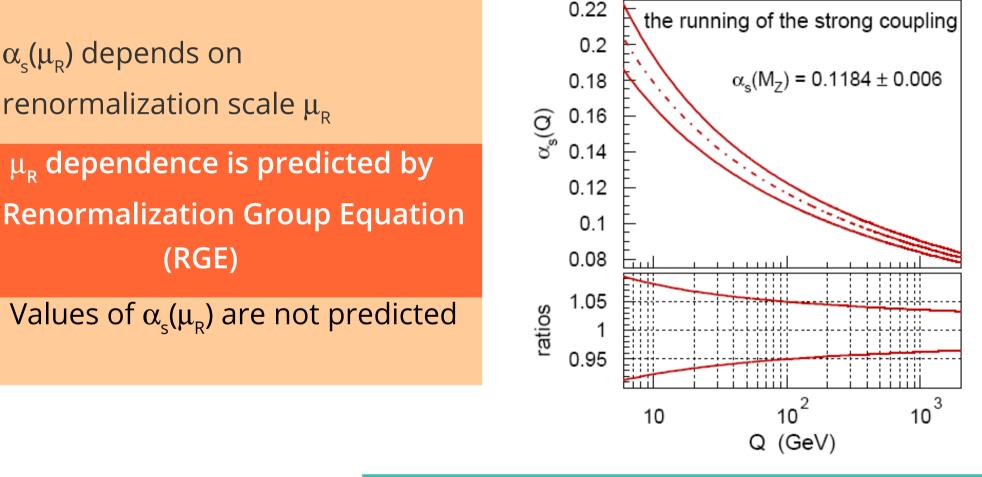
XXVI International Workshop on Deep-Inelastic Scattering and Related Subjects April 18, 2018

M. Wobisch Louisiana Tech University On behalf of the ATLAS Collaboration

Why multi-jet cross section ratios? The measured quantity Measurement results

> The strong coupling constant Extraction procedure Results

 $\alpha_{s}(\mu_{R})$ depends on


renormalization scale μ_{P}

(RGE)

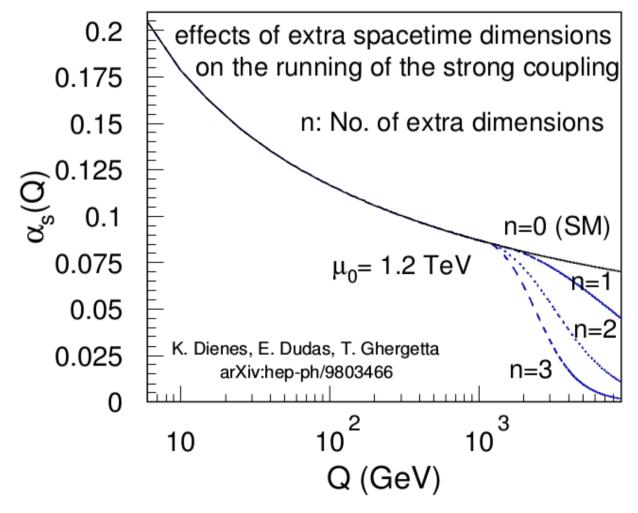
QCD tests \rightarrow 2 aspects:

ATLAS jet correlations and the strong coupling

The strong coupling and the RGE

- Determine the value of $\alpha_{s} \rightarrow \alpha_{s}(M_{7})$

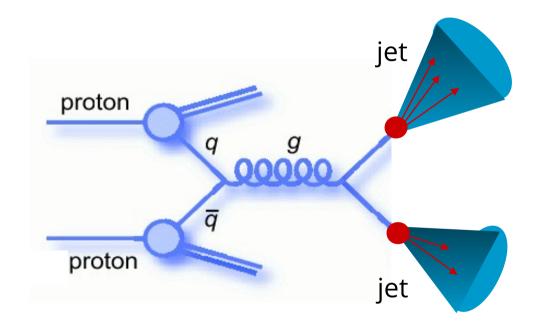
- test the predictions for its running



3

Why we care

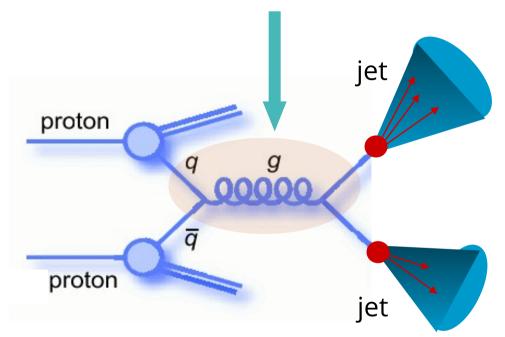
RGE of pQCD may not tell the full story

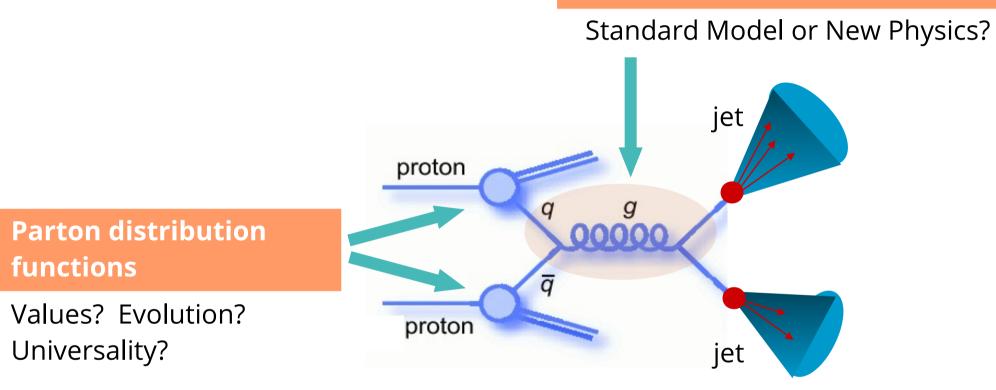


RGE may be modified by New Physics

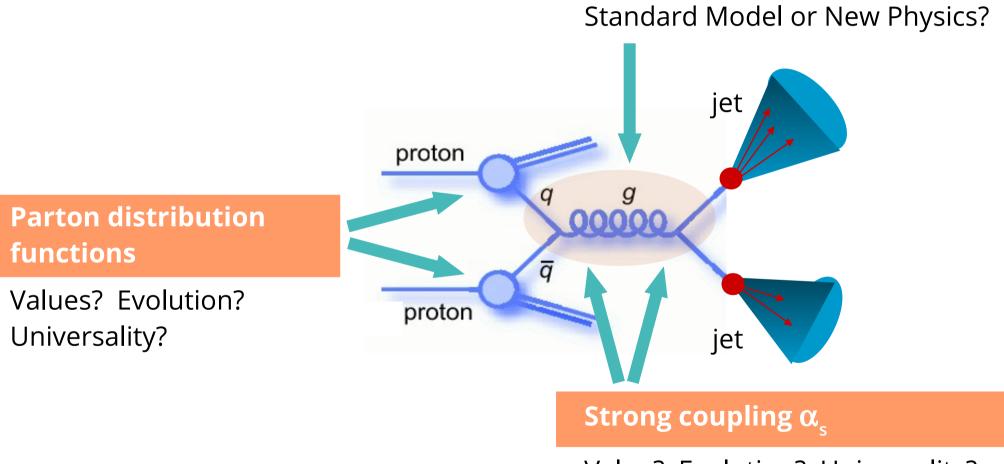
e.g. effects from extra spacetime dimensions: \rightarrow Modified running of $\alpha_s(Q)$ at high Q

April 18, 2018



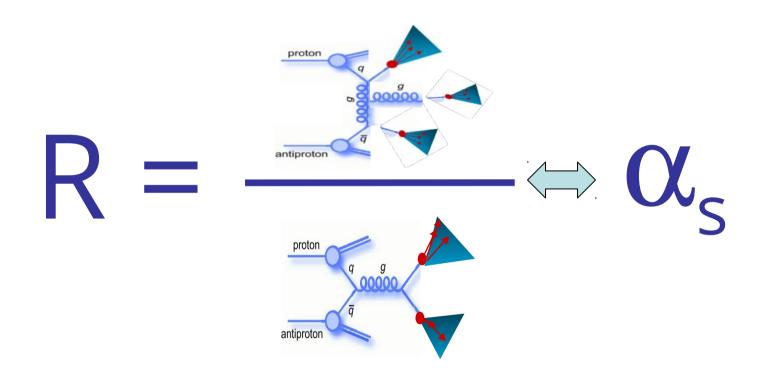

Matrix Elements

Standard Model or New Physics?



Matrix Elements

Matrix Elements



Value? Evolution? Universality?

Ratios of Multi-Jet Cross Sections

3-jet / 2-jet ratios

- sensitive to α_s (3-jets: α_s^3 | 2-jets: α_s^2)

- less sensitive to PDFs & exp. uncertainties (cancellations)

Transverse Energy-Energy Correlation

ATLAS Collab. Eur.Phys.J. C77 (2017) 12, 872

Transverse enery-energy correlations (TEEC) Associated asymmetry (ATEEC)

Energy-Energy Correlations = Energy-weighted angular correlations Event shape \rightarrow independent of thrust axis or sphericity tensor Transverse version \rightarrow use at hadron colliders Calculated to NLO pQCD

TEEC:

$$\frac{1}{\sigma}\frac{d\Sigma}{d(\cos\phi)} = \frac{1}{\sigma}\sum_{ij}\int\frac{d\sigma}{dx_{Ti}dx_{Tj}d(\cos\phi)}x_{Ti}x_{Tj}dx_{Ti}dx_{Tj} \equiv \frac{1}{N\Delta\cos\phi}\sum_{A=1}^{N}\sum_{ij}\frac{E_{Ti}^{A}E_{Tj}^{A}}{\left(\sum_{k}E_{Tk}^{A}\right)^{2}}\delta(\cos\phi - \cos\phi_{ij})$$

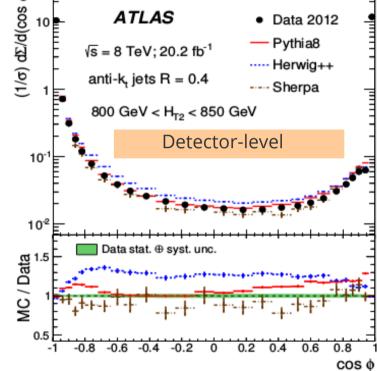
um: over all pairs of jets i,j
 $x_{Ti} = E_{Ti}/E_{T}$ $E_{T} = \sum_{i}E_{Ti}$

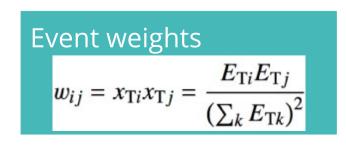
ATEEC:
$$\frac{1}{\sigma'} \frac{d\Sigma'^{\text{asym}}}{d\phi} \equiv \frac{1}{\sigma'} \frac{d\Sigma'}{d\phi} \Big|_{\phi} - \frac{1}{\sigma'} \frac{d\Sigma'}{d\phi} \Big|_{\pi-\phi}$$

April 18, 2018

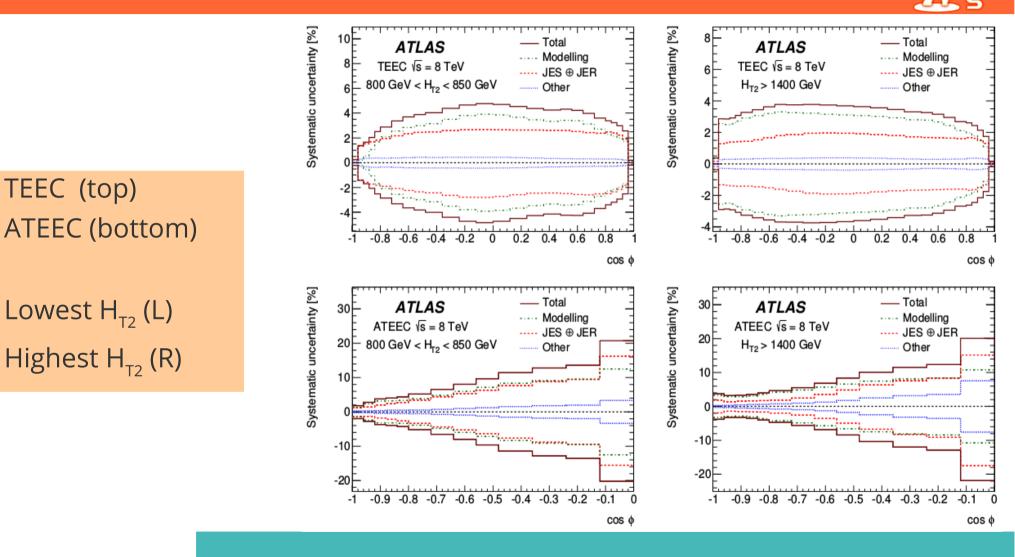
TEEC / ATEEC Measurement

Data set


ATLAS data at sqrt(s) = 8 TeV with L = 20.2 fb⁻¹ Single-jet trigger $E_{\tau} > 360$ GeV

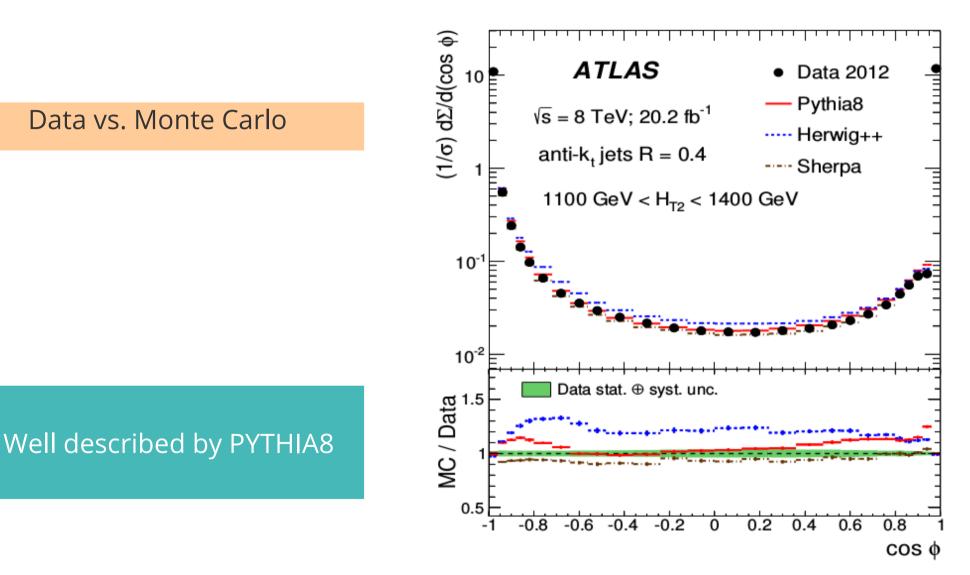

Phase space

Jets with $p_T > 100 \text{ GeV}$, $|\eta| < 2.5$ $H_{T2} = (p_{T1} + p_{T2}) > 800 \text{ GeV}$


Measurement

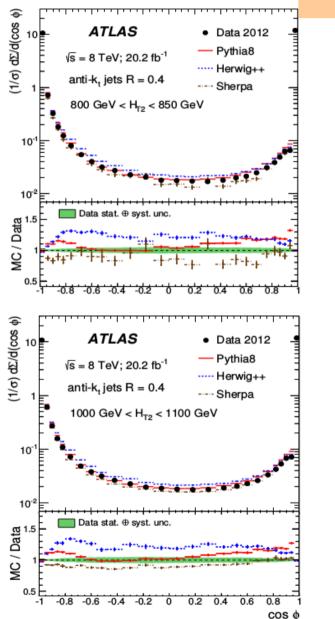
Normalized distribution in $cos(\phi)$ and H_{T_2} Distributions unfolded to particle level

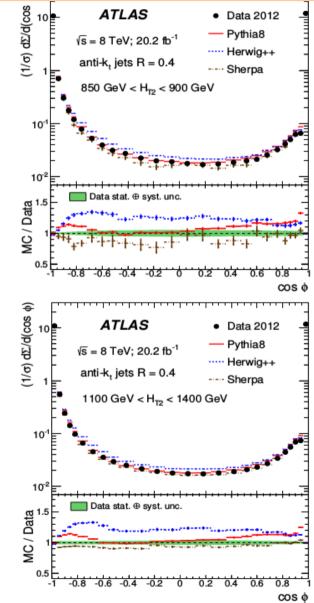
TEEC / ATEEC Syst. Uncertainties

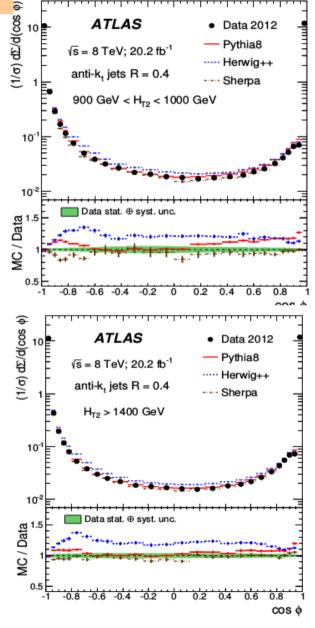


Systematic uncertainties for TEEC are always below 5% → Jet energy calibration uncertainties cancel partially in ratio

April 18, 2018


Measurement Results TEEC

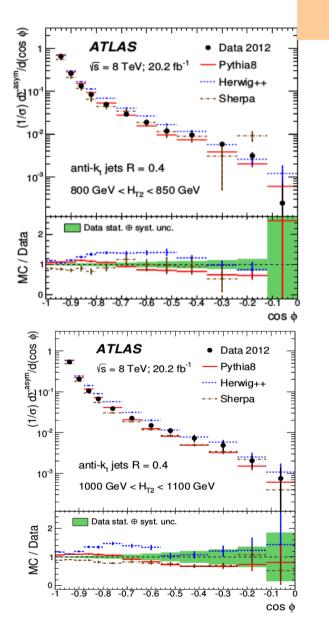


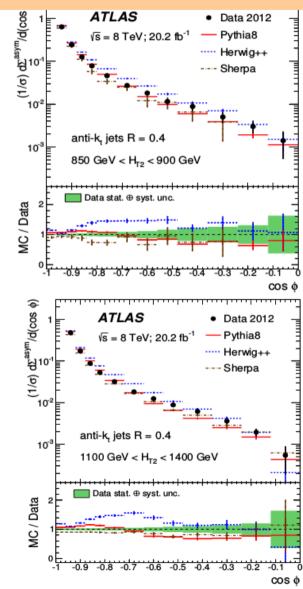

Measurement Results TEEC

Data vs. Monte Carlo

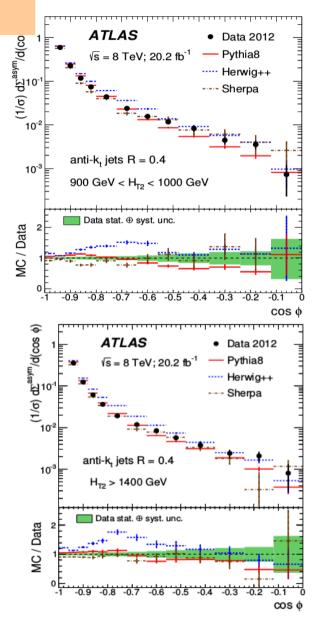
April 18, 2018

Measurement Results ATEEC


 $\int_{0}^{0} (1/\sigma) d\Sigma^{asym}/d(\cos \phi)$ ATLAS Data 2012 — Pythia8 √s = 8 TeV; 20.2 fb⁻¹ ····· Herwig++ ---- Sherpa anti-k, jets R = 0.4 10⁻³ $1100 \text{ GeV} < H_{T2} < 1400 \text{ GeV}$ Data stat. ⊕ syst. unc. MC / Data -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 cos 🗄


Data vs. Monte Carlo

Well described by PYTHIA8


Measurement Results ATEEC

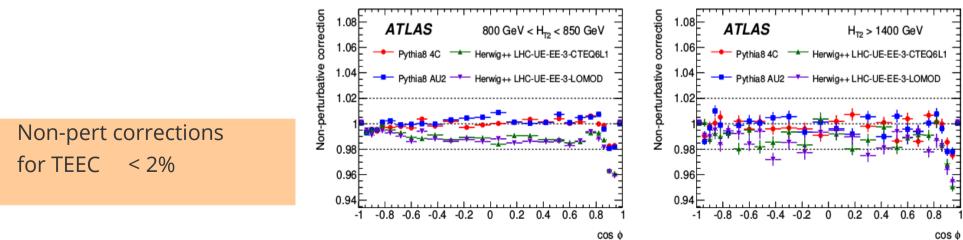
Data vs. Monte Carlo

April 18, 2018

Theory Predictions

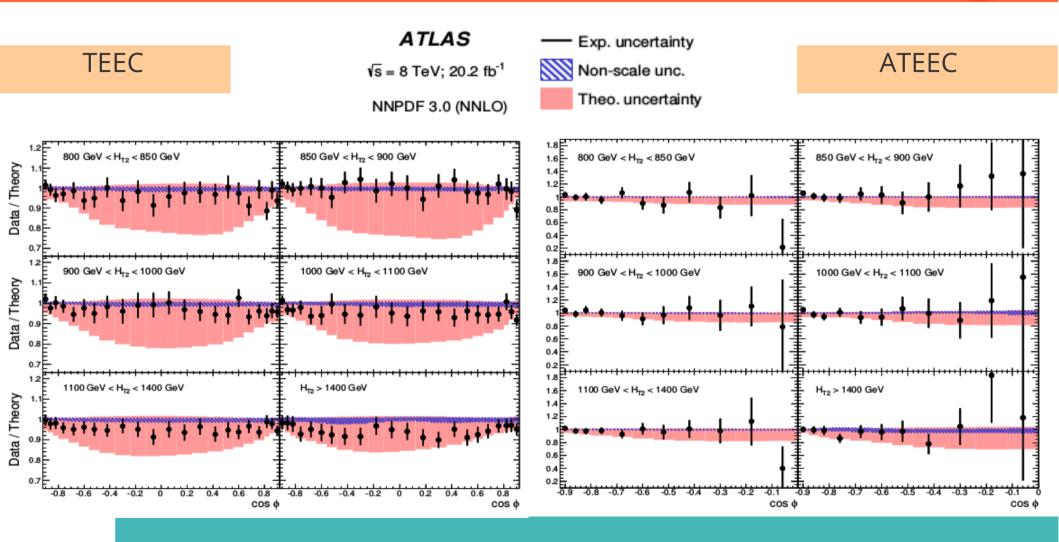
NLO pQCD

NLOjet++ (massless quarks, $n_f = 5$)


renormalization scale: H_{T_2} / 2 factorization scale: H_{T_2} / 4

PDFs: MMHT2014, CT14, NNPDF3.0, HERAPDF2.0

Non-perturbative corrections


PYTHIA8 tunes: AU2 (nominal), 4C

HERWIG++ tunes: LHC-UE-EE-3-CTEQ6L1, LHC-UE-EE-3-LOMOD

Data / pQCD Theory Comparison

Good agreement within theoretical uncertainty from scale dependence \rightarrow <10% for $|\cos \phi| > 0.7$ \rightarrow up to 20% for $|\cos \phi| < 0.3$

April 18, 2018

Determination of α_{s}

Minimize χ^2 function

$$\chi^2(\alpha_{\rm s},\vec{\lambda}) = \sum_{\rm bins} \frac{(x_i - F_i(\alpha_{\rm s},\vec{\lambda}))^2}{\Delta x_i^2 + \Delta \xi_i^2} + \sum_k \lambda_k^2,$$

 $\alpha_{\rm s}(Q^2)$ value (NNPDF 3.0)

Hessian approach

$$F_i(\alpha_{\rm s},\vec{\lambda}) = \psi_i(\alpha_{\rm s}) \left(1 + \sum_k \lambda_k \sigma_k^{(i)}\right)$$

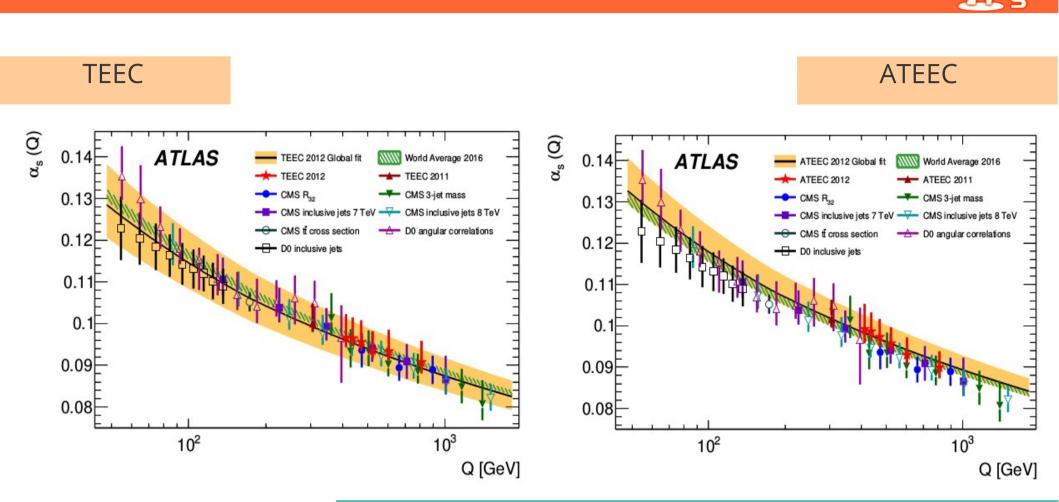
Combine data within each HT2 range \rightarrow 6 sets \rightarrow 6 α_{c} results

ATEEC

$\langle Q \rangle$ (GeV)	$\alpha_{\rm s}(Q^2)$ value (NNPDF 3.0)
412	0.0992 ± 0.0024 (exp.) $^{+0.0056}_{-0.0020}$ (scale) ± 0.0009 (PDF) ± 0.0002 (NP)
437	0.0986 ± 0.0017 (exp.) $^{+0.0041}_{-0.009}$ (scale) ± 0.0010 (PDF) ± 0.0007 (NP)
472	0.0973 ± 0.0018 (exp.) $^{+0.0038}_{-0.0008}$ (scale) ± 0.0010 (PDF) ± 0.0001 (NP)
522	0.0957 ± 0.0016 (exp.) $^{+0.0034}_{-0.0006}$ (scale) ± 0.0011 (PDF) ± 0.0003 (NP)
604	0.0930 ± 0.0019 (exp.) $^{+0.0035}_{-0.0005}$ (scale) ± 0.0012 (PDF) ± 0.0003 (NP)
810	0.0899 ± 0.0021 (exp.) $^{+0.0031}_{-0.0005}$ (scale) ± 0.0013 (PDF) ± 0.0001 (NP)

Т	Έ	E	C
	_	_	-

412	0.0966 ± 0.0014 (exp.) $^{+0.0054}_{-0.0015}$ (scale) ± 0.0009 (PDF) ± 0.0001		412	0.0992 ± 0.0024 (exp.) $^{+0.0056}_{-0.0020}$ (scale) ± 0.0009 (PDF) ± 0.000	002 (NP)
437	0.0964 ± 0.0012 (exp.) $^{+0.0048}_{-0.0011}$ (scale) ± 0.0009 (PDF) ± 0.0002	2 (NP)	437	0.0986 ± 0.0017 (exp.) $^{+0.0041}_{-0.0009}$ (scale) ± 0.0010 (PDF) ± 0.0010	007 (NP)
472	0.0955 ± 0.0011 (exp.) $^{+0.0051}_{-0.0015}$ (scale) ± 0.0009 (PDF) ± 0.0001		472	0.0973 ± 0.0018 (exp.) $^{+0.0038}_{-0.0008}$ (scale) ± 0.0010 (PDF) ± 0.008	
522	0.0936 ± 0.0011 (exp.) $^{+0.0043}_{-0.0010}$ (scale) ± 0.0010 (PDF) ± 0.0001		522	0.0957 ± 0.0016 (exp.) $^{+0.0034}_{-0.0004}$ (scale) ± 0.0011 (PDF) ± 0.001	
604	0.0933 ± 0.0011 (exp.) $^{+0.0050}_{-0.0014}$ (scale) ± 0.0011 (PDF) ± 0.0003		604	0.0930 ± 0.0019 (exp.) $^{+0.0035}_{-0.0005}$ (scale) ± 0.0012 (PDF) ± 0.005	
810	0.0907 ± 0.0013 (exp.) $^{+0.0049}_{-0.0020}$ (scale) ± 0.0011 (PDF) ± 0.0002	2 (NP)	810	0.0899 ± 0.0021 (exp.) $^{+0.0031}_{-0.0005}$ (scale) ± 0.0013 (PDF) ± 0.001	
			010	0.0077 ± 0.0021 (exp.) $_{-0.0005}$ (scale) ± 0.0015 (1 D1) ± 0.0015	501 (111)
$\langle Q \rangle$ (GeV)	$\alpha_{\rm s}(m_Z)$ value (NNPDF 3.0)	$\chi^2/N_{\rm dof}$	$\langle Q \rangle$ (GeV)	$\alpha_{\rm s}(m_Z)$ value (NNPDF 3.0)	$\chi^2/N_{\rm dof}$
$\langle Q \rangle$ (GeV) 412	0.1171 ± 0.0021 (exp.) $^{+0.0081}_{-0.0022}$ (scale) ± 0.0013 (PDF) ± 0.0001 (NP)	24.3 / 21	$\frac{\langle Q \rangle ({\rm GeV})}{412}$	$\alpha_{\rm s}(m_Z)$ value (NNPDF 3.0) 0.1209 ± 0.0036 (exp.) $^{+0.0085}_{-0.0031}$ (scale) ± 0.0013 (PDF) ± 0.0004 (NP)	$\frac{\chi^2/N_{\rm dof}}{10.6 / 10}$
	$\begin{array}{c} 0.1171 \pm 0.0021 \; (exp.) \; {}^{+0.0081}_{-0.0022} \; (scale) \pm 0.0013 \; (PDF) \pm 0.0001 \; (NP) \\ 0.1178 \pm 0.0017 \; (exp.) \; {}^{+0.0073}_{-0.0017} \; (scale) \pm 0.0014 \; (PDF) \pm 0.0002 \; (NP) \end{array}$	24.3 / 21 28.3 / 21			
412 437 472	$\begin{array}{c} 0.1171 \pm 0.0021 \ (exp.) \ {}^{+0.0081}_{-0.0022} \ (scale) \pm 0.0013 \ (PDF) \pm 0.0001 \ (NP) \\ 0.1178 \pm 0.0017 \ (exp.) \ {}^{+0.0073}_{-0.0017} \ (scale) \pm 0.0014 \ (PDF) \pm 0.0002 \ (NP) \\ 0.1177 \pm 0.0017 \ (exp.) \ {}^{+0.0079}_{-0.0023} \ (scale) \pm 0.0015 \ (PDF) \pm 0.0001 \ (NP) \end{array}$	24.3 / 21 28.3 / 21 27.7 / 21	412	0.1209 ± 0.0036 (exp.) $^{+0.0085}_{-0.0031}$ (scale) ± 0.0013 (PDF) ± 0.0004 (NP)	10.6 / 10
412 437 472 522	$\begin{array}{c} 0.1171 \pm 0.0021 \ (exp.) \ {}^{+0.0081}_{-0.0022} \ (scale) \pm 0.0013 \ (PDF) \pm 0.0001 \ (NP) \\ 0.1178 \pm 0.0017 \ (exp.) \ {}^{+0.0073}_{-0.0017} \ (scale) \pm 0.0014 \ (PDF) \pm 0.0002 \ (NP) \\ 0.1177 \pm 0.0017 \ (exp.) \ {}^{+0.0079}_{-0.0023} \ (scale) \pm 0.0015 \ (PDF) \pm 0.0001 \ (NP) \\ 0.1163 \pm 0.0017 \ (exp.) \ {}^{+0.0079}_{-0.0016} \ (scale) \pm 0.0016 \ (PDF) \pm 0.0001 \ (NP) \end{array}$	24.3 / 21 28.3 / 21 27.7 / 21 22.8 / 21	412 437	$\begin{array}{c} 0.1209 \pm 0.0036 \; (exp.) \stackrel{+0.0085}{-0.0031} \; (scale) \pm 0.0013 \; (PDF) \pm 0.0004 \; (NP) \\ 0.1211 \pm 0.0026 \; (exp.) \stackrel{+0.0064}{-0.0014} \; (scale) \pm 0.0015 \; (PDF) \pm 0.0010 \; (NP) \end{array}$	10.6 / 10 6.8 / 10
412 437 472	$\begin{array}{c} 0.1171 \pm 0.0021 \ (exp.) \ {}^{+0.0081}_{-0.0022} \ (scale) \pm 0.0013 \ (PDF) \pm 0.0001 \ (NP) \\ 0.1178 \pm 0.0017 \ (exp.) \ {}^{+0.0073}_{-0.0017} \ (scale) \pm 0.0014 \ (PDF) \pm 0.0002 \ (NP) \\ 0.1177 \pm 0.0017 \ (exp.) \ {}^{+0.0079}_{-0.0023} \ (scale) \pm 0.0015 \ (PDF) \pm 0.0001 \ (NP) \end{array}$	24.3 / 21 28.3 / 21 27.7 / 21 22.8 / 21 24.3 / 21	412 437 472	$\begin{array}{l} 0.1209 \pm 0.0036 \; (exp.) \stackrel{+0.0085}{_{-0.0031}} (scale) \pm 0.0013 \; (PDF) \pm 0.0004 \; (NP) \\ 0.1211 \pm 0.0026 \; (exp.) \stackrel{+0.0064}{_{-0.0014}} (scale) \pm 0.0015 \; (PDF) \pm 0.0010 \; (NP) \\ 0.1203 \pm 0.0028 \; (exp.) \stackrel{+0.0060}{_{-0.0013}} (scale) \pm 0.0016 \; (PDF) \pm 0.0002 \; (NP) \end{array}$	10.6 / 10 6.8 / 10 8.8 / 10



 $\langle Q \rangle$ (GeV)

19

Determination of $\alpha_{s}(Q)$

Consistency with RGE predictions & with results from other experiments

Determination of $\alpha_s(m_z)$

TEEC	PDF	$\alpha_{\rm s}(m_{\rm Z})$ value	$\chi^2/N_{\rm dof}$
	MMHT 2014	0.1151 ± 0.0008 (exp.) $^{+0.0064}_{-0.0047}$ (scale) ± 0.0012 (PDF) ± 0.0002 (NP)	173 / 131
	CT14	0.1165 ± 0.0010 (exp.) $^{+0.0067}_{-0.0061}$ (scale) ± 0.0016 (PDF) ± 0.0003 (NP)	161 / 131
	NNPDF 3.0	0.1162 ± 0.0011 (exp.) $^{+0.0076}_{-0.0061}$ (scale) ± 0.0018 (PDF) ± 0.0003 (NP)	174 / 131
	HERAPDF 2.0	0.1177 ± 0.0008 (exp.) $^{+0.0064}_{-0.0040}$ (scale) ± 0.0005 (PDF) ± 0.0002 (NP) $^{+0.0008}_{-0.0007}$ (mod)	169 / 131

 $\alpha_{\rm s}(m_Z) = 0.1162 \pm 0.0011 \text{ (exp.)} {}^{+0.0076}_{-0.0061} \text{ (scale)} \pm 0.0018 \text{ (PDF)} \pm 0.0003 \text{ (NP)}.$

PDF	$\alpha_{\rm s}(m_Z)$ value	$\chi^2/N_{\rm dof}$	ATEEC
MMHT 2014	0.1185 ± 0.0012 (exp.) $^{+0.0047}_{-0.0010}$ (scale) ± 0.0010 (PDF) ± 0.0004 (NP)	57.0 / 65	
CT14	0.1203 ± 0.0013 (exp.) $^{+0.0053}_{-0.0014}$ (scale) ± 0.0015 (PDF) ± 0.0004 (NP)	55.4 / 65	
NNPDF 3.0	0.1196 ± 0.0013 (exp.) $^{+0.0061}_{-0.0013}$ (scale) ± 0.0017 (PDF) ± 0.0004 (NP)	60.3 / 65	
HERAPDF 2.0	0.1206 ± 0.0012 (exp.) $^{+0.0050}_{-0.0014}$ (scale) ± 0.0005 (PDF) ± 0.0002 (NP) ± 0.0007 (mod)	54.2 / 65	

 $\alpha_{\rm s}(m_Z) = 0.1196 \pm 0.0013 \text{ (exp.)} {}^{+0.0061}_{-0.0013} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0004 \text{ (NP)}$

Consistent with each other & with world average (0.1181 +- 0.0011)

ATLAS, Eur.Phys.J. C77 (2017) 12, 872

Measurement of transverse energy-energy correlations & asymmetry

- 2012 ATLAS data, sqrt(s) = 8 TeV, L = 20.2 fb⁻¹
- Small experimental uncertainties for TEEC
- Reasonably well described by different MCs & NLO pQCD + non-pert.
- Determinations of $\alpha_s(Q)$ and $\alpha_s(m_z)$
- Fits, combining all different H_{T2} regions:

 $\alpha_{\rm s}(m_Z) = 0.1162 \pm 0.0011 \text{ (exp.)} {}^{+0.0076}_{-0.0061} \text{ (scale)} \pm 0.0018 \text{ (PDF)} \pm 0.0003 \text{ (NP)},$ $\alpha_{\rm s}(m_Z) = 0.1196 \pm 0.0013 \text{ (exp.)} {}^{+0.0061}_{-0.0013} \text{ (scale)} \pm 0.0017 \text{ (PDF)} \pm 0.0004 \text{ (NP)},$

Good agreement with previous results, world average and RGE predictions