Measurement of photon production cross sections with the ATLAS detector

Bruno Lenzi on behalf of the ATLAS collaboration CERN

DIS 2018 - Kobe, Japan

17/04/2018

Introduction to photon measurements

- Photons are colourless probes, well suited to test QCD at hadron collisions
 - Clean signature

See also talk by Mark Stockton on γ +jets

- Test resummation, pQCD and EW corrections, gluon PDF, ...
- Fixed-order calculations available up to NNLO for γ +X and $\gamma\gamma$
- Background to Higgs boson studies and searches for new phenomena
 - New resonances (scalar, graviton, Z'), SUSY, ...
- Measurements of isolated γ (13 TeV, 3.2 fb⁻¹), $\gamma\gamma$ and $\gamma\gamma\gamma$ (8 TeV, 20 fb⁻¹)

Measurement strategy

- Main background from jets (with e.g. π^0) rejected by ID cuts and isolation
 - Finely segmented EM calorimeter $(|\eta| < 2.37, excluding 1.37 < |\eta| < 1.56)$
 - Isolation corrected by photon, UE and pileup contributions
 - Data-driven background subtraction using ID and isolation (also $e \rightarrow \gamma$, usually small)
- Correction for detector effects, unfolding to particle-level (bin-by-bin)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}A}(i) = \frac{N^{\mathrm{sig}}(i)C(i)}{\Delta A(i) \ \mathcal{L}}$$

- Systematic uncertainties dominant in most of the phase-space
 - Efficiencies measured in data. e.g. photon ID

Inclusive isolated photons at 13 TeV

Phys. Lett. B 770 (2017) 473

4

Candidate with $E_T = 1.3 \text{ TeV}$

Measurement of photon production cross sections with the ATLAS detector 17/04/2018

Inclusive isolated photons at 13 TeV

- 2015 dataset: 3.2 fb⁻¹ at 13 TeV
- Selection (also at particle level):
 - $E_T > 125$ GeV (trigger)
 - Isolation: $E_{T^{iso}} < 4.8 \text{ GeV} + 4.2e-3 * E_{T}$
- Jet background subtracted with 2D sidebands methods (ID, iso)
 - Other sources (e.g. $e \rightarrow \gamma$) negligible
- Inclusive cross-section and $d\sigma/dE_T$ in 4 η regions
- Syst uncertainties dominant for $E_T < 600 \text{ GeV}$
 - Energy scale and resolution: 2-5%, larger for $1.56 < |\eta| < 1.81$
 - Photon ID and background subtraction typically 1-2%

Phys. Lett. B 770 (2017) 473

 E_{T}^{γ} [GeV]

• Comparison with NLO JETPHOX and MC generators (Pythia, Sherpa)

 $\sigma_{\text{meas}} = 399 \pm 13 \text{ (exp.)} \pm 8 \text{ (lumi.) pb}$

 $\sigma_{\text{NLO}} = 352^{+36}_{-29} \text{ (scale) } \pm 3 \text{ (PDF) } \pm 6 (\alpha_{\text{s}}) \pm 4 \text{ (non-perturb.) pb}$

- $d\sigma/dE_T$ over 5 orders of magnitude
- Shape well described by MC, except for $E_T > 500$ GeV in the regions $|\eta| < 1.37$
- Adequate description by NLO calculation
 - Differences up to 10-15%, covered by theoretical uncertainties (scale)
 - Calls for higher order calculation!

Phys. Lett. B 770 (2017) 473

• Comparison with NLO JETPHOX and MC generators (Pythia, Sherpa)

 $\sigma_{\text{meas}} = 399 \pm 13 \text{ (exp.)} \pm 8 \text{ (lumi.) pb.}$

 $\sigma_{\text{NLO}} = 352^{+36}_{-29} \text{ (scale) } \pm 3 \text{ (PDF) } \pm 6 (\alpha_{\text{s}}) \pm 4 \text{ (non-perturb.) pb}_{\pm}$

Phys. Lett. B 770 (2017) 473

Theory/Data ATLAS NLO QCD (JETPHOX) $d\sigma/dE_T$ over 5 orders of magnitude $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ MMHT2014 -.. luminosity uncertainty **CT14** NNPDF3.0 Shape well described by MC, except for $E_T > 500$ GeV in the regions $|\eta| < 1.37$ • Data (0.6< $|\eta^{\gamma}|$ <1.37) • Data ($|\eta^{\gamma}| < 0.6$) Adequate description by NLO calculation Theory/Data • Data $(1.56 < |\eta^{\gamma}| < 1.81)$ \Box Data (1.81<| η^{γ} |<2.37) Differences up to 10-15%, covered by • theoretical uncertainties (scale) Calls for higher order calculation! • 200 300 300 400 500 400 500 200 E_{T}^{γ} [GeV] E_{T}^{γ} [GeV]

Comparison with NNLO calculations of pp $\rightarrow \gamma + X$

- NNLO calculation: Campbell et al, <u>PRL 118, 222001 (2017)</u>, <u>1802.03021</u>
 - Scale uncertainties halved
 - Overall good agreement. Small discrepancies in the forward bin for 8 TeV, cancel out when taking the ratio to 13 TeV data

9

Integrated cross-section and differential as a function of 6 variables:

 $m_{\gamma\gamma}, p_{\mathrm{T},\gamma\gamma}, \Delta\phi_{\gamma\gamma}, |\cos\theta_{\eta}^{*}|, a_{\mathrm{T}}, \phi_{\eta}^{*}$

 Larger dataset (20 fb⁻¹), reduced uncertainties and new variables w.r.t. to rse compression/sofeBuild/attr7 they/t(betterasiensitivity to soft-aluon emission)

Photon pair production at 8 TeV

Syst. uncertainties dominated by photon ID (2.5%), isolation modelling (2%) and efficiency (1.5%), background control region def. (^{+1.5%}-1.7%)

 $\sigma_{\text{tot}}^{\text{fid.}} = 16.8 \pm 0.1 \text{ (stat)} \pm 0.7 \text{ (syst)} \pm 0.3 \text{ (lumi) pb}$

• Compared to calculations up to NNLO or NLO + PS / gluon-resummation:

Photon pair production at 8 TeV

- Uncertainties typically < 5% per bin, up to 25% in few bins with low stats
- Sherpa 2.2.1 with ME+PS at NLO describes the data well
- Impact of IR emissions (a_T and ϕ^*) well reproduced by gluon resummation

Production of three photons at 8 TeV

- Integrated cross-section and differential as a function of $E_{T1,2,3}$, $\Delta \varphi_{\gamma\gamma}$ and $\Delta \eta_{\gamma\gamma}$, $m_{\gamma\gamma}$ and $m_{3\gamma}$
- $E_T > 27, 25, 15 \text{ GeV}; m_{3\gamma} > 50 \text{ GeV}; \Delta R > 0.45; E_T^{iso,part} > 10 \text{ GeV}$
- Jet background subtracted by 2D sideband method (ID and iso); e $\rightarrow \gamma$ from MC, checked with data around m_z

arXiv:1712.07291

Production of three photons at 8 TeV

- Stat uncertainty: ~9%. Syst: ~13%
 - ID eff. (7.9%)
 - Correlation between ID and iso (7.7%)
 - Iso modelling (5.8%)
- Compared to NLO (MCFM with BFG II frag.) and NLO+PS (MG5_aMC@NLO+Pythia)
 - Scale uncertainty: 10-12%
 - Underestimate the data by ~ factor 2
- Would benefit from NNLO

arXiv:1712.0729

Production of three photons at 8 TeV

14

- Differential cross-section as a function of $E_{T1,2,3}$, $\Delta \varphi_{\gamma\gamma}$ and $\Delta \eta_{\gamma\gamma}$, $m_{\gamma\gamma}$ and $m_{3\gamma}$
 - Stat 20-50% in some bins. Dominates for $E_{T1,2} > 50$ GeV or $E_{T3} > 30$ GeV
 - Syst: 15-10%
- Significant discrepancies between data and theory at low E_T and low inv. masses. Adequate description of $\Delta \eta_{\gamma\gamma}$, less so of $\Delta \varphi_{\gamma\gamma}$

Summary

- Measurements of cross-sections of pp \rightarrow up to 3 photons
 - Reach ~1 TeV in E_T and $m_{\gamma\gamma}$
 - Differential measurements of several variables
 - Precision of few % in many cases, similar or better than theory errors
- Comparisons with calculations up to NNLO or NLO+PS
 - Some discrepancies but overall agreement with data ok (less so for 3γ)
- Looking forward to improved calculations and updated measurements

Photon pair production at 8 TeV

Phys. Rev. D 95 (2017) 112005

Three photon production at 8 TeV

arXiv:1712.07291

Measurement of photon production cross sections with the ATLAS detector 17/04/2018 18