Coherent vector meson production at an EIC

Overview

• Motivation

• Photo-nuclear interaction in eSTARlight:
 • $\gamma p \rightarrow V.M. + p$ vector meson production
 • Comparison to data
 • Extension to γA

• Vector meson production at an EIC:
 • Estimating rates
 • Final state particle distributions

• Summary
Why we need MC and what’s been done?

A Monte Carlo for ep and eA collisions is essential for EIC success:

• Study physics program and drive detector design

Some ep Monte Carlos developed for HERA

• M.C.'s don't cover more exotic processes, parametrizations missing

Lack of both experimental and simulations for eA:

• Fixed target experiments at low energy, SARTRE M.C.

eSTARlight motivated to study e+X \rightarrow e+X+V.M. cross sections for:

• Different center of mass energies (accelerator facilities)
• Different V.M. species
• Different collision systems (X = p, Au, etc.)
• Arbitrary virtuality Q^2
Diffraction at an EIC

- How are the quarks and gluons distributed within the nucleon? What about nucleus?
- Initial state geometry is necessary to understand heavy ion collisions:
 - Initial state (IS) geometry → final state collectivity
 - Collective phenomena has been observed in p-p and p-A collisions

- Diffractive processes (no color exchange) can probe gluon density and their spatial distribution
Some important kinematic quantities to consider in electron-ion collisions:

- Resolving power
 \[Q^2 = -q^2 = -(k'_\mu - k'_{\mu})^2 = 2E_eE'_e(1 - \cos \theta_e) \]

- Momentum of struck quark
 \[x = \frac{Q^2}{2pq} = \frac{Q^2}{sy} \]

- Measure of inelasticity
 \[y = \frac{pq}{pk} = 1 - \frac{E'_e}{E_e} \cos^2 \left(\frac{\theta_e}{2} \right) \]
 \[s = 4E_pE_e \]

Inclusive: Detect scattered lepton.
\[e+p/A \rightarrow e' + X \]

Semi-inclusive: Detect scattered lepton in coincidence with identified hadrons/jets.
\[e+p/A \rightarrow e' + h + X \]

Exclusive: Detect scattered lepton, id'd hadrons/jets and target fragments.

April 18th 2018
Electro-nuclear interactions

\[\sigma(e + X \rightarrow e + X + V.M.) = \int dQ^2 \int dE_\gamma \frac{dN_\gamma(E_\gamma, Q^2)}{dE_\gamma dQ^2} \sigma_\gamma X(W, Q^2) \]

- Using equivalent photon approach (EPA), boosted electron surrounded by photon cloud

- Include the corrections for finite virtuality\(^1\):
 \[
 \frac{d^2N}{d(Q^2)dE_\gamma} = \frac{\alpha}{\pi E_\gamma |Q^2|} \left[1 - \frac{E_\gamma}{E_e} + \frac{1}{2} \left(\frac{E_\gamma}{E_e} \right)^2 - \left(1 - \frac{E_\gamma}{E_e} \right) \left| \frac{Q^2_{\text{min}}}{Q^2} \right| \right]
 \]

Photon flux

Photonuclear cross section

- Interactions are done, mostly, with parameterization from HERA\(^1\) for γp→Vp in terms of the γp center of mass energy \(W_{\gamma p}\).

\[\sigma_{\gamma p} = \left(\frac{1}{1 + Q^2/M^2} \right)^n \sigma_{\gamma p}(W) \]

- The power \(n\) is also obtained from fits to data\(^2\)

\(1\): Phys.Rept. 15 181-281 (1975)
Vector meson decays

- Vector mesons retain photon spin → the angular distributions are determined by Clebsch-Gordon coefficients.

In the limit $Q^2 \to 0$, the photons are linearly polarized transverse (T) to the beam:
- 50% right-handed and 50% left-handed photons.

Virtual photons ($Q^2 > 0$) can also be longitudinally (L) polarized:
- Q^2 dependence of the longitudinal-to-transverse ratio R_v is not well known.
- Parametrize R_v to data (HERA) and extract spin matrix elements

$$R_v = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

- Only available for a subset of vector mesons

HERA comparison to data: $\sigma(\gamma^* + p \to V.M. + p)$

- Gamma-proton cross-sections obtained following same procedure in experiment:

$$\sigma_{\gamma p} = \frac{\int dE_\gamma \int dQ^2 \frac{d^2N}{dE_\gamma d(Q^2)} \sigma_{\gamma p}(E_\gamma, Q^2)}{\int dE_\gamma \int dQ^2 \frac{d^2N}{dE_\gamma d(Q^2)}}$$

- $\sigma_{\gamma p}$ measured at HERA is well described by eSTARlight over a broad Q^2 range

ρ: JHEP 1005:032(2010)
Photonuclear Cross Section $\sigma(\gamma A \rightarrow VA)$ and event generation

- Extrapolate photonuclear cross section from γp to γA using Quantum Glauber

$$\sigma_{\text{tot}}(VA) = \int d^2b \left[2 \cdot \left(1 - e^{-\sigma_{\text{tot}}(Vp)T_{AA}(b)/2} \right) \right]$$

- Generalized vector dominance model and optical theorem used to obtain the photo-nuclear cross section

$$\sigma(\gamma A \rightarrow VA) = \left. \frac{d\sigma(\gamma A \rightarrow VA)}{dt} \right|_{t=0} \int_{t_{\text{min}}}^{\infty} dt |F(t)|^2$$

- eSTARlight can handle both narrow and wide resonances to model the generated vector mesons
- Coherent final states
- Track outgoing electron and target for semi-inclusive and exclusive measurements
Estimating rates for an EIC

<table>
<thead>
<tr>
<th></th>
<th>Photo-production ($Q^2 < 1 \text{ GeV}^2$)</th>
<th>Electro-production ($Q^2 > 1 \text{ GeV}^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ</td>
<td>ϕ</td>
</tr>
<tr>
<td>eRHIC</td>
<td>ep</td>
<td>50 G</td>
</tr>
<tr>
<td></td>
<td>eAu</td>
<td>44 G</td>
</tr>
<tr>
<td>JLEIC</td>
<td>ep</td>
<td>37 G</td>
</tr>
<tr>
<td></td>
<td>ePb</td>
<td>28 G</td>
</tr>
<tr>
<td>LHeC</td>
<td>ep</td>
<td>100 G</td>
</tr>
<tr>
<td></td>
<td>ePb</td>
<td>110 G</td>
</tr>
</tbody>
</table>

- $Q^2 > 1 \text{ GeV/c}^2$ affects V.M. species to different degree
- Rates are encouraging for meaningful ψ' and possibly Y measurements

**: Likely overestimated: Doesn’t account for loss of longitudinal coherence

Don’t account for branching ratios
Note: Generated distributions are not scaled in order to compare the different colliders

- Vector meson (ρ^0 and J/ψ) production occurs over a large rapidity window.
- ρ peak negative rapidity due to photon-meson exchange (mostly near threshold). Not present in heavier V.M.
- Peak at forward rapidity (higher k) due to Pomeron exchange.
- Detecting scattered electron requires far forward instrumentation.
Event generation

- Plots show J/ψ production in energy (k) and Bjorken-x bands
- Vector meson production roughly matches photon energy:
 - High energy photons to the right, low energy to the left
- Studying wide range in k or x requires large coverage. Could be done by running EIC at different energies s.
Predictions for eA at potential EIC’s

• Reduced C.M. energy per nucleon \rightarrow lower Pomeron p_z. Production in a narrower rapidity range:
 • Good news for barrel detectors
• Middle: Scaled $(A^{-4/3})$ ratio of V.M. production on lead vs. iron:
 • Signs of nuclear shadowing at low Q^2
• Right plot shows predictions of diffractive minima for three nuclear targets. Fourier transform provides information on gluon distributions $g(b_T)$.
• Generated V.M. are then decayed to obtain daughter distributions (left):
 • Decay angular distributions match vector meson spin
 • Middle and right: Color curves show sampled V.M.'s for different detector acceptances.
 • Mid-rapidity detectors sample between ~60% ($|\eta|<3$) and <10% ($|\eta|<1$) of production for different V.M.:
 • eSTARlight kinematics can help drive detector design
Summary

• eSTARlight can simulate a wide variety of final states:
 • Evaluate feasibility (cross sections, rates, ...) of different physics topics to be studied
 • Inform on accelerator and detector design
• High enough $Y(1S)$ production at an EIC to allow limited studies ($Q^2 > 1 \text{ GeV}^2$ rates are somewhat low)
• Vector mesons are produced over a wide rapidity range
 • Photon energy roughly maps to rapidity
 • Overlap with CEBAF could be desirable: need coverage at large negative rapidity OR run EIC at lower energies
• Forward instrumentation is necessary to detect scattered electrons: essential for EIC physics
 • Q^2 dependence on saturation and nuclear structure
• eSTARlight will be available on HEPFORGE shortly