

Coherent vector meson production at an EIC

<u>Overview</u>

- Motivation
- Photo-nuclear interaction in eSTARlight:
 - $\gamma p \rightarrow V.M. + p$ vector meson production
 - Comparison to data
 - Extension to γA
- Vector meson production at an EIC:
 - Estimating rates
 - Final state particle distributions
- Summary

Michael R. Lomnitz & Spencer Klein Postdoctoral fellow, Nuclear Science Division Lawrence Berkeley National Laboratory

April 18th 2018

Lawrence Berkeley National Laboratory

Why we need MC and what's been done?

A Monte Carlo for ep and eA collisions is essential for EIC success:

Study physics program and drive detector design

Some ep Monte Carlos developed for HERA

• M.C.'s don't cover more exotic processes, parametrizations missing

Lack of both experimental and simulations for eA:

• Fixed target experiments at low energy, SARTRE M.C.

eSTARlight motivated to study e+X \rightarrow e+X+V.M. cross sections for:

- Different center of mass energies (accelerator facilities)
- Different V.M. species
- Different collision systems (X = p, Au, etc.)
- Arbitrary virtuality Q²

Diffraction at an EIC

- How are the quarks and gluons distributed within the nucleon? What about nucleus?
- Initial state geometry is necessary to understand heavy ion collisions :
 - Initial state (IS) geometry \rightarrow final state collectivity
 - Collective phenomena has been observed in p-p and p-A collisions

• Diffractive processes (no color exchange) can probe gluon density and their spatial distribution

April 18th 2018

3

Michael Lomnitz - DIS 2018

Electron-ion collisions

$$e+p/A \rightarrow e' + h + X$$

Exclusive: Detect scattered lepton, id'd hadrons/jets and target fragments.

April 18th 2018

Electro-nuclear interactions

$$\sigma(e+X \to e+X+V.M.) = \int dQ^2 \int dE_{\gamma} \frac{dN_{\gamma}(E_{\gamma},Q^2)}{dE_{\gamma}dQ2} \sigma_{\gamma X}(W,Q^2)$$

 Using equivalent photon approach (EPA), boosted electron surrounded by photon cloud

 Include the corrections for finite virtuality¹:

$$\frac{d^2 N}{d(Q^2) dE_{\gamma}} = \frac{\alpha}{\pi} \frac{1}{E_{\gamma} |Q^2|} \left[1 - \frac{E_{\gamma}}{E_e} + \frac{1}{2} \left(\frac{E_{\gamma}}{E_e} \right)^2 - \left(1 - \frac{E_{\gamma}}{E_e} \right) \left| \frac{Q_{min}^2}{Q^2} \right| \right]$$

¹: Phys.Rept. 15 181-281 (1975) ²: Phys.Lett.B377:259-272(1996), JHEP 1005:032(2010), Nucl.Phys.B695:3-37(2004)

- Photon fluxPhotonuclear cross
section• Interactions are done,
mostly, with
parameterization from
HERA1 for $\gamma p \rightarrow Vp$ in
terms of the γp center of
mass energy $W_{\gamma p}$. $\sigma_{\gamma p}(W) = \sigma_P \cdot W^{\epsilon} + \sigma_M \cdot W^{\eta}$
 - The power n is also
 obtained from fits to
 data²

Michael Lomnitz - DIS 2018

Vector meson decays

- Vector mesons retain photon spin → the angular distributions are determined by Clebsch-Gordon coefficients
 In the limit Q² → 0, the photons are linearly polarized transverse (7) to the beam:
- 50% right-handed and 50% left-handed photons.

Virtual photons ($Q^2 > 0$) can also be longitudinally (*L*) polarized:

- Q^2 dependence of the longitudinal-to-transverse ratio R_v is not well known
- Parametrize R_v to data (HERA) and extract spin matrix elements

$$R_v = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

Only available for a subset of vector mesons

April 18th 2018

Michael Lomnitz - DIS 2018

¹: Phys.Lett. B449 (1999) 328-338

6

HERA comparison to data: $\sigma(\gamma^* + p \rightarrow V.M. + p)$

• Gamma-proton cross-sections obtained following same procedure in experiment:

$$\sigma_{\gamma p} = \frac{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)} \sigma_{\gamma p}(E_{\gamma}, Q^2)}{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)}}$$

- $\sigma_{\nu\rho}$ measured at HERA is well described by eSTARlight over a broad Q^2

range

- April 18th 2018
- φ: Phys.Lett.B377:259-272(1996)ρ: JHEP 1005:032(2010)
- J/ψ: Nucl.Phys.B695:3-37(2004)

Michael Lomnitz - DIS 2018

Photonuclear Cross Section $\sigma(\gamma A \rightarrow VA)$ and event generation

Extrapolate photonuclear cross section from γp to γA using Quantum Glauber

$$\sigma_{tot}(VA) = \int d^2b \left[2 \cdot \left(1 - e^{-\sigma_{tot}(Vp)T_{AA}(b)/2} \right) \right]$$

• Generalized vector dominance model and optical theorem used to obtain the photo-nuclear cross section

$$\sigma(\gamma A \to VA) = \left. \frac{d\sigma(\gamma A \to VA)}{dt} \right|_{t=0} \int_{t_{min}}^{\infty} dt |F(t)|^2$$

- eSTARlight can handle both narrow and wide resonances to model the generated vector mesons
- Coherent final states
- Track outgoing electron and target for semi-inclusive and exclusive measurements

H1 data corrected for exp. resolution and background subtraction JHEP05(2010)032

Estimating rates for an EIC

		Photo-production (Q ² < 1 GeV ²)					Electro-production ($Q^2 > 1 \text{ GeV}^2$)				
		ρ	ф	J/ψ	ψ'	Y	ρ	ф	J/ψ	ψ'	Y
eRHIC	ер	50 G	2.3 G	85 M	14 M	140 K	140 M	17 M	5.7 M	1.2 M	24 K
	eAu	44 G	2.8 G	100 M	16 M	60 K	37 M	5.6 M	3.9 M	960 K	10 K
JLEIC	ер	37 G	1.6 G	39 M	6.0 M	43 K	100 M	12 M	2.7 M	550 K	7.9 K
	ePb	28 G	1.6 G	28 M	3.9 M	-	22 M	3.2 M	1.2 M	250 K	-
LHeC	ер	100 G	5.6 G	470 M	78 M	1.2 M	260 M	37 M	29 M	6.3 M	180 K
	ePb	110 G	8.2 G	720 M	140 M	2.0 M	100 M	16 M	27 M	7.2 M	250 K

- $Q^2 > 1 \text{ GeV/c}^2$ affects V.M. species to different degree
- Rates are encouraging for meaningful ψ ' and possibly Y measurements

¹: EIC whitepaper: A. Accardi et. al., Eur. Phys. J. A, 52 9(2016)

**: Likely overestimated: Doesn't account for loss of longitudinal coherence

Accelerator Collision Electron Heavy Ion System Energy Energy eRHIC [21] $18 \, \mathrm{GeV}$ $275 \, \mathrm{GeV}$ ep18 GeV 100 GeV/A eAJLEIC [22] $10 \,\,\mathrm{GeV}$ $100 \,\,\mathrm{GeV}$ ep40 GeV/AeA $10 \,\,\mathrm{GeV}$ LHeC [23] $60 \, \mathrm{GeV}$ 7 TeVep $60 \,\,\mathrm{GeV}$ 2.8 TeV/AeAHERA 27.5 GeV920 GeVep

Don't account for branching ratios

** Note: Generated distributions are not scaled in order to compare the different colliders

Event generation

• Vector meson (ρ^0 and J/ ψ) production occurs over a large rapidity window

- ρ peak negative rapidity due to photon-meson exchange (mostly near threshold). Not present in heavier V.M.
- Peak at forward rapidity (higher *k*) due to Pommeron exchange
- Detecting scattered electron requires far forward instrumentation

Event generation

- Plots show J/ψ production in energy (k) and Bjorken-x bands
- Vector meson production roughly matches photon energy:
 - High energy photons to the right, low energy to the left
- Studying wide range in k or x requires large coverage. Could be done by running EIC at different energies s.

Predictions for eA at potential EIC's

- Reduced C.M. energy per nucleon \rightarrow lower Pomeron p_z . Production in a narrower rapidity range:
 - Good news for barrel detectors
- Middle: Scaled (A^{-4/3}) ratio of V.M. production on lead vs. iron:
 - Signs of nuclear shadowing at low $Q^2\,$
- Right plot shows predictions of diffractive minima for three nuclear targets. Fourier transform provides information on gluon distributions g(b_T).

April 18th 2018

Final state distributions

- Generated V.M. are then decayed to obtain daughter distributions (left):
 - Decay angular distributions match vector meson spin
- Middle and right: Color curves show sampled V.M.'s for different detector acceptances.
- Mid-rapidity detectors sample between ~60% ($|\eta|$ <3) and <10% ($|\eta|$ <1) of production for different V.M.:
 - eSTARlight kinematics can help drive detector design

Summary

- eSTARlight can simulate a wide variety of final states:
 - Evaluate feasibility (cross sections, rates, ...) of different physics topics to be studied
 - Inform on accelerator and detector design
- High enough Y(1S) production at an EIC to allow limited studies $(Q^2 > 1 \text{ GeV}^2 \text{ rates are somewhat low})$
- Vector mesons are produced over a wide rapidity range
 - Photon energy roughly maps to rapidity
 - Overlap with CEBAF could be desirable: need coverage at large negative rapidity OR run EIC at lower energies
- Forward instrumentation is necessary to detect scattered electrons: essential for EIC physics
 - Q² dependence on saturation and nuclear structure
- eSTARlight will be available on HEPFORGE shortly