

### Heavy flavour spectroscopy and exotic states at LHCb

#### Liming Zhang (Tsinghua University)



**On behalf of the LHCb Collaboration** 

DIS2018 16-20 April 2018, Kobe, Japan

### Introduction



- Spectroscopy provides opportunities to study QCD predictions for models
  - e.g. lattice QCD, diquark model, potential model ...
- Exotic states are important for understanding strong force in QCD
  - Predicted in quark model
  - Recent results show strong evidence for their existence



mesonic molecule ?



tetraquark ?



pentaguark?



hybrid?

...

### **LHCb detector**





### **LHCb** detector





#### LHCb collected luminosity





 $\sigma(pp \rightarrow b\overline{b}X) \approx 300 \ \mu b \ @7 \ TeV \ vs \approx 500 \ \mu b \ @13 \ TeV$ 

## Two methods for spectroscopy



- Direct production in *pp* collisions
- Combine a heavy flavour (HF) hadron with one or more light particles
- High statistics

- Production by a heavier particle decay, usually with amplitude analysis
- Low background
- Better determination of  $J^P$





 $B_c^{(*)^+}(2S) \rightarrow B_c^{(*)^+}\pi^+\pi^-$  from ATLAS (八万)

#### Based on a yield of 327 $B_c^+ \rightarrow J/\psi \pi^+$ decays

| Data  | Signal events |
|-------|---------------|
| 7 TeV | $100 \pm 23$  |
| 8 TeV | $227 \pm 25$  |

#### ATLAS, PRL 113 (2014) 212004



ATLAS observed a peak in  $B_c^+\pi^+\pi^-$  spectrum

 $m_{B_c(2S)} = 6842 \pm 4 \pm 5 \text{ MeV}$ 

**5**.2*σ* 





# $B_c^{(*)^+}(2S) \rightarrow B_c^{(*)^+}\pi^+\pi^-$ search at LHCb

(28 MeV/c<sup>2</sup>

Candidates /

Candidates / (28 MeV/c<sup>2</sup>)

- The peak could be due to -  $B_c^+(2S) \rightarrow B_c^+\pi^+\pi^-$  or -  $B_c^{*+}(2S) \rightarrow B_c^{*+}\pi^+\pi^-$  with  $B_c^{*+} \rightarrow B_c^+\gamma$  (missing)
- LHCb used ~3300  $B_c^+$ signals and searched for  $B_c^{(*)+}(2S)$
- No  $B_c^{(*)+}(2S)$  signal



$$B_c^{(*)^+}(2S) \rightarrow B_c^{(*)^+}\pi^+\pi^-$$
 search at LHCb

JHEP 01 (2018) 138

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$$

|       | $\sqrt{s} = 7 \mathrm{TeV}$                      | $\sqrt{s} = 8 \mathrm{TeV}$                   |
|-------|--------------------------------------------------|-----------------------------------------------|
| ATLAS | $(0.22 \pm 0.08  (\text{stat})) / \varepsilon_7$ | $(0.15 \pm 0.06 (\text{stat}))/\varepsilon_8$ |
| LHCb  |                                                  | < [0.04, 0.09]                                |

Upper limit @95%CL

 $\epsilon_7, \epsilon_8$ : relative efficiencies of reconstructing  $B_c^{(*)}(2S)^+$  wrt  $B_c^+$ 

- ATLAS did not publish  $\varepsilon_7$ ,  $\varepsilon_8$
- More studies needed to resolve the tension between ATLAS and LHCb.

### $\boldsymbol{\Xi}_{\boldsymbol{b}}$ baryon spectroscopy

- A HON'S
- Numbers of excited *b*-baryons have already been discovered
  - $\mathcal{Z}_{b}^{\prime}(5935)^{-}, \mathcal{Z}_{b}^{*}(5955)^{-} \rightarrow \mathcal{Z}_{b}^{0}\pi^{-}$
  - $\mathcal{Z}_b^* (5945)^0 \to \mathcal{Z}_b^- \pi^+$

| State                                   | J <sup>P</sup> | <b>b</b> (sq) |
|-----------------------------------------|----------------|---------------|
| $\Xi_b$                                 | 1/2+           | ↑ (↑↓)        |
| $\Xi_b'$                                | 1/2+           | ↓ (↑↑)        |
| $\boldsymbol{\Xi}_{\boldsymbol{b}}^{*}$ | 3/2+           | ↑ (↑↑)        |



## $\Xi_b$ baryon spectroscopy

• Numbers of excited *b*-baryons have already been discovered  $- \Xi_b'(5935)^-, \Xi_b^*(5955)^- \to \Xi_b^0 \pi^ - \Xi_b^*(5945)^0 \to \Xi_b^- \pi^+$ 

• The higher excited states are expected to be above  $\Lambda_b^0 K$ threshold







#### First observation of a new $\Xi_b^{**-}$ state

- Hadronic  $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ :
  - Resolution: 2 MeV
  - 7.9σ



#### First observation of a new $\Xi_b^{**-}$ state

• Hadronic  $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ :

- Resolution: 2 MeV
- 7.9σ

- Semileptonic (SL)  $\Lambda_b^0 \to \Lambda_c^+ \mu^- X \bar{\nu}_{\mu}$ 
  - Resolution: ~18 MeV
  - Yields ~15 larger

- 25σ



#### First observation of a new $\Xi_b^{**-}$ state

- Hadronic  $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ :
  - Resolution: 2 MeV
  - 7.9σ

- Semileptonic (SL)  $\Lambda_b^0 \to \Lambda_c^+ \mu^- X \bar{\nu}_{\mu}$ 
  - Resolution: ~18 MeV
  - Yields ~15 larger
  - 25σ
- Semileptonic (SL)  $\Xi_b^0 \to \Lambda_c^+ \mu^- X \bar{\nu}_{\mu}$  $- 9.2\sigma$



# The $\mathcal{Z}_b^{**-}$ properties (preliminary)

#### LHCb-PAPER-2018-013, in preparation

#### • With hadronic mode

$$\begin{split} M(\Xi_b^{**-}) &- M(\Lambda_b^0) = 607.3 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \,\text{MeV}/c^2, \\ \Gamma &= 18.1 \pm 5.4 \,(\text{stat}) \pm 1.8 \,(\text{syst}) \,\text{MeV}/c^2, \\ M(\Xi_b^{**-}) &= 6226.9 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \pm 0.2 (\Lambda_b^0) \,\text{MeV}/c^2, \end{split}$$

Mass peak position is consistent between the three decay channels

• Production ratios are measured with SL modes

| Quantity                                                                               | 7+8 TeV                                       | 13 TeV                                             |
|----------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| $(\sigma_{\Xi_b^{**-}}/\sigma_{\Lambda_b^0})\mathcal{B}(\Xi_b^{**-}\to\Lambda_b^0K^-)$ | $(3.0\pm0.4\pm0.4)	imes10^{-3}$               | (3.4 $\pm$ 0.4 $\pm$ 0.4) $	imes$ 10 <sup>-3</sup> |
| $(\sigma_{\Xi_b^{**-}}/\sigma_{\Xi_b^0})\mathcal{B}(\Xi_b^{**-}\to \Xi_b^0\pi^-)$      | (47 $\pm$ 9 $\pm$ 7) $	imes$ 10 <sup>-3</sup> | (22 $\pm$ 6 $\pm$ 3) $	imes$ 10 <sup>-3</sup>      |

- The new state could be either a  $\Xi_b(1P)^-$  or  $\Xi_b(2S)^-$ 
  - To distinguish them further information needed (e.g.  $J^P$ )

### **Doubly charmed baryons**



- Observation of  $\mathcal{Z}_{cc}^+(ccd)$  reported by SELEX
  - Mass: 3518.7 ± 1.7 MeV
  - Unexpected short lifetime and large production
- Not confirmed by Babar [PRD 74 (2006) 011103], Belle [PRL 97(2006) 162001] nor LHCb [JHEP 12 (2013) 090]







13

# **Observation of** $\mathcal{Z}_{cc}^{++}$ at LHCb



- Expected to have longer lifetime than  $\mathcal{Z}_{cc}^+$ , higher sensitivity at LHCb
- Decay:  $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ ,  $\mathcal{B}$  could be as large as 10%

Yu et al., arXiv:1703.09086

- LHCb run II at  $\sqrt{s} = 13$  TeV,  $\sim 1.7$  fb<sup>-1</sup>
  - $\succ$  313  $\pm$  33 events, 12 $\sigma$
  - $\succ$  8 TeV data analyzed for cross-check,  $7\sigma$
  - > Consistent with weakly decays
  - $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(\text{stat}) \pm 0.27(\text{syst}) \pm 0.14(\Lambda_c^{+}) \text{ MeV}$  $\sim 100 \text{ MeV above SELEX } \Xi_{cc}^{+} \text{ peaks}$





#### **Pentaquark studies**





### **Discovery of pentaquark states**



#### PRL 115 (2015) 072001

• Two pentaquark states observed in  $\Lambda_b^0 \rightarrow J/\psi p K^-$ 



# **Discovery of pentaquark states**



#### PRL 115 (2015) 072001

• Amplitude analysis reveals the properties



• Confirmed by a model independent analysis

• Production & decay

Chin. Phys. C 40 (2016) 011001

$$\mathcal{B}(\Lambda_b^0 \to P_c^+(4380)K^-)\mathcal{B}(P_c^+ \to J/\psi\,p) = (2.56 \pm 0.22 \pm 1.28 \stackrel{+0.46}{_{-0.36}}) \times 10^{-5} \\ \mathcal{B}(\Lambda_b^0 \to P_c^+(4450)K^-)\mathcal{B}(P_c^+ \to J/\psi\,p) = (1.25 \pm 0.15 \pm 0.33 \stackrel{+0.22}{_{-0.18}}) \times 10^{-5}$$

PRL 117 (2016) 082002

# Study of $\Lambda_b^0 \to J/\psi p\pi^-$



- Cabbibo suppressed mode with less statistics
- Exotic  $Z_c^-$  contribute in  $J/\psi\pi^-$
- Fit with  $2 P_c^+ + Z_c (4200)^-$  favored by  $3\sigma$  compared to no exotic contributions



# **Observation of** $\Lambda_b^0 \to \chi_{c(1,2)} p K^-$



PRD 92 (2015) 071502

- Search for  $P_c(4450)^+$  in  $\Lambda_b^0 \rightarrow \chi_{c(1,2)} p K^-$  decays  $\Rightarrow$ Test hypothesis of kinematic rescattering effect
- First step: observe the decays, measure  $\mathcal{B}$
- Use  $\chi_{c(1,2)} \rightarrow J/\psi\gamma$ , constrain  $J/\psi\gamma$  mass to known  $\chi_{c1}$  mass



- Strange pentaquark ( $udsc\overline{c}$ ) predicted in [PRL 105 (2010) 232001]
- Can be searched for in the  $\Xi_b^-$  decay [PRC 93 (2016) 065203]



#### Weakly decaying *b*-flavoured pentaquarks PRD 97 (2018) 032010

• Skyrme model: heavy quarks give tightly bound pentaquark

PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

• Search for mass peaks below strong decay threshold

| Mode          | Quark content      | Decay mode                                             | Search window           |
|---------------|--------------------|--------------------------------------------------------|-------------------------|
| I             | $\overline{b}duud$ | $P^+_{B^0p} \to J/\psi K^+\pi^- p$                     | $46686220~\mathrm{MeV}$ |
| II            | $b\overline{u}udd$ | $P^{-}_{\Lambda^0_{\tau}\pi^-} \to J/\psi  K^-\pi^- p$ | $46685760~\mathrm{MeV}$ |
| III           | $b\overline{d}uud$ | $P^{+}_{\Lambda^0_{h}\pi^+} \to J/\psi K^-\pi^+ p$     | $46685760~\mathrm{MeV}$ |
| $\mathbf{IV}$ | $\overline{b}suud$ | $P_{B^0_s p}^{+} \to J/\psi  \phi p$                   | 5055–6305 ${\rm MeV}$   |





#### Weakly decaying *b*-flavoured pentaquarks PRD 97 (2018) 032010

Skyrme model: heavy quarks give tightly bound pentaquark

PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

Search for mass peaks below strong • decay threshold

| Mode          | Quark content      | Decay mode                                              | Search window           |
|---------------|--------------------|---------------------------------------------------------|-------------------------|
| I             | $\overline{b}duud$ | $P^+_{B^0p} \to J/\psi K^+\pi^- p$                      | $4668{-}6220~{\rm MeV}$ |
| II            | $b\overline{u}udd$ | $P^{-}_{\Lambda^0_{\iota}\pi^-} \to J/\psi  K^-\pi^- p$ | $46685760~\mathrm{MeV}$ |
| III           | $b\overline{d}uud$ | $P^{+}_{\Lambda^0_{\iota}\pi^+} \to J/\psi K^-\pi^+ p$  | $46685760~\mathrm{MeV}$ |
| $\mathbf{IV}$ | $\overline{b}suud$ | $P_{B_s^0 p}^{+} \to J/\psi  \phi p$                    | 5055–6305 ${\rm MeV}$   |

Upper limit on production ratio  $\sigma \cdot \mathcal{B}$  wrt  $\Lambda_h^0 \to I/\psi K^- p$ 

$$R = \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$

$$= \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$







# Weakly decaying b-flavoured new pentaquarks PRD 97 (2018) 032010

• No evidence for signal, 90% CL limits on  $R < 10^{-2} - 10^{-3}$ 



### Search for dibaryon state

• A dibaryon state [cd][ud][ud]could be produced in  $\Lambda_b^0$  decays to final state  $\Lambda_c^+ \pi^- p \bar{p}$ 

L. Maiani, et al. PLB 750 (2015) 37

• LHCb has discovered the decay  $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- p \bar{p}$ 

#### LHCb-PAPER-2018-005, in preparation







### Search for dibaryon state

LHCb-PAPER-2018-005, in preparation
 Ratio of branching fractions (preliminary)

 $\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0544 \pm 0.0023 \pm 0.0032$ 

• No obvious dibaryon peak in  $m(\Lambda_c^+\pi^-p)$  spectra



### Summary

. . .



- LHCb has made important contributions to the knowledge of hadron spectroscopy
  - Observation/study of excited B(D) mesons & b(c) baryons
  - Observation/study of exotic states
  - Discovery of doubly charmed baryons

- Stay tuned with new results from RUNI+RUNII
- Spectroscopy at the upgraded LHCb is challenging and promising



### Backup

Best previous

measurement

 $3510.72 \pm 0.05$ 

 $3556.16 \pm 0.12$ 

 $1.92 \pm 0.19$ 

- $c\bar{c}$  states  $\chi_c$  usually studied in  $\chi_c \rightarrow J/\psi\gamma$  decays
- First observation of  $\chi_c \rightarrow J/\psi \mu^+ \mu^-$  decays
- Much better mass resolution allows competitive mass and width measurements

LHCb

measurement

 $3510.71 \pm 0.10$ 

 $3556.10 \pm 0.13$ 

 $2.10 \pm 0.20$ 



 $3510.66 \pm 0.07$ 

 $3556.20 \pm 0.09$ 

 $1.93 \pm 0.11$ 

#### PRL 119 (2017) 221801

Quantity

[MeV]

 $m(\chi_{c1})$ 

 $m(\chi_{c2})$ 

 $\Gamma(\chi_{c2})$ 

## **Physics program at LHCb**



- Not only precision measurements in b, c sectors
  - CKM and CP-violation parameters
  - Rare decays
  - Testing lepton universality
  - ...
- But also a general purpose detector
  - Electroweak measurments:  $\sin \theta_W$ , W/Z, top quark
  - Spectroscopy, exotic hadrons
  - Soft QCD
  - Heavy ions