

Measurements of $t\bar{t}$ +X using the ATLAS detector

Hasib Ahmed

Introduction

Large statistics and increased center-of-mass energy allows access to the phase space for $t\bar{t}$ associated production at the LHC

tt+jets (a) 13TeV: 3.2 fb-1

- Sensitive to initial/final state radiation (ISR/FSR) and modeling of $t\bar{t}$ production
- Important test of pQCD and Standard Model (SM)
- Improve modeling of parton shower and hadronization
- Dominant background for several beyond SM searches

Eur. Phys. J. C77 (2017) 220

arXiv:1802.06572 (submitted to *JHEP*):

- * Measurement of additional jet activity produced in electron + muon $t\bar{t}$ events:
 - $1e^{\pm}$ and $1\mu^{\mp}$, ≥ 2 b-tag jets

Study additional jet multiplicity and additional jet- p_T spectra

- * Measurement of $t\bar{t}$ +jets differential cross section in electron or muon events
 - 1e or 1μ , \geq 4 jets (\geq 2 b-tag)

Reconstruct both top quarks and study $p_T(t^{had})$, $p_T(t\bar{t})$ in different n-jet bins

Additional jet activity in $e\mu+2bjets$ events

- Clean signature and small uncertainties
- Backgrounds $\sim 4.5\%$

• Additional jets p_T thresholds of 25, 40, 60 and 80 GeV

• ~25% discrepancy in jet multiplicity at the reconstruction level

Unfold to particle level

eµ events: jet multiplicities

- Major systematic uncertainties:
 - jet energy scale (JES)
 - matrix element (ME), parton shower (PS), ISR/FSR
- Sensitive to ME, PS and scale variation

e μ events: additional jet p_T

Normalized differential cross section:

- additional leading jet/b-jet p_T
- compare various and ME and PS models
- Major systematic uncertainties:
 - JES/JER
 - NLO generator
 - PS/hadronization

Powheg+Herwig++
MG5_aMC@LO+Pythia8
doesn't provide good description

$t\bar{t}+jets$ in $e/\mu+jets$ events

- Sensitive to the effect of gluon radiation on the kinematic variables of $t\bar{t}$ production
- Analysis divided into 4-jet excl., 5-jet excl., 6-jet incl. regions
- Reconstruct the top quarks for $p_T(t^{had})$ and $p_T(t\bar{t})$

Background	Estimation
Single top ~ 5%	Simulation and normalized to predicted cross section
Multijet ~ 4%	Data driven
<i>W</i> + <i>jets</i> ~ 2 - 3%	Shape in simulation, normalization of heavy flavor fraction from data
Z + $jets$, $t\bar{t}$ V , $VV \sim 1$ - 2%	Simulation and normalized to predicted cross sections.

• The distributions are unfolded to particle level

e/μ +jets events: $p_T(t^{had})$ spectra

- Dominant uncertainties:
 - flavor tagging (4-jet excl.)
 - JES/JER increasing with jet multiplicity
- · Models underestimate (overestimate) the data at low (high) values
- Agreement increases with jet multiplicity

Powheg+Herwig++ is found to be incompatible with data in χ2 test

$e/\mu + jets$ events: $p_T(t\bar{t})$ spectra

- Strongly sensitive to gluon emission:
 - increasing $p_T(t\bar{t})$ with increasing jet multiplicity
- Good agreement in 4-jet/5-jet region
- Some discrepancy in 6-jet incl.

MG5_aMC@NLO is found to be incompatible with data in χ2 test

$t\bar{t} + V(W/Z)$ (a) 13TeV: 3.2 fb⁻¹

Eur. Phys. J. C77 (2017) 40

- Direct measurement of tZ coupling via FSR
- BSM models could enhance the $t\bar{t} + V$ cross section
- Dominant and irreducible background for many searches including $t\bar{t}+H$ production

Divide to multiple regions for maximum sensitivity

Process	$t\bar{t}$ decay	Boson decay	Channel
$t \bar{t} W$	$(\mu^{\pm}\nu b)(q\bar{q}b)$ $(\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\mu^{\pm} u$ $\ell^{\pm} u$	SS*dimuon Trilepton
tīZ	$(\ell^{\pm}\nu b)(q\bar{q}b) \ (\ell^{\pm}\nu b)(\ell^{\mp}\nu b)$	$\ell^+\ell^- \ \ell^+\ell^-$	Trilepton Tetralepton

* same electric charge

Simultaneous fit to the signal region (SR) and control regions (CR) to extract the $t\bar{t}$:+W/Z cross sections

NLO QCD predictions:

$$\sigma(t\bar{t}Z) = 0.84 \pm 0.09 \ (\sim 11\%) \text{ pb}$$

 $\sigma(t\bar{t}W) = 0.60 \pm 0.08 \ (\sim 13\%) \text{ pb}$

ISR

tt +Z: 3-lepton and 4-lepton

	Selection	Main backgrounds
3 <i>l</i> Z	 Z mass window < 10 GeV, Pair of opposite electric charge but same flavor (OSSF) leptons Separate: 1b4j, 2b3j, 2b4j regions 	 Fake leptons: data driven Matrix method WZ: shape in simulation with normalization from fit to data in a control region (3L-WZ-CR)
<i>41</i>	 2 pairs of OS leptons with at least 1 pair SF Reconstruct two Z bosons Separate by flavor: SF, DF(different flavor) Separate: 4/-DF-1b, 4/-DF-2b, 4/-SF-1b, 4/-SF-2b 	• ZZ: shape in simulation with normalization from fit to data in a control region (4L-ZZ-CR)

tt + W: SS 2μ and 3L-noZ

	Selection	Main backgrounds
3l noZ	 Z mass window > 10 GeV (Z veto) Sum of lepton electric charge ±1 2 ≤ n_{jets} ≤ 4, n_{bjets} ≥ 2 	 tt̄ +Z: simultaneous fit tt̄ +H: simulation Fake leptons: data driven Matrix method
2μ	 2 muons with same electric charge (SS) Sum of muon electric charge ±2 Scalar sum of the p_T of μ+jets, H_T > 240 GeV Missing transverse momentum, E_T(miss) > 20 GeV 	• Fake leptons: data driven Matrix method

Validation regions (VR) to test the background estimations

$t\bar{t}+W/Z$: Results

Simultaneous profile likelihood fit in 9 signal and 2 control regions

Dominated by statistical uncertainty (31% and 48%)

Observed (expected) significance over the background-only hypothesis:

- $3.9\sigma (3.4\sigma)$ for $t\bar{t}Z$
- 2.2σ (1.0σ) for $t\bar{t}W$

$tt + \gamma$ (a) 8TeV: 20.2 fb⁻¹ JHEP 11 (2017) 086

- Direct probe of electroweak tγ coupling
- Direct probe of V-A and A coupling at the $t\bar{t}\gamma$ vertex
- Dominant background in $tt + H(\rightarrow \gamma \gamma)$

from top quark

FSR

Optimized selection to enhance photons from top quark and to suppress ISR/FSR

Measured in $e/\mu+jets$ final state state

Background template for p_T^{iso} extracted from control regions

* $p_{\text{T}^{\text{iso}}}$ = sum of the tracks within $\Delta R = 0.2$ around a photon

$tt+\gamma$: inclusive cross section

Maximum likelihood fit of signal and background templates

Dominant uncertainties are hadron and electron fake estimate and statistics

Source	Relative uncertainty [%]
Hadron-fake template	6.3
$e \to \gamma$ fake	6.3
Jet energy scale	4.9
$W\gamma$ +jets	4.0
$Z\gamma$ +jets	2.8
Initial- and final-state radiation	2.2
Luminosity	2.1
Photon	1.4
Single top+ γ	1.2
Muon	1.2
Electron	1.0
Scale uncertainty	0.6
Parton shower	0.6
Statistical uncertainty	5.1
Total uncertainty	13

$$\sigma_{fid} = 139 \pm 7 \text{ (stat)} \pm 17 \text{ (syst.)} \text{fb. (~13\%)}$$

 $\sigma_{theory} = 151 \pm 24 \text{ fb (~16\%)}$

$tt+\gamma$: differential cross section

Photon p_T and $|\eta|$ distributions are unfolded to particle level

The calculated differential cross sections are in good agreement with theoretical predictions at NLO

Summary

- $t\bar{t} + X$ measurements is an active field of research at the LHC.
- The current status of the measurements at the ATLAS experiment for center of mass energy of 13 TeV (3.2 fb⁻¹) and 8 TeV has been presented.
- The measurements focused towards a less model dependent approach by using well defined fiducial volume and unfolding procedures.
- These measurements will provide strong constraints on the next iteration of Monte Carlo tuning.
- Precision measurements of $t\bar{t}+X$ will require larger statistics and can be achieved with the large integrated luminosity of Run II.

Thank you!

BONUS

tt + n-jets in e/ μ events

- Probe the effect of gluon radiation on the kinematic variables of tt production
- 4-jet excl., 5-jet excl., 6-jet incl. regions
- Discrepancy in the pT(t-had) is observed

crepancy in the processing is		
erved	Z+jets, ttV, VV ~ 1- 2%	in simulation and normalized to predicted cross sections.
W+jets Z+jets Diboson tiV Multijets Stat.+Syst. unc. 300 100 100 100 100	\$	ingle top Hets Hets Holder Hol
p _T ,had [GeV] 0.8 0	0 100 150 200	250 300 p ^{tt} [GeV]

Background

Single top $\sim 5\%$

Multijet ~ 4%

W+jets $\sim 2 - 3\%$

Estimation

data driven

simulation and normalized to

shape in simulation, normalization of

heavy flavor fraction from data

predicted cross section

• The distributions are unfolded to particle level

eμ events: jet multiplicitiesadditional models

eμ events: χ² for additional jet pT spectra

Generator	χ^2	<i>p</i> -value
Powheg+Pythia6 $h_{\rm damp} = \infty$	55.3	6.7×10^{-2}
Powheg+Pythia6 $h_{\text{damp}} = m_t$	57.4	4.6×10^{-2}
Powheg+Pythia8 $h_{\text{damp}} = m_t$	78.0	4.4×10^{-4}
MC@NLO+Herwig	108.2	5.8×10^{-8}
Powheg+Herwig $h_{\text{damp}} = \infty$	51.4	1.3×10^{-1}
Alpgen+Herwig	64.0	1.2×10^{-2}
Alpgen+Pythia6	55.5	6.4×10^{-2}
MadGraph+Pythia6	54.7	7.4×10^{-2}
AcerMC+Pythia6 RadHi	138.4	1.8×10^{-12}
AcerMC+Pythia6 RadLo	148.1	4.9×10^{-14}
Alpgen+Pythia6 RadHi	104.7	1.8×10^{-7}
Alpgen+Pythia6 RadLo	47.9	2.1×10^{-1}
MadGraph+Рутніа $6 q^2$ down	50.2	1.5×10^{-1}
MadGraph+Рутніа $6 q^2$ up	78.7	3.6×10^{-4}

e/μ events: χ^2

pT(t-had)	4-jet exclusive		4-jet exclusive 5-jet exclusive		6-jet inclusive	
pr(t-nad)	χ^2/NDF	p-value	$\chi^2/{\rm NDF}$	p-value	$\chi^2/{ m NDF}$	<i>p</i> -value
Powheg+Pythia6	28.9/18	0.05	13.0/18	0.79	13.0/18	0.79
Powheg+Pythia6 (radHi)	29.2/18	0.05	14.7/18	0.68	17.2/18	0.51
Powheg+Pythia6 (radLo)	32.5/18	0.02	14.3/18	0.71	13.9/18	0.74
Powheg+Pythia8 $(h_{\text{damp}} = m_t)$	25.2/18	0.12	14.7/18	0.68	15.7/18	0.61
POWHEG+PYTHIA8 $(h_{\text{damp}} = 1.5 m_t)$	22.7/18	0.20	13.3/18	0.77	16.3/18	0.57
POWHEG+PYTHIA8 (radHi) $(h_{\text{damp}} = 3 m_t)$	20.0/18	0.33	14.5/18	0.70	23.9/18	0.16
Powheg+Pythia8 (radLo) $(h_{\text{damp}} = 1.5 m_t)$	24.7/18	0.13	14.7/18	0.68	13.1/18	0.79
Powheg+Herwig7	20.8/18	0.29	12.0/18	0.85	12.4/18	0.82
Powheg+Herwig++	37.1/18	i0.01	27.7/18	0.07	38.7/18	i0.01
MadGraph5_aMC@NLO+Herwig++	25.7/18	0.11	11.1/18	0.89	20.3/18	0.32
MadGraph5_aMC@NLO+Рутніа8 $(H_{\rm T}/2)$	22.9/18	0.19	21.2/18	0.27	17.7/18	0.47
MADGRAPH5_aMC@NLO+PYTHIA8 $(\sqrt{m_t^2 + p_{\mathrm{T}}^2})$	25.4/18	0.11	19.3/18	0.37	23.1/18	0.18
Sherpa 2.2.1	24.7/18	0.14	18.3/18	0.43	18.3/18	0.44

+ T(++)	4-jet exclusive		5-jet exclusive		6-jet inclusive	
pT(tt)	χ^2/NDF	p-value	$\chi^2/{\rm NDF}$	p-value	$\chi^2/{\rm NDF}$	p-value
Powheg+Pythia6	7.9/6	0.25	6.0/6	0.43	6.4/6	0.38
Powheg+Pythia6 (radHi)	15.9/6	0.01	5.8/6	0.45	36.2/6	i0.01
Powheg+Pythia6 (radLo)	4.9/6	0.56	5.8/6	0.45	6.5/6	0.37
Powheg+Pythia8 $(h_{\text{damp}} = m_t)$	7.3/6	0.29	5.7/6	0.45	8.0/6	0.24
POWHEG+PYTHIA8 $(h_{\text{damp}} = 1.5 m_t)$	7.6/6	0.27	3.3/6	0.77	12.3/6	0.06
POWHEG+PYTHIA8 (radHi) $(h_{\text{damp}} = 3 m_t)$	13.9/6	0.03	3.2/6	0.78	54.8/6	i0.01
Powheg+Pythia8 (radLo) $(h_{\text{damp}} = 1.5 m_t)$	5.5/6	0.49	5.0/6	0.55	6.6/6	0.36
Powheg+Herwig7	10.2/6	0.12	5.1/6	0.53	5.0/6	0.54
Powheg+Herwig++	8.2/6	0.23	25.8/6	i0.01	20.8/6	i0.01
MadGraph5_aMC@NLO+Herwig++	98.3/6	j0.01	8.6/6	0.20	12.4/6	0.05
MadGraph5_aMC@NLO+Рутніа8 $(H_{\rm T}/2)$	41.2/6	;0.01	34.5/6	i0.01	22.8/6	i0.01
MADGRAPH5_aMC@NLO+PYTHIA8 $(\sqrt{m_t^2 + p_{\mathrm{T}}^2})$	46.7/6	;0.01	31.4/6	i0.01	18.6/6	i0.01
Sherpa 2.2.1	13.3/6	0.04	1.8/6	0.94	21.7/6	j0.01

tt + W/Z: uncertainties and fit

Dominated by statistical uncertainty

Reconstructed objects is the main source of systematic uncertainties Simultaneous profile likelihood fit in 9 signal and 2 control regions

WZ and ZZ normalizations are free parameters of the fit

Uncertainty	$\sigma_{tar{t}Z}$	$\sigma_{tar{t}W}$
Luminosity	2.6%	3.1%
Reconstructed objects	8.3%	9.3%
Backgrounds from simulation	5.3%	3.1%
Fake leptons and charge misID	3.0%	19%
Signal modelling	2.3%	4.2%
Total systematic	11%	22%
Statistical	31%	48%
Total	32%	53%