Single Top-quark production cross section using the ATLAS detector at the LHC.

Oscar Estrada Pastor IFIC (CSIC-UV), on behalf of the ATLAS Collaboration.

Introduction

• LHC is a top-quark factory.

ATLAS Online Luminosity

2011 pp √s = 7 TeV

2012 pp √s = 8 TeV

2015 pp √s = 13 TeV

2016 pp √s = 13 TeV

2017 pp √s = 13 TeV

2017 pp √s = 13 TeV

Month in Year

Impressive performance of ATLAS experiment.

Single top-quark production.

- Top-quark properties.
 - Heaviest particle in the SM.
 - Direct access to bare quark properties.
 - Top-quark decays almost exclusively to $t \rightarrow Wb$.
- Why (single) top-quark production is important?
 - Test of SM:
 - Can constrain PDFs.
 - Test CKM matrix unitarity.
 - Test pQCD calculations.
 - Probe BSM physics:
 - > Anomalous couplings with Wtb vertex.

$$\sigma(8 \text{ TeV}) = 87.7^{+3.4}_{-1.9} \text{pb}$$
 $\sigma(8 \text{ TeV}) = 22.4 \pm 1.5 \text{pb}$
 $\sigma(13 \text{ TeV}) = 217.0^{+9.1}_{-7.7} \text{pb}$ $\sigma(13 \text{ TeV}) = 71.7 \pm 3.8 \text{pb}$

tW-channel

$$\sigma(8 \text{ TeV}) = 22.4 \pm 1.5 \text{pb}$$

$$\sigma(13 \text{ TeV}) = 71.7 \pm 3.8 \text{pb}$$

s-channel

$$\sigma(8 \text{ TeV}) = 5.6 \pm 0.2 \text{pb}$$

 $\sigma(13 \text{ TeV}) = 10.3 \pm 0.4 \text{pb}$

	8 TeV	13 TeV
t-channel	Eur. Phys. J. C 77 (2017) 531	JHEP04(2017)086
tW-channel	m JHEP01(2016)064	JHEP 01 (2018) 63 Eur. Phys. J. C 78 (2018) 186
s-channel	PLB 756 (2016), 228-246	
${f tZq}$		PLB 780 (2018), 557-577
$\begin{array}{c} \textbf{Anomalous} \\ \textbf{couplings} \end{array}$	JHEP04 (2017) 124	

s-channel @ 8TeV: total measurement.

- Signal signature (leptonic decay of W boson).
 - 1 isolated lepton.
 - $\bullet \ \ \, E_{_{\rm T}}{}^{\rm MISS}$ from the neutrino.
 - 2 high $P_{\scriptscriptstyle T}$ b-tagged jets.
- Main backgrounds:
 - ttbar (dilepton veto to reduce it), W+jets.
- Matrix Element method to separate to signal from backgrounds.

8 TeV	1j	2j	3j	4j
0b				
1b				
$1\mathrm{b}_{\mathrm{loose}}$		$_{ m (W+jets)}^{ m CR}$		
2b		SR		$rac{ ext{CR}}{ ext{(ttbar)}}$

Combined likelihood fit to extract the cross section in signal and control regions.

 $\sigma_{tot}(s-channel) = 4.8 \pm 0.8(stat.)^{+1.6}_{-1.3}(syst.) pb$ observed (expected) significance: $3.2 \sigma(3.9 \sigma)$

t-channel.

- Separate measurements of $\sigma(tq)$ and $\sigma(\bar{t}q)$.
- Signal signature (leptonic decay of W boson).
 - 1 isolated lepton.
 - ${\color{blue} \bullet} \ \ E_{_{\rm T}}{^{\rm MISS}}$ from the neutrino
 - \blacksquare High $P_{_{\rm T}}$ forward (spectator) jet.
 - High P_{τ} b-tagged jet.
- Main backgrounds:
 - ttbar, W+jets.
 - \bullet $E_{\scriptscriptstyle T}^{\rm MISS}$ used to supress multijet contributions.
- Neural network to increase S/B ratio.

$8~{ m TeV}/\ 13~{ m TeV}$	1j	2j	3j
0b			
1b(loose)		$\operatorname{VR}_{(\mathrm{W+jets})}$	
1b		$rac{\mathrm{SR}}{\mathrm{SR}} \left(\mathrm{l}^{\scriptscriptstyle +} ight)$	
2b		$rac{ m VR}{ m (ttbar)}$	

t-channel @ 8 TeV: fiducial measurement.

- Fiducial phase space measurement.
 - Reduces systematic uncertainties related with MC generators.
 - Region defined by stables particles with selection close to reconstructed objects.
- Neural network (NN):
 - 7 input variables combined into the NN discriminant.

 \blacksquare Binned maximum-likelihood fit to the $\mathrm{O}_{_{\mathrm{NN}}}.$

• Fiducial phase space volume.

$$\sigma_{\rm fid} = \frac{N_{\rm fid}}{N_{\rm sel}} \cdot \frac{\hat{v}}{L_{\rm int}}$$

• Main systematics: jet energy scale (2.5%), NLO matching (4.6 %), lepton reconstruction (2.5 %).

$$\sigma_{fid}(tq) = 9.78 \pm 0.57 \text{ pb}$$
 $\sigma_{fid}(\bar{t}q) = 5.77 \pm 0.45 \text{ pb}$

t-channel @ 8 and 13 TeV: total measurement.

Extrapolation to total phase space.

$$\sigma_{\rm tot} = \frac{1}{A_{\rm fid}} \cdot \sigma_{\rm fid}$$

- 8 TeV (20.2 fb $^{-1}$) and 13 TeV (3.2 fb $^{-1}$) follow similar strategy.
- Neural network (NN) to separate signal from background events.
 - 10 input variables combined into the NN discriminant.

• $|V_{tb}|$ without assuming unitarity from the inclusive cross section $\sigma(tq+\overline{t}q)$.

$$|f_{LV} \cdot V_{tb}|^2 = \sigma_{meas} / \sigma_{SM}$$

t-channel @ 8 TeV and @ 13 TeV: total measurement.

t-channel @ 8 TeV: differential measurement.

- Differential measurement.
 - Unfolded distributions at particle level.
 - \rightarrow P_T(t),P_T(jet) in two SR's (top and antitop).
 - \rightarrow |y(t)|, |y(jet)| in two SR's (top and antitop).
 - Unfolded distributions at parton level.
 - \rightarrow P_T(t) in two SR's (top and antitop).
 - \rightarrow |y(t)| in two SR's (top and antitop).
- Neural network (NN) to separate signal from background events.
 - 7 input variables combined into the NN discriminant.
 - Binned maximum-likelihood fit to the ${\rm O_{NN}}{>}0.8.$

 Main systematics: jet enegy scale, modelling signal and ttbar.

DIS~2018.~Kobe 10 17th April

Wtb vertex using t-channel @ 8 TeV.

 Probe Wtb vertex structure in the t-channel using angular asymmetries.

$$A_{\text{FB}} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\,\overline{b}\gamma^{\mu}\left(V_{\rm L}P_{\rm L} + V_{\rm R}P_{\rm R}\right)tW_{\mu}^- - \frac{g}{\sqrt{2}}\,\overline{b}\,\frac{i\sigma^{\mu\nu}q_{\nu}}{m_W}\left(g_{\rm L}P_{\rm L} + g_{\rm R}P_{\rm R}\right)tW_{\mu}^- + \mathrm{h.c.}$$

In the SM:
$$\begin{split} &V_{_{L}} = V_{_{tb}} \\ &\text{anomalous couplings} = 0. \end{split}$$

- Main backgrounds:
 - ttbar, W+jets.
 - E_TMISS used to supress multijet contributions.

- Combined maximum likelihood fit over signal and control regions.
- Unfolding to parton level.

• $A_{FB}{}^N$ and $A_{FB}{}^1$ have been used to set limits on anomalous couplings and compute top-quark polarization:

$$\operatorname{Im}(g_R) \in [-0.18, 0.06] \text{ at } 95\% \text{ CL}$$

 $\operatorname{if} V_L = 1; V_R = g_L = \operatorname{Re}(g_R) = 0$

 $\alpha_1 P = 0.97 \pm 0.05 (\text{stat.}) \pm 0.11 (\text{syst.})$ $\alpha_1 = 0.998 (\text{at NLO}) P_t = 0.91 (\text{at NLO})$

tW-channel.

- Signal signature (leptonic decay of W boson).
 - 2 isolated leptons (oppositely charged).
 - ${\color{blue} \bullet} \ {\rm E_{\scriptscriptstyle T}}^{\rm MISS}$ from the two neutrinos.
 - High P_{T} b-tagged jet.
- Main backgrounds:
 - ttbar (interference at NLO), Z+jets.
 - E_TMISS used to supress Z+jets contributions.
- Boosted Decision Tree to separate ttbar from tW.
- Binned maximum likelihood fit to extract the cross section.

tW-channel @ 8TeV and 13 TeV: total measurement.

3 separate BDT's trained to enhance S/B ratio.

• 2 separate BDT's trained to enhance S/B ratio.

$$\begin{split} \sigma_{tot}(Wt) &= 23.0 \pm 1.3 (stat.)^{+3.2}_{-3.5} (syst.) \pm 1.1 (lumi.) \, pb \\ &(16 \,\%) \\ |f_{LV} \cdot V_{tb}| &= 1.01 \pm 0.10 \end{split}$$

 $|=1.01\pm0.10$ (31%)

ics: jet reconstruction (31%)

• Main systematics: jet reconstruction (10%), initial/final state radiation (9.5%) and ttbar normalisation (6%).

• Main systematics: jet energy scale (21%), NLO matrix element (18%).

 $\sigma_{\text{tot}}(Wt) = 94 \pm 10 (\text{stat.})^{+28}_{-22} (\text{syst.}) \pm 2 (\text{lumi.}) \text{pb}$

tW-channel @ 13 TeV: differential measurement.

- tW differential analysis using 36.1 fb⁻¹ of 2015+2016 data.
- Differential measurement.
 - SR: 1j1b.
 - Unfolded distributions at particle level.
 - \rightarrow E(b) \rightarrow top quark production.
 - \rightarrow m(l₁b); m(l₂b) \rightarrow top quark decay.
 - E(llb); m_T(llvvb); m(llb) → combined tW system.

- Main systematics: ttbar and Wt modelling.
 - Big cancellation when normalizing with fiducial cross section!

tZq measurement @ 13 TeV.

- First measurement of tZq electroweak process.
 - Sensitive to tZ and WWZ coupling.
 - Important background to tH and tZ FCNC production.
- Trilepton channel is used despite 2.2% BR.
- Main backgrounds:
 - ttbar, Z+jets.
- Neural network is used to enhace S/B.
 - 10 variables used as input
 - \rightarrow $\eta(j)$, $P_{\tau}(j)$, m(t), ...
- Binned maximum likelihood fit to extract the cross section using the full NN discriminant distribution.

$$\sigma(tZq)=600\pm170(stat.)\pm140(syst.)$$
fb
observed(expected)significance: $4.2\sigma(5.4\sigma)$

$$\sigma_{theo}(tZq) = 800^{+49}_{-59} fb$$

Summary

- ATLAS has studied comprehensively single top quark production at 8 TeV.
- Measurements are within uncertainties in agreement with theoretical predictions.
- First measurements at 13 TeV are coming out using 2015 and 2015+2016 data.
- New couplings can be accessed with 13 TeV luminosity (evidence for tZq!)
- Analyses will profit from full Run II dataset.

Backup: Particle vs Parton level

Particle level.

- Leptons and jets are reconstructed from stable particles.
 - \rightarrow Lifetime > 3×10^{-11} s
 - > Leptons : $P_{_{\rm T}} > 25~{
 m GeV}, ~|\eta| < 2.5.$
 - > Jets: $P_T > 30 \text{ GeV}, |\eta| < 4.5.$
 - ▶ B-jets: $P_T > 30 \text{ GeV}, |\eta| < 2.5.$
- Before they interact with the detector.
- Fiducial cuts on the objects similar to the reconstructed ones is able to:
 - Reduce modelling uncertainties.
 - Reduce dependencies from the generators.

Parton level.

- Before particles decay.
- Measurement can be extrapolated to full phase space.
- Compare the results with available theoretical predictions (not available at particle level).

Source	$\Delta \sigma_{\rm fid}(tq) / \sigma_{\rm fid}(tq)$ [%]	$\Delta \sigma_{\rm fid}(\bar{t}q) / \sigma_{\rm fid}(\bar{t}q)$ [%]
Data statistics	± 1.7	± 2.5
Monte Carlo statistics	± 1.7 ± 1.0	± 1.4
Background normalisation	< 0.5	< 0.5
Background modelling	± 1.0	± 1.6
Lepton reconstruction	± 2.1	± 2.5
Jet reconstruction	± 1.2	± 1.5
Jet energy scale	± 3.1	± 3.6
Flavour tagging	± 1.5	± 1.8
$E_{\mathrm{T}}^{\mathrm{miss}}$ modelling	± 1.1	± 1.6
b/\bar{b} tagging efficiency	± 0.9	± 0.9
PDF	± 1.3	± 2.2
tq ($\bar{t}q$) NLO matching	± 0.5	< 0.5
tq ($\bar{t}q$) parton shower	± 1.1	± 0.8
tq ($\bar{t}q$) scale variations	± 2.0	± 1.7
tt NLO matching	± 2.1	± 4.3
tt parton shower	± 0.8	± 2.5
$t\bar{t}$ scale variations	< 0.5	< 0.5
Luminosity	± 1.9	± 1.9
Total systematic	± 5.6	± 7.3
Total (stat. + syst.)	± 5.8	± 7.8

Source	$\Delta R_t/R_t$ [%]
Data statistics	± 3.0
Monte Carlo statistics	± 1.8
Background modelling	± 0.7
Jet reconstruction	± 0.5
$E_{\rm T}^{\rm miss}$ modelling	± 0.6
tq ($\bar{t}q$) NLO matching	± 0.5
tq ($\bar{t}q$) scale variations	± 0.7
tī NLO matching	± 2.3
tt parton shower	± 1.7
PDF	± 0.7
Total systematic	± 3.9
Total (stat. + syst.)	± 5.0

Source	$\frac{\Delta\sigma(tq)}{\sigma(tq)}$ [%]	$\frac{\Delta\sigma(\bar{t}q)}{\sigma(\bar{t}q)}$ [%]	$\frac{\Delta R_t}{R_t}$ [%]
Data statistics	± 2.9	± 4.1	± 5.0
Monte Carlo statistics	± 2.8	± 4.2	± 5.1
Reconstruction efficiency an	nd calibration	uncertainties	
Muon uncertainties	± 0.8	± 0.9	± 1.0
Electron uncertainties	< 0.5	± 0.5	± 0.7
JES	± 3.4	± 4.1	± 1.2
Jet energy resolution	± 3.9	± 3.1	± 1.1
$E_{\mathrm{T}}^{\mathrm{miss}}$ modelling	± 0.9	± 1.2	< 0.5
b-tagging efficiency	± 7.0	± 6.9	< 0.5
c-tagging efficiency	< 0.5	± 0.5	± 0.6
Light-jet tagging efficiency	< 0.5	< 0.5	< 0.5
Pile-up reweighting	± 1.5	± 2.2	± 3.8
Monte Carlo	generators		
tq parton shower generator	± 13.0	± 14.3	± 1.9
tq NLO matching	± 2.1	± 0.7	± 2.8
tq radiation	± 3.7	± 3.4	± 3.7
$t\bar{t}$, Wt , $t\bar{b} + \bar{t}b$ parton shower generator	± 3.2	± 4.4	± 1.2
$t\bar{t}$, Wt , $t\bar{b} + \bar{t}b$ NLO matching	± 4.4	± 8.6	± 4.6
$t\bar{t}$, Wt , $t\bar{b} + \bar{t}b$ radiation	< 0.5	± 1.1	± 0.7
PDF	± 0.6	± 0.9	< 0.5
Background n	ormalisation		
Multijet normalisation	± 0.3	± 2.0	± 1.8
Other background normalisation	± 0.4	± 0.5	< 0.5
Luminosity	± 2.1	± 2.1	< 0.5
Total systematic uncertainty	± 17.5	± 20.0	± 10.2
Total uncertainty	± 17.8	± 20.4	± 11.4

Backup: t-channel neural network

8 TeV input variables

Variable symbol	Definition	f evel	0.1
m(jb)	The invariant mass of the untagged jet (j) and the b -tagged jet (b) .	o uoi	0.05
$ \eta(j) $	The absolute value of the pseudorapidity of the untagged jet.	Fraction	-
$m(\ell vb)$	The invariant mass of the reconstructed top quark.	ш	o <mark>E</mark>
$m_{\rm T}(\ell E_{\rm T}^{\rm miss})$	The transverse mass of the lepton– E_T^{miss} system, as defined in Eq. (2).		
$ \Delta \eta(\ell \nu, b) $	The absolute value of $\Delta \eta$ between the reconstructed W boson and the b-tag	ged	jet.
$m(\ell b)$	The invariant mass of the charged lepton (ℓ) and the b -tagged jet.		
$\cos \theta^*(\ell,j)$	The cosine of the angle, θ^* , between the charged lepton and the untagged		
	jet in the rest frame of the reconstructed top quark.		

13 TeV input variables

	8	0
Variable	Definition	
$m(\ell \nu b)$	top-quark mass reconstructed from the charged lepton,	0
	neutrino, and b -tagged jet invariant mass of the b -tagged and untagged jet	O
m(jb)	invariant mass of the b -tagged and untagged jet	
$m_{\rm T}(\ell E_{\rm T}^{\rm miss})$	transverse mass of the reconstructed W boson	
$ \eta(j) $	modulus of the pseudorapidity of the untagged jet	
$m(\ell b)$	invariant mass of the charged lepton (ℓ) and the b-tagged jet	
$\eta(\ell \nu)$	rapidity of the reconstructed W boson	
$\Delta R(\ell \nu b, j)$	ΔR of the reconstructed top quark and the untagged jet	
$\cos \theta^*(\ell, j)$	cosine of the angle θ^* between the charged lepton and the untagged j	et
	in the rest frame of the reconstructed top quark	
$\Delta p_{\rm T}(\ell \nu b,j)$	Δp_{T} of the reconstructed top quark and the untagged jet	
$\Delta R(\ell, j)$	ΔR of the charged lepton and the untagged jet	

0.2 ATLAS Simulation

200

s = 8 TeV

---tī.Wt.tb

400 m(jb) [GeV]

nts / 20 GeV

0.15

Backup: t-channel differential measurement @ 8 TeV.

Cross sections at parton level (only top shown).

Backup: tW-channel fit impact comparison on uncertainties

Backup: tW-channel event selection and uncertainties @ 13 TeV.

At least one jet with $p_T > 25 \text{GeV}$, $ \eta < 2.5$				
Exactly	Exactly two leptons of opposite charge with $p_T > 20 \text{GeV}$,			
$ \eta < 2.5$ for much	ons and $ \eta < 2.47$ excluding 1	$.37 < \eta < 1.52$ for electrons		
At least one lept	on with $p_{\rm T} > 25$ GeV, veto if the	hird lepton with $p_T > 20 \text{GeV}$		
At	least one lepton matched to th	e trigger object		
Different flavour	$E_{\rm T}^{\rm miss} > 50{\rm GeV},$	if $m_{\ell\ell} < 80 \text{GeV}$		
Different flavour	$E_{\rm T}^{\rm miss} > 20{\rm GeV},$	if $m_{\ell\ell} > 80 \text{GeV}$		
	$E_{\rm T}^{\rm miss} > 40{\rm GeV},$	always		
	veto,	if $m_{\ell\ell} < 40 \mathrm{GeV}$		
Same flavour	$4E_{\mathrm{T}}^{\mathrm{miss}} > 5m_{\ell\ell},$	if $40 \text{GeV} < m_{\ell\ell} < 81 \text{GeV}$		
	veto,	if 81 GeV $< m_{\ell\ell} < 101$ GeV		
	$2m_{\ell\ell} + E_{\rm T}^{\rm miss} > 300{\rm GeV},$	if $m_{\ell\ell} > 101 \text{GeV}$		

Source	$\Delta \sigma_{Wt}/\sigma_{Wt} [\%]$
Jet energy scale	21
Jet energy resolution	8.6
$E_{\rm T}^{\rm miss}$ soft terms	5.3
b-tagging	4.3
Luminosity	2.3
Lepton efficiency, energy scale and resolution	1.3
NLO matrix element generator	18
Parton shower and hadronisation	7.1
Initial-/final-state radiation	6.4
Diagram removal/subtraction	5.3
Parton distribution function	2.7
Non- $t\bar{t}$ background normalisation	3.7
Total systematic uncertainty	30
Data statistics	10
Total uncertainty	31

Backup: tW-channel BDT discriminating power @ 13 TeV.

1j1b	
Variable	$S[10^{-2}]$
$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1\ell_2E_{\mathrm{T}}^{\mathrm{miss}}j_1)$	5.3
$\Delta p_{\mathrm{T}}(\ell_1\ell_2, E_{\mathrm{T}}^{\mathrm{miss}} j_1)$	2.9
$\sum E_{\mathrm{T}}$	2.7
$\Delta p_{\mathrm{T}}(\ell_1\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$	1.2
$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1 E_{\mathrm{T}}^{\mathrm{miss}} j_1)$	0.9
$C(\ell_1\ell_2)$	0.9
$\Delta p_{\mathrm{T}}(\ell_1, E_{\mathrm{T}}^{\mathrm{miss}})$	0.8
BDT discriminant	8.6

2j1b	
Variable	S [10 ⁻²]
$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1\ell_2)$	1.7
$\Delta R(\ell_1 \ell_2, E_{\mathrm{T}}^{\mathrm{miss}} j_1 j_2)$	1.7
$\Delta R(\ell_1\ell_2, j_1j_2)$	1.5
$m(\ell_1 j_2)$	1.4
$\Delta p_{\mathrm{T}}(\ell_1\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$	1.4
$\Delta p_{\mathrm{T}}(\ell_1, j_1)$	1.4
$m(\ell_1 j_1)$	1.3
$p_{\mathrm{T}}(\ell_1)$	1.3
$\sigma(p_{\mathrm{T}}^{\mathrm{sys}})(\ell_1\ell_2E_{\mathrm{T}}^{\mathrm{miss}}j_1)$	1.2
$\Delta R(\ell_1, j_1)$	1.2
$p_{\mathrm{T}}(j_2)$	0.9
$\sigma(p_{\mathrm{T}}^{\mathrm{sys}})(\ell_1\ell_2E_{\mathrm{T}}^{\mathrm{miss}}j_1j_2)$	0.9
$m(\ell_2 j_1 j_2)$	0.3
$m(\ell_2 j_1)$	0.3
$m(\ell_2 j_2)$	0.1
BDT discriminant	10.9

Backup: tW-channel differential measurement @13 TeV.

Backup: tW-channel fiducial measurement @ 8 TeV.

Uncertainty	Impact on $\hat{\mu}_{\text{fid}}$ [%]
Statistical	1.0
Luminosity	3.1
Theory modelling	
ISR/FSR	4.2
Hadronisation	0.8
NLO matching method	0.7
PDF	<0.1
Ratio Wt/tt̄	2.2
DR/DS	0.1
Detector	
Jet	5.2
Lepton	2.3
$E_{ m T}^{ m miss}$	0.2
b-tag	2.3
Background norm.	<0.1
Total	8.2

Backup: Polarization definitions and results.

Asymmetry	Angular observable	Polarisation observable	SM prediction
$A_{ ext{FB}}^{\ell}$	$\cos heta_\ell$	$\frac{1}{2}\alpha_{\ell}P$	0.45
$A_{ m FB}^{tW}$	$\cos \theta_W \cos \theta_\ell^*$	$\frac{3}{8}P(F_{\rm R}+F_{\rm L})$	0.10
A_{FB}	$\cos heta_\ell^*$	$\frac{3}{4}\langle S_3\rangle = \frac{3}{4}\left(F_{\rm R} - F_{\rm L}\right)$	-0.23
A_{EC}	$\cos heta_\ell^*$	$\frac{3}{8}\sqrt{\frac{3}{2}}\langle T_0\rangle = \frac{3}{16}(1-3F_0)$	-0.20
$A_{ m FB}^T$	$\cos heta_\ell^T$	$\frac{3}{4}\langle S_1 \rangle$	0.34
$A_{ m FB}^N$	$\cos heta_\ell^N$	$-\frac{3}{4}\langle S_2\rangle$	0
$A_{ ext{FB}}^{T,\phi}$	$\cos \theta_{\ell}^* \cos \phi_T^*$	$-\frac{2}{\pi}\langle A_1\rangle$	-0.14
$A_{ ext{FB}}^{N,\phi}$	$\cos heta_\ell^*\cos\phi_N^*$	$\frac{2}{\pi}\langle A_2 angle$	0

Backup: Polarization event selection and uncertainties @ 8 TeV.

Preselection cuts.

- Exactly one lepton.
- Exactly two jets, one being tagged (2j1b).
- MET > 30 GeV.
- M_⊤(W) > 50 GeV.

ATLAS

Events / 10 GeV

15000

10000

5000

√s = 8 TeV, 20.2 fb⁻¹

Data 2012

m(lvb) [GeV]

Wttb ti W+jets VV.Z+jets

- 130GeV < m(lvb) < 200 GeV
- H_⊤ > 200 GeV

Uncertainties

Uncertainty source	$\Delta A_{\rm FB}^{\ell} \times 10^2$
Statistical uncertainty	±2.6
Simulation statistics	±1.7
Luminosity	< 0.1
Background normalisation	±0.5
$E_{\rm T}^{\rm miss}$ reconstruction	+0.9 -0.1
Lepton reconstruction	+1.0 -0.4
Jet reconstruction	±2.1
Jet energy scale	+1.3 -1.2
Jet flavour tagging	±0.9
PDF	±0.2
$t\bar{t}$ generator	±2.3
$t\bar{t}$ parton shower	±0.6
tī scales	±0.2
Wt, s-channel generator	±1.0
Wt, s-channel scales	±0.9
t-channel NLO generator	±1.4
t-channel LO-NLO generator	±1.5
t-channel parton shower	±0.5
t-channel scales	±1.1
W+jets, multijet modelling	+1.9 -2.4
Total systematic uncertainty	+5.4 -5.4

Uncertainty source	$\Delta A_{\rm FB}^N \times 10^{2}$
Statistical uncertainty	±2.2
Simulation statistics	±1.3
Luminosity	< 0.1
Background normalisation	±0.4
$E_{\rm T}^{\rm miss}$ reconstruction	+0.3 -0.4
Lepton reconstruction	+0.1 -0.2
Jet reconstruction	±0.8
Jet energy scale	+0.9 -0.8
Jet flavour tagging	±0.2
PDF	±0.1
<i>tī</i> generator	±0.2
$t\bar{t}$ parton shower	±1.5
tt scales	±0.3
Wt, s-channel generator	±0.2
Wt, s-channel scales	±0.6
t-channel NLO generator	±0.3
t-channel LO-NLO generator	±0.5
t-channel parton shower	±0.7
t-channel scales	±0.9
W+jets, multijet modelling	+0.7 -0.6
Total systematic uncertainty	+2.9 -2.9

 Main systematics: ttbar modelling, jet calibration, MC statistics.

Backup: s-channel total measurement @ 8 TeV.

Lepton charge distribution in control region used to better constraint W+jets from other backgrounds.

- Main systematics:

 MC statistics (12%).

 jet enegy resolution (12%).

 t-channel modelling (11%).

tZq @ 13 TeV: event selection and main uncertainties.

EVENT SELECTION:

Common selections			
	exactly 3 leptons with $ \eta $ <	2.5 and $p_{\rm T} > 15 {\rm GeV}$	
$p_{\rm T}(\ell_1) > 28 {\rm GeV}, p_{\rm T}(\ell_2) > 25 {\rm GeV}, p_{\rm T}(\ell_3) > 15 {\rm GeV}$			
	$p_{\rm T}({\rm jet}) > 30$) GeV	
$m_{\rm T}(\ell_W, \nu) > 20 {\rm GeV}$			
SR	Diboson VR / CR	tī VR	tī CR
> 1 OGGE D :	> 1 OGGED :	> 1 OCCE D :	> 1 OCOE D :

SR	Diboson VR / CR	tt VR	tī CR
≥ 1 OSSF Pair	≥ 1 OSSF Pair	≥ 1 OSSF Pair	≥ 1 OSOF Pair
$ m_{\ell\ell} - m_Z < 10 \text{GeV}$	$ m_{\ell\ell} - m_Z < 10 \mathrm{GeV}$	$ m_{\ell\ell} - m_Z > 10 \text{ GeV}$	_
= 2 jets, $ \eta $ < 4.5	$= 1 \text{ jet}, \eta < 4.5$	= 2 jets, $ \eta $ < 4.5	= 2 jets, $ \eta $ < 4.5
= 1 <i>b</i> -jet, $ \eta $ < 2.5	_	= 1 <i>b</i> -jet, $ \eta $ < 2.5	= 1 <i>b</i> -jet, $ \eta $ < 2.5
	$VR/CR: m_T(\ell_W, \nu) > 20/60 \text{GeV}$	_	_

UNCERTAINTIES:

Source	Uncertainty [%]
tZq radiation	±10.8
Jets	±4.6
Luminosity	±3.2
b-tagging	±2.9
MC statistics	±2.8
Leptons	±2.1
tZq PDF	±1.2
$E_{ m T}^{ m miss}$	±0.3