

Open Heavy Flavour Production in pp and p-Pb Collisions with ALICE

MinJung Kweon for the ALICE Collaboration Inha University

DIS 2018 April 18, 201

OUTLINE

- Why heavy flavours in heavy-ion collisions
- * ALICE detector & heavy-flavour observables
- * Main and recent heavy-flavour measurements in pp, p-Pb collisions
- **Summary and outlook**

What's special about heavy quarks

- Heavy-ion (HI) collisions at LHC energies
 - QGP phase expected (lifetime ~ O(10 fm/c))
- QGP tomography with heavy quarks: efficient probes for understanding the transport properties of the medium
 - * Early production in hard-scattering processes with high Q^2 , transported through the full system evolution at all p_T for charm and beauty (large masses >> $\Lambda_{\rm QCD}$)
 - Production cross sections calculable with perturbative QCD
 - Traversing the medium while interacting with its constituents
 - → Hard fragmentation → measured hadron properties closer to parton ones

NOTE: Heavy flavours not only give information about the QGP phase, but also about the hadronization phase (i.e. to study hadronization mechanisms like fragmentation vs recombination -D_s,...)

What we learn from small systems: pp and p-Pb collisions

- pp collisions
 - Testing ground for perturbative QCD calculations
 - Relevant production mechanisms on the parton level
 - LO: gluon fusion, quark-antiquark annihilation
 - NLO: gluon splitting, flavor excitation
 - Multi Parton Interactions (MPI)
 - Reference for p-Pb and Pb-Pb collisions
- p-Pb collisions

❖ Quantify cold nuclear matter effects: measure effects, hot Eskola et al: JHEP04(2009)065 due to QGP formation, that can modify the yield of hard

probes in nuclear collisions

 nuclear modification of Parton Distribution Functions (shadowing, gluon saturation)

- ► *k*_T broadening via multiple of the parton before the hard scattering
- energy loss in cold nuclear matter
- Final-state effects? (e.g. from system collectivitiy/hydro)
- Reference for Pb-Pb collisions

Phys.Lett. B719 (2013) 29-41 4

Physics observables with different sensitivity

HF production vs. multiplicity in pp and p-Pb collisions

- Interplay between hard and soft processes in particle production
- Study the role of multi-parton interactions (MPI) in the heavy-flavour sector
- ♣ Investigate a possible centrality dependence of the modification of the the p_T spectra in p-Pb w.r.t. pp collisions

Nuclear modification factor

$$R_{AA} = \frac{dN_{AA} / dp_T}{\langle N_{coll} \rangle \times dN_{pp} / dp_T} = \frac{dN_{AA} / dp_T}{\langle T_{AA} \rangle \times d\sigma_{pp} / dp_T}$$

Binary scaling based on the Glauber Model

 R_{AA} = 1: binary scaling

R_{AA} ≠ 1: medium effect

Anisotropic flow: v₂

$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos[2(\varphi - \Psi_{RP})] + ...)$$

Initial spatial anisotropy via re-scatterings momentum anisotropy of particle emission

The anisotropy is quantified via a Fourier expansion in the reaction plane (ψ_{RP})

⇒ must measure observables with different sensitivity to the various ingredients

Heavy-flavour reconstruction in ALICE

Heavy-flavour reconstruction in ALICE

D mesons in pp collisions

D meson production cross section measured at several collision energies (D⁰,D⁺,D^{*+},D⁺_s)

- D^0 -mesons measured down to p_T = 0 using non-topological analysis; allows full mid-rapidity cross section to be measured without extrapolation
- pQCD-based theoretical calculations reproduce the data
- Data much more precise than theoretical calculations

[1] Eur.Phys.J. C77 (2017) 550

Heavy-flavour leptons in pp collisions

- Beauty is the main component from $p_T > ~5$ GeV/c
- Precise data to constrain charm and beauty production over a wide rapidity interval
- Similar agreement with FONLL is found in the two rapidity intervals

Total charm cross section

Factor ~2 reduction on systematic uncertainty

Important to constraint model!

Multiplicity dependence of heavy-flavour production

Particle production in pp collisions at the LHC shows a better agreement with models including Multi-Parton Interactions (MPIs) Eur. Phys. J. C 73 (2013) 2674

For heavy flavours:

► LHCb: double charm production agrees better with models including double parton scattering
J. High Energy Phys., 06 (2012) 141

MPIs involving only light quarks and gluons, or for heavy-flavour production?

- ullet D-meson, non-prompt J/ ψ yields increase with charged-particle multiplicity
- → presence of MPIs and contribution on the harder scale?

Multiplicity dependence of heavy-flavour production

Particle production in pp collisions at the LHC shows a better agreement with models including Multi-Parton Interactions (MPIs)

Eur. Phys. J. C 73 (2013) 2674

For heavy flavours:

 LHCb: double charm production agrees better with models including double parton scattering

J. High Energy Phys., 06 (2012) 141

MPIs involving only light quarks and gluons, or for heavy-flavour production?

Same behavior for open and hidden charm production

→ this behaviour is most likely related to the cc and bb production processes, but not significantly influenced by hadronisation!

D-meson yields vs. multipicity: comparison with models (pp)

- Percolation (Ferreiro, Pajares, PRC 86 (2012) 034903)
 - Particle production via exchange of colour sources between projectile and target (close to MPI scenario) → Faster than linear increase
- EPOS 3.099 (Werner et al., PRC 89 (2014) 064903)
 - Gribov-Regge multiple-scattering formalism
 - Saturation scale to model non-linear effects
 - Number of MPI directly related to multiplicity
 → slightly faster than linear
 - With hydrodynamical evolution applied to the core of the collision→faster than linear increase
- PYTHIA 8 (Sjostrand et al., Comput. Phys. Commun. 178 (2008) 852)
 - Sok-QCD tune
 - Colour reconnection
 - MPI

Charm jet in pp and p-Pb collisions

- Charm jets tagged by the presence of a fully reconstructed D meson
- D-jet spectrum measured from p_T = 5 GeV/c to 30 GeV/c
- Described by POWHEG+PYTHIA6 (Perugia 2011 tune) simulation within uncertainty
 - Data uncertainty smaller than theoretical ones

Λ_{c}^{+} & Ξ_{c}^{0} in pp and p-Pb collisions

- Study charm hadronization mechanisms using baryons
- Λ_c+ cross section underestimated by theory in pp and p-Pb collisions
 - x 2-3 higher than GM-VFNS
 - Up to x 20 higher than POWHEG+PYTHIA6
- Ξ_c^0 baryon in pp collisions at $\sqrt{s} = 7$ TeV, using semileptonic decay channel ($\Xi_c^0 \to e^+\Xi^-v_e$)
 - First measurement of Ξ_c^0 baryon production at the LHC

Baryon-to-meson ratio

- Λ_c+/D⁰ in pp and p-Pb collisions compatible within uncertainties
- Λ_c^+/D^0 ratio higher than expectation from MC
 - ▶ Enhanced color reconnection mode [1] in PYTHIA 8 closer to data
- Ξ_c^0/D^0 in pp collisions
 - ▶ Bands represent the range of the currently available theoretical predictions of the branching ratio → Experimental values are awaited!

D-meson, Λ_{c}^{+} , charm and beauty electron R_{pPb}

- D meson, Λ_{c}^{+} , charm and beauty electron R_{pPb} compatible with unity within uncertainties
- Data are described by models including initialstate and cold nuclear matter effects
- Need larger samples of both p-Pb and pp collisions at 5 TeV for constraining models at low p_T where predictions differentiate.
 - [1] PHYSICAL REVIEW C 94, 054908 (2016)
 - [2] Physics Letters B 754 (2016) 81–93
 - [3] JHEP07 (2017) 052

Heavy-flavour electron-hadron correlations

ALI-PREL-62026

Resembles the structure observed in Pb-Pb collisions that is interpreted in terms of collective flow

- Analysis of electron-hadron azimuthal correlation in 0-20% events with highest multiplicity
 - Jet contribution estimated and subtracted with peripheral events

The double ridge also observed in heavy-flavour sector!

The mechanism (CGC? Hydro?) that generates it affects also heavy flavor?

Heavy-flavour electron-hadron correlations and v₂

- Analysis of electron-hadron azimuthal correlation in 0-20% events with highest multiplicity
 - Jet contribution estimated and subtracted with peripheral events
- Positive v₂, almost comparable with the charged-particles (decay particles vs hadrons: not same p_T)
 - Initial-state effects, collective effects?

Summary and plans for Run2 and beyond

Summary

- Open heavy-flavour production in pp collisions described by perturbative QCD
- First measurement of Λ_{c}^+ (at mid-rapidity) and Ξ_{c}^0 at the LHC: baryon-to-meson ratio underpredicted by models
- In p-Pb collisions, nuclear modification factor consistent with unity
- In p-Pb collisions, positive v_2 of heavy-flavour decay electrons

Outlook

- Improve precision of multiplicity-differential studies in pp and p-Pb collisions
- Improved pp reference at 5.02 TeV will allow refinements to $R_{\rm pPb}$
- New measurements of Λ_c , $\Xi_c{}^0$ production in pp collisions at 5 and 13 TeV, in p-Pb collisions (run 2, x6 more statistics)
- Measurements of charm- and beauty-jet properties in pp and p-Pb collisions (ongoing)

Run3: Long-shutdown 2 → Detector upgrade

- New ITS, addition of MFT → improve spatial resolution at impact point at mid- and forward rapidity
- New readout for several subdetectors
- \rightarrow tremendous improvement for reconstructing charm and beauty signals (including D_s, Λ_c, non- prompt J/ψ at mid and forward rapidity, B meson, Λ_b) down to very low p_T

Thank you for your attention!

