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6 Parton Showers

A major success of the original HERWIG program was its treatment of soft gluon interference
effects, in particular the phenomenon of colour coherence, via the angular ordering of emissions
in the parton shower [1,53–61]. Herwig++ simulates parton showers using the coherent branching
algorithm of [20], which generalizes that used in the original HERWIG program [1–3]. The new
algorithm retains angular ordering as a central feature and improves on its predecessor in a
number of ways, the most notable of these being:

• a covariant formulation of the showering algorithm, which is invariant under boosts along
the jet axis;

• the treatment of heavy quark fragmentation through the use of mass-dependent splitting
functions [62] and kinematics, providing a complete description of the so-called dead-cone
region.

In this section we give a full description of the parton shower model and its implementation in
the program. We begin by introducing the fundamental kinematics and dynamics underlying the
shower algorithm. This is followed by descriptions of the initial conditions and the Monte Carlo
algorithms used to generate the showers. Toward the end of the section we discuss how some
next-to-leading log corrections can be included by a redefinition of the running coupling constant
and process-specific matrix element corrections. The section concludes with details of the C++
code structure.

6.1 Shower kinematics

Each colour-charged leg of the hard sub-process is considered to be a shower progenitor. We
associate a set of basis vectors to each progenitor, in terms of which we can express the momentum
(qi) of each particle in the resulting shower as

qi = αip + βin + q⊥i. (6.1)

This is the well known Sudakov basis. The vector p is equal to the momentum of the shower
progenitor generated by the prior simulation of the hard scattering process, i.e. p2 = m2, where
m is the on-shell mass of the progenitor. The reference vector n is a light-like vector that satisfies
n · p > m2. In practice n is chosen anticollinear to p in the frame where the shower is generated,
maximizing n · p. Since we almost always generate the shower in the rest frame of the progenitor
and an object with which it shares a colour line, n is therefore collinear with this colour partner
object. The q⊥i vector gives the remaining components of the momentum, transverse to p and n.

Our basis vectors satisfy the following relations:

q⊥i · p = 0, p2 = m2, q2
⊥i = −q2

⊥i,
q⊥i · n = 0, n2 = 0, n · p > m2,

(6.2)

where q⊥i is the spatial component of q⊥i in the frame where the shower is generated (q2
⊥i ≥ 0).

Given these definitions, calculating q2
i , one finds that βi may be conveniently expressed in terms

of the mass and transverse momentum of particle i as

βi =
q2
i − α2

i m
2 − q2

⊥i

2αin · p
. (6.3)
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Figure 1: Effective diagram for the splitting of a final-state parton connected to a final-state
spectator. The blob denotes the m-parton matrix element, and the outgoing lines label the
final-state partons participating in the splitting.

considering processes without colour-charged initial-state particles, such as jet production in
lepton-lepton collisions, this is the only QCD radiation process and thus constitutes the basis of
a corresponding final-state parton shower. However, the observed factorisation of the differential
cross section for producing an additional parton also holds in the presence of initial-state
partons, where only the additional branching channels discussed below then have to be taken
into account as well.

3.1.1 Massive case

In the most general case all partons involved in the splitting can have arbitrary masses, i.e.
p̃2

ij = m2
ij , p̃2

k = p2
k = m2

k, p2
i = m2

i and p2
j = m2

j , respectively. In order to avoid on-shell decays,
which should be described by their respective proper matrix element, only those situations are
considered, where m2

ij ≤ m2
i + m2

j .

• Kinematics:
Exact four-momentum conservation is ensured by the requirement

p̃ij + p̃k = pi + pj + pk ≡ Q . (25)

The splitting is characterised by the dimensionless variables yij,k, z̃i and z̃j . They are
given by

yij,k =
pipj

pipj + pipk + pjpk

, z̃i = 1 − z̃j =
pipk

pipk + pjpk

. (26)

With these definitions the invariant transverse momentum of partons i and j, defined in
Eq. (19), can be written as

k2
⊥ = (Q2 − m2

i − m2
j − m2

k)yij,k z̃i(1 − z̃i) − (1 − z̃i)
2m2

i − z̃2
i m

2
j . (27)

For convenience, the rescaled parton masses

µn =
mn√
Q2

(n = i, j, k, ij) , (28)
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3.1.2 Massless case

The case of a final-final splitting is considerably simpler in the massless limit, i.e. where all
occurring partons can be treated as massless, p̃2

ij = p̃2
k = p2

k = p2
i = p2

j = 0. In this case, of
course, the variables chosen to specify the splitting remain unchanged with respect to the fully
massive case. However, neglecting masses the ordering parameter reduces to

k2
⊥ = Q2yij,k z̃i(1 − z̃i) = 2p̃ij p̃k yij,k z̃i (1 − z̃i) , (62)

with the identification of Q2 = 2p̃ij p̃k this is identical with the transverse momentum defined
in Eq. (9). The full phase space for the emission of an extra parton extends to z̃i ∈ [0, 1],
yij,k ∈ [0, 1], whereas φ again uniformly covers the interval [0, 2π].

In the massless limit also the spin averaged splitting kernels ⟨Vij,k⟩ simplify considerably,
namely to

⟨Vqigj ,k(z̃i, yij,k)⟩ = CF

{
2

1 − z̃i + z̃iyij,k

− (1 + z̃i)

}

, (63)

⟨Vgigj ,k(z̃i, yij,k)⟩ = 2CA

{
1

1 − z̃i + z̃iyij,k

+
1

z̃i + yij,k − z̃iyij,k

− 2 + z̃i (1 − z̃i)

}

, (64)

⟨Vqiqj ,k(z̃i)⟩ = TR {1 − 2z̃i (1 − z̃i)} . (65)

When combining the factorised form of the (m + 1)-parton phase space,

dΦm+1 = dΦm

∑

ij

∑

k≠ij

2pipj

16π2

dyij,k

yij,k

dz̃i

dφ

2π
(1 − yij,k) Θ(z̃i (1 − z̃i)) Θ(yij,k(1 − yij,k)) , (66)

with the corresponding expression for the (m + 1)-parton matrix element,

|Mm+1|2 = |Mm|2
∑

ij

∑

k≠ij

1

2pipj

1

N spec
ij

8παs ⟨Vij,k(z̃i, yij,k)⟩ , (67)

the fully factorised form of the (m + 1)-parton differential cross section is recovered

dσ̂m+1 = dσ̂m

∑

ij

∑

k≠ij

dyij,k

yij,k

dz̃i
dφ

2π

αs

2π

1

N spec
ij

J(yij,k)⟨Vij,k(z̃i, yij,k)⟩ . (68)

However, in this case, the Jacobian J(yij,k) simply is given by

J(yij,k) = 1 − yij,k . (69)

With the transverse momentum defined according to Eq. (62) again the identity

dyij,k

yij,k

=
dk2

⊥

k2
⊥

, (70)

is found. Choosing k2
⊥ as the evolution variable with its lower cut-off given by k2

⊥,0 and the
upper limit by k2

⊥,max the z̃i integration range reduces to

z∓(k2
⊥,max,k

2
⊥,0) =

1

2

⎛

⎝1 ∓

√√√√1 −
k2
⊥,0

k2
⊥,max

⎞

⎠ . (71)
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Basic Example: 
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over generators, meaning that a general tree-level gluon amplitude can be decomposed as

M(g1, g2, . . . , gn) =
∑

σ∈SNg−1

tr(tg1tgσ2 . . . tgσn )A(σ) =
∑

σ∈SNg−1

g1 gσ2 gσn

. . .
A(σ). (3.7)

That only fully connected color structures enter in tree-level gluon amplitudes can eas-

ily be understood from the decomposition of Feynman diagrams into basis vectors; upon

application of eq. (3.1) all external gluons remain attached to a quark-line, and – while

contracting internal gluons using the Fierz identity, eq. (3.2) – they remain connected to

the same quark-line, as the color suppressed terms cancel each other out. (This can be

proved by a short calculation.) The same cancellation appears for gluon exchange between

a quark and a gluon, meaning that also tree-level color structures for one qq-pair and Ng

gluons must be of the “fully connected” form of a trace that has been cut open, an open

quark-line,

M(q1, g3, . . . , gn, q2) =
∑

σ∈SNg

(tgσ1 tgσ2 . . . tgσn )q1q2A(σ) =
∑

σ∈SNg

gσ1 gσ2 gσn

. . .

q1 q2

A(σ),

(3.8)

i.e., only the first two basis vectors in eq. (3.4) are needed. However, when the Fierz

identity is applied directly to a gluon exchange between quarks, as in eq. (3.2), both terms

do appear, and color structures with up to Nq disconnected quark-lines may appear even

at tree-level.

Starting from a trace basis tree-level color structure, for example a single trace over

gluons, and exchanging a gluon between two partons may split off a disconnected color

structure, such as in

g1 g2 g3 g4

= −TR

g1 g2 g3 g4

− TR

g1 g4 g2 g3

. (3.9)

Thus, counting to lg additional gluon exchanges (on top of a tree-level diagram), the color

structures can not consist of more than max(1, Nq)+ lg open and closed quark-lines, two in

the above case. In general, when any Feynman diagram is decomposed into a trace basis,

there can be at most Nq + ⌊Ng/2⌋ quark-lines, since all gluons may be disconnected from

the quarks, but no gluon can stand alone in a trace, giving the factor ⌊Ng/2⌋.

For NLO color structures having a quark-loop in the Feynman diagram, the quark-loop

is necessarily connected to the remaining color structure via at least one gluon exchange,

– 5 –
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4 Comments
We would like to add some comments on the rearrange-
ments:

– By swapping to the preferred smaller dipole masses we
allow fewer emissions in the following, as the dipole
phase space is given by the mass of the dipole.

– Without proof, we assume that the coherence proper-
ties are improved by allowing to rearrange the colours
such that the wide-angle emissions happen first, pro-
ducing an ordered emission spectrum and therefore re-
duced chain length.

– Assume a shower produces, for a given phase space
point, the preferred colour structure with ME weight
w1 = w(1; 2; 3; 4) with probability a and the unfavoured
colour structure with probability 1� a. Then a swap-
ping will produce the favoured colour structure as 2,
✓
1� w2

w1 + w2

◆
· a+

✓
w1

w1 + w2

◆
· (1� a) =

w1

w1 + w2

and similar for the unfavoured colour structure.
– This method does not need weighted events to correct

for the colour assignment.
– The rearrangement can be performed at any step of the

shower and is not restricted to a given multiplicity.
– A possible failure of the method is the rearrangement

to produce dipoles with masses that are too small to
create colour singlets that further can decay to mesonic
states. We did not yet observe this behaviour.

– It is anticipated that we can use the same process to
rearrange the colours of incoming partons if we do not
allow the swapping of final state to initial state mo-
menta. To do so we will in a further publication in-
vert the incoming three-momenta and define all dipole
participants as outgoing. As we sum over all helicity
combinations this should give the correct weights.

– Once the method is extended to LHC physics the colour
reconnection model needs to be reviewed/retuned as
the rearrangement will create another density of clus-
ter masses/strings sizes.

– Using matrix elements with longer dipole chains e.g.
�⇤ ! uūggg to distinguish more permutations of in-
termediate gluons is part of future work.

– It is clear that the method can be applied to any kind
of dipole like shower e.g. the Sherpa [10], the final state
shower of Pythia [3] as well as the Dire shower [12].

5 Results
In order not to bias3 the results by tuning we choose to use
the tuned values of the Q̃ shower of Herwig [25]. Further
tuning of the shower with the modifications described in
this work will improve the description of data but is also
able to hide the e↵ects due to rearranging the colours.
Namely, parameters controlling the Cluster fission mecha-
nism might allow having similar e↵ects, as the number of

2
Produce favoured and remain and produce unfavoured but

change.
3
By assuming an improved coherence picture after rearrang-

ing color dipoles this statement might be questionable.

particles can be reduced either by splitting clusters less of-
ten or, as in this approach, by reducing the average dipole
sizes. With the choice to use the value tuned for the Q̃
shower two parameters are free. The value of the strong
coupling is ↵MS

S (MZ) = 0.118 and the IR cuto↵ µ is varied
by 0.6/0.8/1.0 GeV. We convert the MS value of ↵S to
the MC scheme (CMW) [26] with the appropriate factor.
With these values we show4

– the charge multiplicity as measured in [28], see Fig. 1
– the heavy jet mass from [29],see Fig. 1
– the C- and D- parameter as measured in [30], see Fig. 2
– the five jet rate measured here [31], see Fig. 2

We see large e↵ects (up to 40 % for standard LEP
observables) and an overall improvement with respect to
the standard dipole showering. It is notable that the ob-
servables shown here are sensitive to multiple emissions
and we have checked that observables sensitive to fewer
emissions are in general not described worse. Fully tuned
results including �2 comparisons as well as the extension
to LHC physics will be discussed in future work.

6 Conclusion
In this paper we concentrated on the colour assignment
in commonly used dipole-like parton showers. We then
developed a method to assign a probability to the rear-
rangement of colour dipoles. The method allows producing
’shorter’ dipole chains if the shower falsely produces heavy
chains by averaging the emission angle. We finally show
example comparison to data and see that not only the re-
arrangement can have e↵ects of the order of up to 40 % in
standard observables but also by choosing an independent
tune LEP data is better described by the procedure. Var-
ious future projects including formal proofs, comparison
to resummation and physics application are proposed.
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Gluon Splitting
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3.1.2 Massless case
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yij,k ∈ [0, 1], whereas φ again uniformly covers the interval [0, 2π].

In the massless limit also the spin averaged splitting kernels ⟨Vij,k⟩ simplify considerably,
namely to

⟨Vqigj ,k(z̃i, yij,k)⟩ = CF

{
2

1 − z̃i + z̃iyij,k

− (1 + z̃i)

}

, (63)

⟨Vgigj ,k(z̃i, yij,k)⟩ = 2CA

{
1

1 − z̃i + z̃iyij,k

+
1

z̃i + yij,k − z̃iyij,k

− 2 + z̃i (1 − z̃i)

}

, (64)

⟨Vqiqj ,k(z̃i)⟩ = TR {1 − 2z̃i (1 − z̃i)} . (65)

When combining the factorised form of the (m + 1)-parton phase space,

dΦm+1 = dΦm

∑

ij

∑

k≠ij

2pipj

16π2

dyij,k

yij,k

dz̃i

dφ

2π
(1 − yij,k) Θ(z̃i (1 − z̃i)) Θ(yij,k(1 − yij,k)) , (66)

with the corresponding expression for the (m + 1)-parton matrix element,

|Mm+1|2 = |Mm|2
∑

ij

∑

k≠ij

1

2pipj

1

N spec
ij

8παs ⟨Vij,k(z̃i, yij,k)⟩ , (67)

the fully factorised form of the (m + 1)-parton differential cross section is recovered

dσ̂m+1 = dσ̂m

∑

ij

∑

k≠ij

dyij,k

yij,k

dz̃i
dφ

2π

αs

2π

1

N spec
ij

J(yij,k)⟨Vij,k(z̃i, yij,k)⟩ . (68)

However, in this case, the Jacobian J(yij,k) simply is given by

J(yij,k) = 1 − yij,k . (69)

With the transverse momentum defined according to Eq. (62) again the identity

dyij,k

yij,k

=
dk2

⊥

k2
⊥

, (70)

is found. Choosing k2
⊥ as the evolution variable with its lower cut-off given by k2

⊥,0 and the
upper limit by k2

⊥,max the z̃i integration range reduces to

z∓(k2
⊥,max,k

2
⊥,0) =

1

2

⎛

⎝1 ∓

√√√√1 −
k2
⊥,0

k2
⊥,max

⎞

⎠ . (71)
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where

Cij = −
Ti · Tj

T2
i

(2.9)

is the colour correlation operator as introduced in [59].
Within this framework, we have that

1

qi · qj

z

1 − z

∣

∣

∣

∣

n=pk

=
qi · pk

qi · qj qj · pk

1

qi · qj

1 − z

z

∣

∣

∣

∣

n=pk

=
qj · pk

qj · qi qi · pk

(2.10)

such that the single splitting function Pij(z)|n=pk
constitutes the complete, correct

soft behaviour for the dipole i, k. Note that the eikonal parts – as well as any

other part of a splitting function – is invariant under rescaling of the spectator
momentum pk, which is an even stronger motivation to use the longitudinal recoil

strategy defined above.
This will also be a necessary requirement when trying to remove what we call

’soft double counting’. As we will show now, this is closely related to the coherence

properties and logarithmic accuracy of a particular shower setup. To be precise,
we consider the form factor ∆ik(Q2, µ2) associated to a final-final dipole i, k when

evolving from a hard scale Q2 to a soft scale µ2. Regarding the leading- (dou-
ble) and next-to-leading (single) logarithmic contributions, αn

s L2n and αn
s L2n−1 with

L = ln(Q2/µ2) the correct behaviour can be obtained from the coherent branching
formalism [65], reproducing the results of soft gluon resummation, [66], by consid-
ering the leading behaviour of the z-integrated splitting kernel for µ2 ≪ p2

⊥ ≪ Q2.

The resulting form factor reads

− ln ∆ik(Q
2, µ2) =

∫ Q2

µ2

dp2
⊥

p2
⊥

αs(p2
⊥)

2π

(

Γi(p
2
⊥, Q2) + Γk(p

2
⊥, Q2)

)

, (2.11)

where the Sudakov anomalous dimensions Γk(p2
⊥, Q2) are given by

Γq(p
2
⊥, Q2) = CF

(

ln
Q2

p2
⊥
−

3

2

)

, (2.12)

Γg(p
2
⊥, Q2) = CA

(

ln
Q2

p2
⊥
−

11

6

)

, (2.13)

receiving contributions both at the LL level from soft collinear, at the NLL level
from hard collinear radiation. Note that the latter, i.e. the non-logarithmic terms

in Γ are determined by the average of the soft-suppressed, z-regular terms of the
splitting functions.

2.2 Recoils and Soft Coherence

We now want to include the effects of a finite recoil. Within the minimal recoil

strategy outlined above this only affects the phase space measure,

dp2
⊥

p2
⊥

dz →
dp2

⊥

p2
⊥

dz

(

1 − λ
p2
⊥

z(1 − z)sik

)

, sik = 2pi · pk (2.14)

5

In descriptions and in the  
Herwig dipole shower: 

Symmetric emission and emitter in kinematics and kernel.  
Can be and is changed by multiplying the  

kernel by z or use only (1-z) pole.
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2. CMW scheme  
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2 Johannes Bellm: Colour Rearrangement for Dipole Showers

Diagram 1: Simple process with three colour dipoles. This
process is used to calculate the weight for the colour rear-
rangement.

g1 and g2 is modified as well. Thus, an emission of a gluon
will a↵ect the kinematics of up to four of the resulting
dipoles. If a gluon splits into a qq̄-pair the colour of the
dipole chain breaks and the quark carries the colour of the
split gluon and the anti-quark gets the anti-colour. Once
the emission is performed the chain or two chains is/are
evolved further until the shower algorithm is terminated
by finding no emission scale above the infrared (IR) cuto↵.

Splitting a Dipole: Once a dipole in the chain is
identified to be the winning participant, a momentum
fraction z is chosen according to the functional form of the
splitting function. If spin-averaged splitting functions are
used, the radiation angle � of the emission plane around
the dipole axis is chosen randomly on the interval [0, 2⇡).
For spin-dependent splitting functions, the radiation angle
can be biased by the helicity of the emitting parton.

After the Shower: Once the IR cuto↵ is reached the
colour chains are interpreted as colour strings and hardonised
in a Lund string model or the remaining gluons are split
to break the chains in colour anti-colour qq̄-pairs which
then build the clusters of the cluster models. After form-
ing of clusters/strings the process of colour reconnection
can rearrange the constituents of the clusters/strings and
in addition cluster fissioning or string breaking happens
before cluster masses/string lengths are reached that al-
lows the conversion to hadronic states.

3 Colour Rearrangement
If we interpret terms as in Eq. 1 as probabilities to choose
colour lines for the starting conditions of the showering
process, we now want to know what happens to the colour
structure after emitting o↵ a dipole in a given dipole chain.
Emitting a gluon ga from dipole g1 � g2 1 leads us to:

q � g1 = g2 � g3 � g4 � ....� gn � q̄ (2)

(a) ! q � g01 � ga � g02 � g3 � g4 � ....� gn � q̄

(b) ! q � ga � g01 � g02 � g3 � g4 � ....� gn � q̄

(c) ! q � g01 � g02 � ga � g3 � g4 � ....� gn � q̄

Here gluon ga should be identified as the softer gluon
in the splitting of g1 with a spectator g2. Configuration
(a) is obtained if the emission angle is such that the softer

1
The following argument holds for emissions o↵ the ends of

the chains with a less complex structure.

gluon is ’in between’ the new g01 and g02. (b) is obtained
when ga is closer to the quark qp than g1. (c) is a configu-
ration that is not obtained by CS showers but can happen
if the emitter-spectator relation is not clear as in Ariadne.
In the colourflow picture (a), (b) and (c) in Eq. 2 cor-
respond to permutations of inner gluons and the weights
of assigning the colour lines depends on the full chain. If
we would start the shower from the configuration received
after emission we would assign the colours according to
the weights in the colour representation. Here the emit-
ted gluon ’feels’ the nearby gluon and the colours are ar-
ranged accordingly. The independent dipole in a chain has
no possibility to distinguish a preferred direction in terms
of colour amplitudes.

In the physical picture where most of the emission of g1
is in the angle opened by g1�g2 or possibly but suppressed
closer (in this example) to the quark we can assume a
shielding of colours of dipoles g02�g3�g4� .... Then these
distant dipoles have little e↵ect on the emission o↵ g1.
The colour connected quark q, however, is close to the
colour line of gluon g02. In order to construct a weight to
distinguish between configurations (a) and (b) we can use
the simplest matrix element available that includes three
dipoles namely e.g. �⇤ ! uūgg, see Diagram 1. We are
only interested in the distinction between colour structure
q� g01 � ga � g02� and q� ga � g01 � g02� as the rest of the
event remains unchanged. Even the identification of the ū
to represent gluon g02 is a good approximation as its colour
charge vanishes in the weight ratio used to decide between
the states.

In the actual implementation, we define a phase space
point � from three dipoles and incoming beams to de-
liver the energy needed for the dipole combination. We
use MadGraph to generate the process e+e� ! uūgg and
calculate the weights of the squared colour amplitudes
w(1; 2; 3; 4) = jamp2[0] and w(1; 3; 2; 4) = jamp2[1] at the
given �. If a flat random number in [0, 1) is smaller than

Pswap =
w(1; 3; 2; 4)

w(1; 2; 3; 4) + w(1; 3; 2; 4)

we swap the momenta of the gluons g2 and g3 which cor-
responds to rearranging the colour structure. Note that
the weights take into account interferences and parts of
o↵-shell e↵ects but neglect the non-diagonal elements in
the colour basis.

As the matrix element is simple and fast to compute
we also allow swapping in the chain that was not modified
by the last emission, by simply calculating the swapping
probability for all neighboring triple dipoles. If the colour
chain is already in an order preferred by the matrix ele-
ment this will not change the probability of having this
colour structure, see third comment in Sec. 4, if not the
lines will be rearranged to the ’preferred’ order. Preferred
is a probabilistic mixture of short or long chains which is
now given byPswap rather than an uncontrolled function
of evolution variable and emission angle.



Colour Rearrangement for Dipole Showers

OPAL Data
no swap, µ = 1.0 GeV
swap, µ = 1.0 GeV

10−2
10−1

1
10

1
10 2
10 3

Differential 5-jet rate with Durham algorithm (91.2 GeV)

d
σ

/
d

y
56

10
−5

10
−4

10
−3

10
−2

0.6
0.8

1
1.2
1.4

y
Durham
56

M
C

/
D

at
a

DELPHI Data
no swap, µ = 1.0 GeV
no swap, µ = 0.6 GeV
no swap, µ = 0.8 GeV

10−1

1

C parameter

N
d

σ
/

d
C

0 0.2 0.4 0.6 0.8

0.6
0.8

1
1.2
1.4

C

M
C

/
D

at
a

Data
swap 3 3

swap 4 3

swap 5 3

swap 4 4

10−4

10−3

10−2

10−1

Total charged multiplicity

2/
σ

d
σ

/
d

n
ch

20 40

0.6

0.8

1

1.2

1.4

nch

M
C

/
D

at
a

preliminary 

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018



DIS data

Extending the method to process with QCD in initial state 
is under investigation, but here at least LO or even NLO 
merging is needed to describe data. 

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018
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Conclusion

Method to allow rearranging the  
color chains in dipole showers.  

Main effect produced by symmetric  
emitter emission treatment. 

For now only modify color assignment. 
One can also ask for rate modifications.  

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018



The End

Thank you!
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