Colour Rearrangement for Dipole Showers

1. Short shower overview
2. Colour assignments
3. Colour Rearrangement
4. Results

How we simulate events?

erc
三MCnet
J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

1->2 Showers

Use of 1->2 splittings in Sudakov basis.

$$
q_{i}=\alpha_{i} p+\beta_{i} n+q_{\perp i}
$$

Keep track of virtualities.

Apply momentum conservation after shower by reshuffling.

Splitting functions:
$P_{q \rightarrow q g}(z)=C_{F}\left(\frac{1+z^{2}}{1-z}\right)$
$P_{g \rightarrow g g}(z)=C_{A}\left(\frac{z}{1-z}+\frac{1-z}{z}+z(1-z)\right)$
Symmetry factor for final state gluons.

Angular ordering to include coherence effects and not to 'double count' soft pole.
J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

(CS) Dipole Shower

Use 2->3 to preserve momentum conservation between shower steps.

Modified splitting functions to remove soft double counting

Each colour line defines partners in large colour limit. E.g. gluon has two colour partners.

$$
\left\langle\mathbf{V}_{\mathrm{i}, 5, j, k}, \tilde{z}_{i}, y_{i, k}, k\right\rangle=C_{\mathrm{F}}\left\{\frac{2}{1-\tilde{z}_{i}+\tilde{z}_{i} y_{i j, k}}-\left(1+\tilde{z}_{i}\right)\right\}
$$

$$
\left\langle\mathbf{V}_{\mathrm{g}_{i j} g_{j}, k}\left(\tilde{z}_{i}, y_{i j, k}\right)\right\rangle=2 C_{\mathrm{A}}\left\{\frac{1}{1-\tilde{z}_{i}+\tilde{z}_{i} y_{i j, k}}+\frac{1}{\tilde{z}_{i}+y_{i j, k}-\tilde{z}_{i} y_{i j, k}}-2+\tilde{z}_{i}\left(1-\tilde{z}_{i}\right)\right\}
$$

Catani, Seymour arXiv:9605323 Schumann, Krauss arXiv:0709.1027

Colour assignment for hard process

Usually:
Assing Dipole chains according to Color-Flow amplitudes,

$$
M=\sum_{i} C_{i} A_{i}(p)
$$

in leading colour,

$$
\left|C_{i}^{N_{C} \rightarrow \infty} A_{i}(p)\right|^{2}
$$

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

Concepts in dipole showers

Algorithm:

- Assign dipoles to hard process
- define $k_{T}^{2}=2 \tilde{p}_{i j} \tilde{p}_{k} y z(1-z)$
- Competition algorithm
- $\left(k_{T}, z, \phi\right)$ defines emission
- After emission is produced, assign new color dipoles
- Allow emissions with $k_{T, n}>k_{T, n+1}$
- Include running coupling and CMW factors to include effects of higher orders

Goals of PS

Describe cross section close to matrix elements and include resummation effects.

Process with $\mathrm{qq}+\mathrm{ng}$:
$\mathcal{M}\left(q_{1}, g_{3}, \ldots, g_{n}, \bar{q}_{2}\right)=\sum_{\sigma \in S_{N_{g}}}\left(t^{g_{\sigma_{1}}} t^{g_{\sigma_{2}}} \ldots t^{g_{\sigma_{n}}}\right)^{q_{1}} q_{q_{2}} A(\sigma)=\sum_{\sigma \in S_{N_{g}}}$

Basic Example:

Equations from: M. Sjöldahl arXiv:1412.3967

Pictorial representation

erc 渔Cnet
J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

Pictorial representation

$\left(A(q, 1,2, \bar{q})^{*} A(q, 2,1, \bar{q})^{*}\right)$

matrix
elements
5

$$
\begin{aligned}
& \mathrm{w} 1=\operatorname{jamp2[0]}=A(q, 1,2, \bar{q}) A(q, 1,2, \bar{q})^{*} \\
& \mathrm{w} 2=\operatorname{jamp2} 2[1]=A(q, 2,1, \bar{q}) A(q, 2,1, \bar{q})^{*}
\end{aligned}
$$

erc y^{\prime} MCnet

Rearranging the Colours

Recoils and angle choices can disorder the dipole chains.

1. Interpret gluons in LCA
2. For all triple dipoles:

$$
\text { If } \quad \mathcal{R}<\frac{w_{2}}{w_{1}+w_{2}}
$$

swap gluon momenta.

Independent of input:
$\left(1-\frac{w_{2}}{w_{1}+w_{2}}\right) \cdot a+\left(\frac{w_{1}}{w_{1}+w_{2}}\right) \cdot(1-a)=\frac{w_{1}}{w_{1}+w_{2}}$

Gluon Splitting

In descriptions and in the Herwig dipole shower:

$$
\begin{array}{r}
\left\langle\mathbf{V}_{\mathrm{gig}_{j}, k}\left(\tilde{z}_{i}, y_{i j, k}\right)\right\rangle=2 C_{\mathrm{A}}\left\{\frac{1}{1-\tilde{z}_{i}+\tilde{z}_{i} y_{i j, k}}+\frac{1}{\tilde{z}_{i}+y_{i j, k}-\tilde{z}_{i} y_{i j, k}}-2+\tilde{z}_{i}\left(1-\tilde{z}_{i}\right)\right\} \\
\left.\frac{1}{q_{i} \cdot q_{j}} \frac{z}{1-z}\right|_{n=p_{k}}=\left.\frac{q_{i} \cdot p_{k}}{q_{i} \cdot q_{j} q_{j} \cdot p_{k}} \quad \frac{1}{q_{i} \cdot q_{j}} \frac{1-z}{z}\right|_{n=p_{k}}=\frac{q_{j} \cdot p_{k}}{q_{j} \cdot q_{i} q_{i} \cdot p_{k}}
\end{array}
$$

Symmetric emission and emitter in kinematics and kernel.
Can be and is changed by multiplying the kernel by z or use only (1-z) pole.
J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

Colour Rearrangement for Dipole Showers

Total charged multiplicity

Heavy jet mass (charged)

erc $\begin{gathered}\text { yluncnet }\end{gathered}$

Colour Rearrangement for Dipole Showers

Differential 5-jet rate with Durham algorithm (91.2 GeV)

Total charged multiplicity

J. Bellm (Lund U.), DIS18, KOBE, 17.4.2018

DIS data

Extending the method to process with QCD in initial state is under investigation, but here at least LO or even NLO merging is needed to describe data.

erc \Rightarrow ylúMCnet
η

Conclusion

Method to allow rearranging the color chains in dipole showers.

Main effect produced by symmetric emitter emission treatment.

For now only modify color assignment. One can also ask for rate modifications.

The End

Thank you!

