

Jet substructure measurements sensitive to soft QCD with the ATLAS detector

Trisha Faroogue¹ on behalf of the ATLAS collaboration

Michigan State University

April 17, 2018

Overview

Introduction

- Study of energy flow within the body of hadronic jets
 - Useful in identification of boosted heavy particles
 - ▶ Important probe of perturbative QCD and also sensitive to soft QCD effects
- Three recent ATLAS results on substructure measurements sensitive to soft QCD:
 - ① Measurement of the k_T splitting scales in $Z \to II$ events in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

 JHEP08 (2017) 26 arXiv:1704.01530
 - ② A measurement of the soft-drop jet mass in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector (Submitted to PRL) ho arXiv:1711.08341
 - **3** Measurement of colour flow using jet-pull observables in $t\bar{t}$ events with the ATLAS experiment at $\sqrt{s}=13$ TeV ATLAS-CONF-2017-069

The ATLAS Experiment

- General purpose detector with multi-layer detection chambers
- Charge particle tracks reconstructed in Inner Detector (ID)
- Hadronic jets reconstructed from topological clusters of energy deposits in calorimeter cells
 - Sequence of calibrations applied to correct jet to hadron level

Overview of jet reconstruction algorithms

- Cluster any set of four-momenta (charged tracks, calorimeter energy deposits) into collimated "jets"
- ATLAS uses infra-red- and collinear-safe sequential recombination algorithms
 - Iteratively combine pair with min. d_{ij} until $d_{ib} < d_{ij}$

•
$$d_{ij} = \min(p_{T,i}^n, p_{T,j}^n) \times \frac{\Delta R_{ij}^2}{R^2}; d_{ib} = p_{T,i}^n$$

$$k_T$$
 (n=2)

- Softest pair of constituents clustered first
- Follows IR and collinear splittings

anti-k_T (n=-2)

- Hardest constituent clustered with closest neighbour
- Regularly shaped jets

Cambridge-Aachen (n=0)

- Closest pair of constituents clustered first
- Mimics angular-ordered parton showers

ATLAS measurement of k_T splitting scales in $Z \rightarrow II$ events

k_T splitting scales

- $\sqrt{d_0} = p_T$ of final jet
- $\sqrt{d_1} = min(p_{T,1}, p_{T,2}) \times \frac{\Delta R_{12}}{R}$, etc.
- Small $\sqrt{d_k} \Rightarrow \text{soft/collinear splitting}$
- Large $\sqrt{d_k} \Rightarrow$ hard splitting

- k_T clustering sequence run in reverse
- $d_{ij} = \min(p_{T,i}^n, p_{T,j}^n) \times \frac{\Delta R_{ij}^2}{R^2}; d_{ib} = p_{T,i}^n$
- Splitting scale $\sqrt{d_k} = min(\sqrt{d_{ij}}, \sqrt{d_{ib}})$ for k^{th} iteration step

Overview of measurement

- Measurement of k_T splitting scale in Z+jets events with charged particle tracks at $\sqrt{s}=8$ TeV
- $Z \rightarrow II$ events provides clean environment
- Smaller experimental uncertainties from charged tracks compared to calorimeter clusters
- Separate measurements for R = 0.4 and R = 1.0 jet radius parameters
 - Different sensitivity to hadronisation and underlying event
- Iterative Bayesian Unfolding of measured distributions based on Sherpa LO predictions
- Results also extrapolated to include neutral particles

Uncertainties

R=0.4, $\mu\mu$ channel; charged-only

R=1.0, ee channel; charged+neutral

- Modelling uncertainties are dominant
- Experimental uncertainties are mostly related to track reconstruction and measurement
- Larger uncertainties in charged+neutral results due to sensitivity to hadronisation model
 - ▶ Mostly affects small values of $\sqrt{d_k}$ (soft and collinear regime)

Unfolded distributions

R=1.0 ee channel; charged+neutral

- ullet Large discrepancies to both NLO MEPS and NNLO predictions at low values of $\sqrt{d_k}$
 - Estimated modelling uncertainties mostly dominated by perturbative QCD
 - Results can be used for generator tuning for non-perturbative effects
- NLO Sherpa+OpenLoops (MEPS@NLO) describes data better in high $\sqrt{d_k}$ tail compared to Powheg(DYNNLO)+Pythia8 NNLO (NNLOPS) predictions

ATLAS measurement of the soft-drop jet mass

Soft-drop algorithm

- Cluster input constituents with Cambridge-Aachen algorithm
- Apply soft-drop criterion at each step of clustering sequence, in reverse order

•
$$\frac{\min(p_{T,1},p_{T,2})}{p_{T,1}+p_{T,2}} > z_{cut}(\frac{\Delta R_{12}}{R})^{\beta}$$

- Remove softer of two branches if criterion not satisfied
- Higher z_{cut} ⇒ more energy removed by algorithm
- β : Tunes sensitivity to wide-angle radiation

- Jet substructure calculations beyond leading log accuracy problematic due to non-global logarithms (NGLs)
 - Related to particles radiating out of and then into jet
- Soft drop grooming makes jet substructure insensitive to NGLs
 - Removes energy in jet related to soft QCD processes and pile-up

Overview of measurement

- Measurement of soft-drop jet mass for anti- k_T R=0.8 jets built from topological calorimeter-cell clusters at $\sqrt{s}=13$ TeV
- Events with dijet topologies selected $\Rightarrow p_{T,1}/p_{T,2} < 1.5$ for two leading jets
- Distribution of $log_{10}(\rho^2)$ studied for $\beta = 0,1,2$
 - ightharpoonup Dimensionless mass parameter $ho = m^{
 m softdrop}/p_T^{
 m ungroomed}$
- Iterative Bayesian unfolding applied simultaneously to $\log_{10}(\rho^2)$ and jet p_T distributions using Pythia LO predictions
- Three distinct regions:
 - ▶ Non-perturbative region $\log_{10}(\rho^2)$ < -3.7 (soft and collinear emissions)
 - ▶ **Resummation region** $-3.7 < \log_{10}(\rho^2) < -1.7$ (resummation dominates)
 - ▶ Fixed-order region $log_{10}(\rho^2) < -3.7$ (wide-angle hard gluon emissions)

Uncertainties

- QCD modelling uncertainty dominant in non-perturbative regime
- Experimental uncertainties on energy scale of calorimeter clusters dominate in perturbative region

Unfolded distributions

- Distributions normalised to σ_{resum}
- Largest difference between Monte Carlo and analytic predictions in non-perturbative regime
 - Effect larger for higher β (smaller fraction of soft energy removed)
- NLO+NLL calculation included non-perturbative corrections \Rightarrow better agreement at low $\log_{10}(\rho^2)$
- Good agreement between data and analytic calculations in resummation and fixed-order regions

ATLAS measurement of colour flow using jet-pull observables in $t\bar{t}$ events

Jet pull observables

Coloured partons

Jets of colour singlet hadrons

- Colour connections between high-p_T particles affects structure of emitted radiation
- Colour flow in QCD is poorly constrained by current data
- Jet pull angle $\theta_{\mathcal{P}}$ measures colour connection between jets
 - $\theta_{\mathcal{P}} \sim 0$ for colour connected jets
 - Uniform distribution when no colour connection exists

Jet pull vector

$$\vec{\mathcal{P}} = \sum_{i \in J} \frac{|\vec{\Delta r_i}| \cdot \vec{p_T^i}}{\vec{p_T^J}} \vec{\Delta r_i}$$

Overview of measurement

- Jet pull angle measured in $t\bar{t}$ events at \sqrt{s} =13 TeV for:
 - ▶ Jets originating from colour singlet W (colour connected)
 - b-jets coming from the two top quarks (no colour connection)
- Magnitude of pull vector also measured
- Calculation based on charged particle tracks to improve spatial resolution of measurement
- Dominant uncertainty in measurement from $t\bar{t}$ modelling
- Largest experimental uncertainty comes from b-tagging
- Iterative Bayesian unfolding with predictions from Powheg+Pythia8 simulations

Target colour flow	Signal colour flow $(j_1 \text{ and } j_2 \text{ are colour connected})$	Spurious colour flow $(j_1 \text{ and } j_2 \text{ are not colour connected})$		
Jet assignment	j_1^W : leading $p_{ m T}$ non- b -tagged jet j_2^W : $2^{ m nd}$ leading $p_{ m T}$ non- b -tagged jet	j_1^b : leading p_T b -tagged jet $j_2^b: 2^{\text{nd}} \text{ leading } p_T$ b -tagged jet		
Observables	$\theta_{\mathcal{P}}\left(j_{1}^{W}, j_{2}^{W}\right)$: "forward pull-angle" $\theta_{\mathcal{P}}\left(j_{2}^{W}, j_{1}^{W}\right)$: "backward pull-angle" $ \vec{\mathcal{P}}\left(j_{1}^{W}\right) $: "pull-vector magnitude"	$ heta_{\mathcal{P}}\left(j_{1}^{b},j_{2}^{b} ight)$: "forward di-b-jet-pull angle"		

Unfolded distributions

- Various hadronisation models tested (Pythia6, Pythia8, Herwig7, Sherpa)
 - All predict smaller jet pull (stronger colour flow effect) than data
- Signal jet pull modelled best by Powheg+Herwig7; but spurious jet pull modelled poorly
- Pythia6 describes data better than Pythia 8
 - Differenes between the two models not limited to hadronisation

Comparison to exotic colour-flow model

- "Colour flip" model tested replacing colour singlet W with a colour octet
- Both pull angle and pull vector able to discriminate such exotic colour flow from Standard Model
- Data agrees better with SM predictions

Summary

- Presented three recent ATLAS measurements of substructure observables sensitive to soft QCD
 - ▶ k_T splitting scales for charged track jets in $Z \rightarrow II$ +jets events
 - Soft-drop jet mass in dijet events
 - ▶ Jet-pull observables in $t\bar{t}$ events
- Results can constrain both analytic calculations in perturbative regime and soft hadronic activity in non-perturbative region
- Useful for tuning of MC simulation of non-perturbative QCD

Backup slides

ATLAS measurement of k_T splitting scales in $Z \rightarrow II$ events

Signal and background yields

	$Z \rightarrow e^+e^-$		$Z \to \mu^+ \mu^-$	
Process	Events	Contribution [%]	Events	Contribution [%]
QCD Z + jets	5090000	98.93%	7220000	99.40%
Multijet	42000	0.81%	25000	0.34%
Electroweak $Z + jets$	5350	0.10%	7340	0.10%
Top quarks	6190	0.12%	8440	0.12%
W(W)	1100	0.02%	1460	0.02%
$Z \to \tau^+ \tau^-$	1100	0.02%	1700	0.02%
Total expected	5150000	100.00%	7260000	100.00%
Total observed	5196858		7349195	

ATLAS measurement of the soft-drop jet mass

Unfolded $\log_{10}(\rho^2)$ across p_T

ATLAS measurement of colour flow using jet-pull observables in $t\bar{t}$ events

Signal and background yields

Sample	Yield			
$tar{t}$	1 026 000	±	95 000	
$t ar{t} V$	3270	\pm	250	
$t ar{t} H$	1700	\pm	100	
Single-top	48400	\pm	5500	
Diboson	1440	\pm	220	
W + jets	27700	\pm	4700	
$Z + \mathrm{jets}$	8300	\pm	1400	
NP/Fake leptons	53000	\pm	30000	
Total Expected	1170000	\pm	100 000	
Observed	1153003			

Uncertainties

${\Delta\theta_P\left(j_1^W, j_2^W\right) \left[\%\right]}$	$ heta_P\left(j_1^W,j_2^W ight)$			
$\triangle \circ P (J_1, J_2) [I \circ J]$	0.0 - 0.21	0.21 - 0.48	0.48 - 0.78	0.78 - 1.0
Hadronisation	0.63	0.22	0.27	0.09
Generator	0.37	0.24	0.50	0.06
Colour Reconnection	0.11	0.26	0.03	0.53
b-Tagging	0.35	0.12	0.20	0.31
Non-Closure	0.25	0.07	0.08	0.30
ISR / FSR	0.32	0.12	0.15	0.01
Other	0.25	0.20	0.11	0.18
$_{ m JER}$	0.12	0.13	0.21	0.03
JES	0.13	0.06	0.13	0.07
Tracks	0.09	0.04	0.05	0.07
Syst.	0.97	0.52	0.68	0.72
Stat.	0.22	0.18	0.17	0.26
Total	0.99	0.55	0.71	0.76