

Bundesministerium

für Bildung und Forschung

Identification of boosted hadronically decaying particles with jet substructure in ATLAS Run-2

Jason Veatch University of Göttingen (AG Lai)

on behalf of the ATLAS collaboration

Introduction

- Large-R jets played a major role in ATLAS Run-1
 - Analyses pushed into more boosted regimes
- Many new developments in Run-2
 - New jet reconstruction methods
 - Improved heavy resonance tagging
- Wide range of uses in ATLAS analyses
 - Many more uses of boosted topologies in Run-2

Developments related to large-R jets

- Multi-dimensional optimization of jet algorithms
 - Input objects and grooming techniques

- Multi-dimensional optimization of jet algorithms
 - Input objects and grooming techniques
 - Differences in jet observables

ATL-PHYS-PUB-2017-020

- Multi-dimensional optimization of jet algorithms
 - Input objects and grooming techniques
 - Background rejection

- Multi-dimensional optimization of jet algorithms
 - Input objects and grooming techniques
 - Pileup mitigation
 - W mass, width and D_2 measured vs <µ>
 - Constituent-level pileup mitigation already works well

- Comparison of 5 different optimized configurations
 - Calibrations derived and applied

Constit Sub + SoftKiller	Soft Drop	$z_{cut} = 0.1, \beta = 0$
Constit Sub + SoftKiller	Pruning	$z_{cut} = 0.15, R_{cut} = 0.25$
Constit Sub + SoftKiller	Trimming	$R_{sub} = 0.1, f_{cut} = 9\%$
LCTopo	Trimming	$R_{sub} = 0.2, f_{cut} = 5\%$
EMTopo	Reclustering	$R = 0.4$, $f_{cut} = 5\%$

ATL-PHYS-PUB-2017-020

- Comparison of 5 different optimized configurations
 - Tagging performance comparisons
- Trade-off between mass and substructure tagging
- Current grooming optimal for mass+D₂ tagging
- Soft-drop optimal for mass-only tagging

ATL-PHYS-PUB-2017-020

• Use calibrated R = 0.4 jets to build large-R jets

• Use calibrated R = 0.4 jets to build large-R jets

350

Trimmed jet mass [GeV]

350

50

- Use calibrated R = 0.4 jets to build large-R jets
 - Improved resolution
 - Lower systematic uncertainties
 - Propagated from R = 0.4 jets

- Use calibrated R = 0.4 jets to build large-R jets
 - Improved resolution
 - Lower systematic uncertainties
 - Propagated from R = 0.4 jets
- Used in many ATLAS analyses

Jet Energy Scale (JES) Uncertainty [%]

SUSY multijet	JHEP12 (2017) 034	Anti- $k_t R = 1.0$
SUSY multi b-jet	arXiv:1711.01901	Anti-k _t R = 0.8
SUSY stop 0 lep	JHEP 12 (2017) 085	Anti- $k_t R = 0.8$ and 1.2
SUSY stop 1 lep	arXiv:1711.11520	Anti- $k_t R \le 3.0$ (variable)
VLT pairs 1 lep	JHEP 08 (2017) 052	Anti- $k_t R = 1.0$
tt resonances	ATLAS-CONF-2016-104	Anti- $k_t R = 1.0$

13

Track-CaloClusters

- Novel jet inputs using tracker and calorimeter
 - Shorthand: TCC
 - Calorimeter granularity is too coarse for boosted objects
 - Tracks included for their much better angular resolution

Track-CaloClusters

- Novel jet inputs using tracker and calorimeter
 - Tracks matched to topological clusters
 - Position from tracks and energy from clusters
 - Combined TCC: contain a cluster and ≥ 1 good track(s)

ATL-PHYS-PUB-2017-15

Track-CaloClusters

- Novel jet inputs using tracker and calorimeter
- Improved performance compared to standard jets
- New pileup suppression possible under study
- Used in ongoing ATLAS analyses

ATL-PHYS-PUB-2017-15

- In-situ methods used to derive large-R jet uncertainties
 - Jet Energy Scale: Jet balance method

ATLAS-CONF-2017-063

- In-situ methods used to derive large-R jet uncertainties
 - Jet Energy Scale: Jet balance method

ATLAS-CONF-2017-063

- In-situ methods used to derive large-R jet uncertainties
 - Jet Energy Scale: Jet balance method
 - Jet Mass Scale: Forward folding and Rtrk methods

- In-situ methods used to derive large-R jet uncertainties
 - Jet Energy Scale: Jet balance method
 - Jet Mass Scale: Forward folding and R_{trk} methods

- In-situ methods used to derive large-R jet uncertainties lacksquare
 - Jet Energy Scale: Jet balance method
 - Jet Mass Scale: Forward folding and Rtrk methods
- Combined uncertainties constrained to < 5%

21

Tagging heavy resonances

• Identify large-R jets as boosted hadronic W decays

- Identify large-R jets as boosted hadronic W decays
- Comparison of three different tagging techniques
 - Mass/D₂
 - In-situ comparisons show good modeling in data

- Identify large-R jets as boosted hadronic W decays
- Comparison of three different tagging techniques
 - Mass/D₂, BDT, DNN
 - In-situ comparisons show good modeling in data lacksquare

250

- Identify large-R jets as boosted hadronic W decays
- Comparison of three different tagging techniques
 - Mass/D₂, BDT, DNN
 - In-situ comparisons show good modeling in data
- BDT and DNN give improved performance

- Identify large-R jets as boosted hadronic W decays
- Comparison of three different tagging techniques
 - Mass/D₂, BDT, DNN
 - In-situ comparisons show good modeling in data
- BDT and DNN give improved performance
- Used in many ATLAS analyses

VV→lvqq	JHEP 03 (2018) 042	
VV→4q	Phys. Lett. B 777 (2017) 91	
VH→qqbb	Phys. Lett. B 774 (2017) 494	

ATLAS-CONF-2017-064

Top quark tagging

- Identify large-R jets as boosted hadronic top decays
- Comparison of six different tagging techniques
 - Mass/τ₃₂(/split₁₂), BDT, DNN, shower deconstruction, HTT
 - In-situ comparisons show good modeling in data

ATLAS-CONF-2017-064

Top quark tagging

- Identify large-R jets as boosted hadronic top decays
- Comparison of six different tagging techniques
 - Mass/ τ_{32} (/split₁₂), BDT, DNN, shower deconstruction, HTT
 - In-situ comparisons show good modeling in data
- BDT and DNN give the best performance

Top quark tagging

- Identify large-R jets as boosted hadronic top decays
- Comparison of six different tagging techniques
 - Mass/ τ_{32} (/split_12), BDT, DNN, shower deconstruction, HTT
 - In-situ comparisons show good modeling in data
- BDT and DNN give the best performance
- Used in ongoing and published ATLAS analyses

tt diff xsec arXiv:1801.02052

• Identify large-R jets as boosted H→bb decays

- Identify large-R jets as boosted H→bb decays
 - Match b-tagged R = 0.2 track jets to large-R jet
 - Higgs mass requirement
 - Use D₂ to identify 2-prong decay

ATLAS-CONF-2016-039

- Identify large-R jets as boosted H→bb decays
 - Match b-tagged R = 0.2 track jets to large-R jet
 - Higgs mass requirement
 - Use D₂ to identify 2-prong decay
- Used in many ATLAS analyses

DM + H→bb	JHEP12 (2017) 034
XH→ddpp	Phys.Lett. B779 (2018) 24-45
HH→4b	Phys. Rev. D 94 (2016) 052002

- Additional techniques to improve H→bb tagging
 - Variable-R track jets

- Additional techniques to improve H→bb tagging
 - Variable-R track jets
 - Exclusive kt calorimeter subjets

- Additional techniques to improve H→bb tagging
 - Variable-R track jets
 - Exclusive kt calorimeter subjets
 - Center of mass subjet reconstruction

- Additional techniques to improve H→bb tagging
 - Variable-R track jets
 - Exclusive kt calorimeter subjets
 - Center of mass subjet reconstruction
- Improvements in tagging performance

- Additional techniques to improve H→bb tagging
 - Variable-R track jets
 - Exclusive kt calorimeter subjets
 - Center of mass subjet reconstruction
- Improvements in tagging performance
- Search for further improvements continues...

Conclusions and Outlook

- Many new developments related to large-R jets
 - Improved large-R jet modeling and reconstruction
 - Techniques to identify heavy resonances
- Development continues as analyses rely more on boosted techniques to push limits to higher mass points
- Boosted topologies will become even more important with higher energy collisions
- Many more improvements on the way...

Thank you for your attention

Backup slides

Comparison of R_{trk} and forward folding results

ATLAS-CONF-2017-063

ATLAS-CONF-2017-063

Comparison of cut levels

ATLAS-CONF-2016-039

ATL-PHYS-PUB-2017-010