NNLO predictions for jets and V+jet at the LHC

Alexander Yohei Huss

work with J. Currie, R. Gauld, A. Gehrmann–De Ridder, T. Gehrmann, E.W.N. Glover, T.A. Morgan, J. Pires, and D.M. Walker

Part 1. V+jet Production & Related Observables

- \hookrightarrow The transverse momentum spectrum of gauge bosons
- $\hookrightarrow~$ Angular coefficients in ${\rm Z} \to \ell^- \ell^+$ production

Part 2. Jet Production at the LHC

- \hookrightarrow Inclusive Jet Production
- ↔ Dijet Production

V+jet Production & Related Observables

Why V + jet production?

$$\mathbf{p} \ \mathbf{p} \ \rightarrow \ V + \mathbf{jet} \quad \begin{cases} V = \mathbf{\gamma} \\ V = \mathbf{W} \quad \rightarrow \ \ell + \nu \\ V = \mathbf{Z}/\gamma^* \quad \rightarrow \ \ell + \bar{\ell} \end{cases}$$

- ▶ precision measurements
 → test pQCD
 → constrain PDFs (gluon)
- search for BSM physics

high-precision predictions mandatory!

Where do we stand?

Theory status $-V + \mathrm{jet}$ production	(not exhaustive)
► NLO QCD	
Z & W + threshold logs	[Giele, Glover, Kosower '93] [Becher, Lorentzen, Schwartz '12] ang '94] [Catani, Fontannaz, Guillet, Pilon '02]
► NLO EW	
Z [Kühn, Kulesza, Pozzorini, Schu W	ze '05] [Denner, Dittmaier, Kasprzik, Mück '11] ze '07] [Denner, Dittmaier, Kasprzik, Mück '09]
NLO QCD+EW (+multijet merging) [Kallweit,]	indert, Maierhofer, Pozzorini, Schönherr '15]
	De Didder Cehrmann Claver All Merren 's-1
W	Campbell, Ellis, Focke, Giele, Liu, Petriello.'15]
γ	[Campbell, Ellis, Williams '16]

 \rightsquigarrow all $\mathit{V} + jet$ processes now known to NNLO QCD!

$p_{\mathrm{T}}^{\scriptscriptstyle V}$ — Towards precision phenomenology

 $\mathbf{p} \ \mathbf{p} \ \rightarrow \ V + X \ \rightarrow \ \ell \ \bar{\ell} + X$

- large cross section
- clean leptonic signature

 $\mathbf{recoil} \rightsquigarrow \mathsf{sensitivity}$ to α_{s} , gluon PDF

- fully inclusive w.r.t. QCD radiation
- only reconstruct leptons

→ sub-% accuracy! (forZ)

- probes various aspects of theory predictions
- ratios: $(d\sigma/dp_T^V)/(d\sigma/dp_T^{V'})$

FEWZ Only NLO accurate DYNNLO in this distribution

Inclusive p_{T} spectrum of Z/γ^{*}

[Gehrmann-De Ridder, Gehrmann, Glover, AH, Morgan '16]

$$\frac{1}{\sigma} \cdot \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{Z}}}$$

NLO

undershoots data by 5-10%

NNLO

significant improvement in Data vs. Theory comparison

+ EW corrections: ----[Denner, Dittmaier, Kasprzik, Mück '11]

Inclusive p_{T} spectrum of Z/γ^{*}

Inclusive p_{T} spectrum of W^{\pm}

Ratio of $p_{ m T}$ spectra: m Z/W

Ratio of $p_{ m T}$ spectra: m Z/W

Ratio of $p_{\rm T}$ spectra: W^-/W^+

Angular coefficients - going beyond rate measurements

 $p p \rightarrow Z/\gamma^* + X \rightarrow \ell^- \ell^+ + X$

- lepton angular distributions (θ , ϕ)
- probe production dynamics & polarisation
- ► $M_{\rm W}$ & $\sin^2 \theta_{\rm w}$ measurement

[Gauld, Gehrmann-De Ridder, Gehrmann, Glover, AH '17]

Angular coefficients: $A_i(p_T^Z, y^Z, m_{\ell\ell})$

(Collins–Soper frame)

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{Z}}\,\mathrm{d}y^{\mathrm{Z}}\,\mathrm{d}m_{\ell\ell}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} &= \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{\mathrm{unpol.}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{Z}}\,\mathrm{d}y^{\mathrm{Z}}\,\mathrm{d}m_{\ell\ell}} \left\{ (1+\cos^{2}\theta) + \frac{1}{2}\,A_{0}(1-3\cos^{2}\theta) \right. \\ &+ A_{1}\,\sin(2\theta)\cos\phi + \frac{1}{2}\,A_{2}\,\sin^{2}\theta\,\cos(2\phi) \\ &+ A_{3}\,\sin\theta\,\cos\phi + A_{4}\,\cos\theta + A_{5}\,\sin^{2}\theta\,\sin(2\phi) \\ &+ A_{6}\,\sin(2\theta)\,\sin\phi + A_{7}\,\sin\theta\,\sin\phi \right\} \end{aligned}$$

Lam-Tung relation $A_0 - A_2 = 0$

- analogue of Callen–Gross relation in DIS
- not affected by $\mathcal{O}(\alpha_s)$ corrections

Angular coefficients - ATLAS @ 8 TeV

No significant data^{*} vs. theory disagreement between (un-regularized) ATLAS & theory @ $\mathcal{O}(\alpha_s^3)$

$${}^{*}\chi^{2} = \sum_{i,j}^{N_{\text{dat.}}} (\mathcal{O}_{\text{exp}}^{i} - \mathcal{O}_{\text{th.}}^{i}) \sigma_{ij}^{-1} (\mathcal{O}_{\text{exp}}^{j} - \mathcal{O}_{\text{th.}}^{j})$$

Jet Production at the LHC

Jet Production at the LHC

► test perturbative QCD → study scale choices

- ► constrain PDFs (talk by R. Thorne) ↔ sensitive to gluon ↔ probe wide x-range
- determine $\alpha_{s}(M_{Z})$ and running
- search for BSM physics

$p + p \rightarrow jet(s) + X$

- jets produced in abundance
- precise measurements $(p_{T,j} \gtrsim 20 \text{ GeV})$
- wide kinematic range accessible

Jet Production — Where do we stand?

(very incomplete list!)

- ▶ NLO QCD +PS (POWHEG) [Alioli, Hamilton, Nason, Oleari, Re '11]
- ▶ NLO QCD +Resummation (threshold + jet radius) (talk by F. Ringer) ... [Liu, Moch, Ringer '17]

up to ~ 2 TeV: sys. uncert. dominant
 jet energy scale ±5-10%

- - NLO scale uncert. $\sim 10~\%$ (limiting factor in $\alpha_{\rm s}$ & PDF extraction)
 - NNLO needed!

Inclusive Jet Production

scale choices \longleftrightarrow binning of individual jets vs. events• "global" scales (event): $p_{T,max}$, $\langle p_T \rangle$, ...• "local" scales (jet): p_T , ...

Inclusive Jet Production — ATLAS @ 7 TeV

*no non-pert. corrections

Inclusive Jet Production – ATLAS @ 7 TeV

*no non-pert. corrections

Inclusive Jet Production - Scale Variation

Inclusive Jet Production — Scale Choices

Two common scale choices

 $p_{\mathrm{T,max}}$ the *leading-jet* transverse momentum p_{T} transverse momentum of the *individual jets*

- identical at LO (2 \rightarrow 2 kinematics)
- ▶ high- $p_{\rm T}$ jets are mostly back-to-back: $\Rightarrow p_{\rm T,max} \sim p_{\rm T}$
- differences:
 - $\,\hookrightarrow\,\geq 3$ jets in the event
 - $\,\,\hookrightarrow\,\,$ jets outside of fiducial cuts
- \blacktriangleright sensitive to the cone size R

Inclusive Jet Production - $p_{ m T,max}$ vs. $p_{ m T}$

Inclusive Jet Production - CMS @ 7 TeV

similar to ATLAS (R = 0.4)

Inclusive Jet Production – CMS @ 7 TeV (R = 0.5)

similar to ATLAS (R = 0.4)

Inclusive Jet Production – CMS @ 7 TeV (R = 0.7)

Dijet Production

 $\begin{array}{ll} \mathbf{p} + \mathbf{p} \ensuremath{\rightarrow}\ \mathbf{2} \mbox{ jets} + X & (\mbox{\# jets} \ge 2) \\ \\ j_1: \mbox{ leading jet} & \\ j_2: \mbox{ sub-leading jet} \end{array} \right\} \ensuremath{\sim}\ \mbox{dijet system} \end{array}$

$$\begin{array}{c} \bullet & m_{jj} = (p_{j1} + p_{j2})^2 \\ \bullet & y^* = \frac{1}{2} \left(y_{j1} - y_{j2} \right) \end{array} \right\} \quad m_{jj} = 2 \, p_{\rm T} \cosh y^* \quad (\text{back-to-back}) \\ \end{array}$$

 \hookrightarrow scattering angle in part. system $\leftrightarrow x$ smeared out

scale choices

$$m_{jj}$$
, $\langle p_{\rm T} \rangle = \frac{1}{2} (p_{{\rm T},1} + p_{{\rm T},2})$, $p_{{\rm T},1}$, $p_{{\rm T},1} e^{-0.3y^*}$, $m_{jj}/2$,...

Dijet Production – m_{jj} vs. $\langle p_{\rm T} \rangle$

• m_{jj} : similarly good to small $|y^*|$

- ► $\langle p_T \rangle$: large NLO corrections with huge scale uncertainties \hookrightarrow for $|y^*| > 2.0$ even *negative* cross sections @ NLO!
 - $\,\,\hookrightarrow\,\,$ inclusion of NNLO resolves these issues

ightarrow choose $\mu_0=m_{jj}$ (based on pert. convergence and residual scale uncertainties)

Dijet Production – m_{jj} vs. $\langle p_{\rm T} \rangle$

small $|y^*|$:

both scales give reasonable predictions:

 \hookrightarrow overlapping bands, perturbateive convergence, ...

large $|y^*|$:

- m_{jj} : similarly good to small $|y^*|$
- $\langle p_{\rm T} \rangle$: large NLO corrections with huge scale uncertainties
 - \hookrightarrow for $|y^*| > 2.0$ even *negative* cross sections @ NLO!
 - \hookrightarrow inclusion of NNLO resolves these issues

ightarrow choose $\mu_0=m_{jj}$ (based on pert. convergence and residual scale uncertainties)

Dijet Production – ATLAS @ $7 \,\mathrm{TeV}$

- NLO $(\rightarrow 1)$
- NNLO
- typically $\lesssim 10\%$
- relatively flat
- large reduction of scale uncert.
- \hookrightarrow low m_{jj} & low $|y^*|$:
 - shape distorted by NNLO
 - scale bands: NNLO ~ NLO (NLO: asymmetric again)
 - better data-theory agreement

scales in dijet production better behaved

Summary & Outlook

- theoretical predictions for V + jet in good shape!
- ► NNLO QCD now available $\forall V = W^{\pm}, Z/\gamma^*, \gamma$
 - \hookrightarrow significant reduction in scale uncertainties (\sim few %)
 - \hookrightarrow resolve / reduce long-standing tension with data: $H_{\rm T}, p_{\rm T}$, ang. coefficients, ...
- **NNLO QCD** corrections completed for jet production $(N_C^2, N_C N_F, N_F^2)$
- inclusive jet production:
 - \hookrightarrow intermediate high p_{T} : good perturbative convergence (NLO \rightarrow NNLO)
 - \hookrightarrow low p_{T} : larger scale uncertainties & scale ambiguities $(p_{\mathrm{T,max}}$ vs. $p_{\mathrm{T}})$
- dijet production:
 - \hookrightarrow inclusion of NNLO largely removes scale ambiguities (even for $\langle p_T \rangle$)
 - $\Rightarrow~\mu_0=m_{jj}$ provides good convergence & reduced scale uncertainties
 - $\,\,\hookrightarrow\,\,$ improvement in comparison to data

Summary & Outlook

Summary & Outlook

- theoretical predictions for V + jet in good shape!
- ► NNLO QCD now available $\forall V = W^{\pm}, Z/\gamma^*, \gamma$
 - \hookrightarrow significant reduction in scale uncertainties (\sim few %)
 - \hookrightarrow resolve / reduce long-standing tension with data: $H_{\rm T}, p_{\rm T}$, ang. coefficients, ...
- ▶ **NNLO QCD** corrections completed for jet production $(N_C^2, N_C N_F, N_F^2)$
- inclusive jet production:
 - \hookrightarrow intermediate high p_{T} : good perturbative convergence (NLO \rightarrow NNLO)
 - \hookrightarrow low p_{T} : larger scale uncertainties & scale ambiguities $(p_{\mathrm{T,max}}$ vs. $p_{\mathrm{T}})$
- dijet production:
 - \hookrightarrow inclusion of NNLO largely removes scale ambiguities (even for $\langle p_{\rm T} \rangle$)
 - $\Rightarrow~\mu_0=m_{jj}$ provides good convergence & reduced scale uncertainties
 - $\,\,\hookrightarrow\,\,$ improvement in comparison to data

Thank you

Backup Slides

Why Higer-Order Corrections?

- ► reduction of scale uncertainties \hookrightarrow variation of $\mu_R \& \mu_F$

[[]Anastasiou, Dixon, Melnikov, Petriello '04]

remarkable progress in the development of methods to perform NNLO computations

(not an exhaustive list)	local subtraction	analytic	pp collisions	final-state jet(s)	
Antenna	ttenna (local after rot ⁿ)		\checkmark	\checkmark	
CoLorFul	\checkmark	\checkmark	×	\checkmark	
$q_{ m T}$ -Subtr.	×	× ✓		X (only t)	
Sector-improved Residue Subtr.	\checkmark	×	√	\checkmark	
N-jettiness	×	\checkmark	\checkmark	\checkmark (\leq 1 jet so far)	

NNLO Timeline

				NN	LO		-	
	• antor							$\gamma + \text{jet}$
		IIIa						$ep \rightarrow \text{jet}$
	qLN-jet	tiness					H. WW	$H(m_t \to \infty)$ HW HZ
			ved r.s.				ZH	$\gamma\gamma$
	o proje	ction to	Born				ZZ	W + jet
	• colorf	ul				$Z\gamma$	$W\gamma$	$\begin{array}{c} Z + \text{jet} \\ ep \rightarrow 2 \text{ jets} \end{array}$
			diff H	$\operatorname{diff} W_{i}$			pp	$\rightarrow 2 \text{jets}$
			$\operatorname{iff} W/Z$ H		WH	$\sigma_{ m tot}$	$t\bar{t} H$	+ jet $(m_t \to \infty)$
	$\sigma_{ m tot}$ N	VH		$\sigma_{ m tc}$	$_{ m tt}Hjj({ m V})$	BF)	H + j H + j	et $(m_t \to \infty)$ et $(m_t \to \infty)$
$\sigma_{ m t}$	$\sigma_{ m tot} H$		$e^+e^- \rightarrow e^+e^- \rightarrow$	$\cdot 3 \text{ jets}$ $\cdot \text{ event shape}$	apes		$t \overline{t} H e^+$	jj (VBF) $e^- \rightarrow 3$ jets
)1	2003	2005	2007	2009	2011	2013	2015	2017

NNLOJET

/_/!_/_/!

X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, AH, I. Majer, T. Morgan, J. Niehues, J. Pires, D. Walker

Common framework for NNLO corrections using Antenna Subtraction

- parton-level event generator
- based on antenna subtraction
- test & validation framework
- APPLfast-NNLO interface
 [Britzger, Gwenlan, AH, Morgan, Sutton, Rabbertz]
 (talk by C. Gwenlan)

Processes:

▶ ...

- ▶ pp \rightarrow (Z $\rightarrow \ell^+ \ell^-$) + 0, 1 jets
- ▶ pp \rightarrow (W[±] \rightarrow $\ell\nu$) + 0, 1 jets
- ▶ pp → H + 0, 1 jets, VBF $\hookrightarrow \gamma\gamma, \ \ell^+\ell^-\gamma, \ 4\ell, \dots$
- ▶ $pp \rightarrow dijets$
- $ep \rightarrow 1, 2 jets$
- ▶ $e^+e^- \rightarrow 3$ jets

Ratios - correlated vs. uncorrelated

correlated:

LO

nlo Nnlo uncorrelated:

uncorrelated exhibits more realistic behaviour \rightsquigarrow default choice

similar uncertainty estimates

 $\alpha_{\rm s}$ cancels in correlated case \rightsquigarrow almost no scale bands

substantial differences in correlated vs. uncorrelated

Jet Production — Channel Breakdown

ATLAS, 7 TeV, anti- k_t jets, R=0.4, $|y_j| < 0.5$

Analytic Scale Variation

$$L_R = \ln(\mu^2/\mu_0^2)$$

$$\sigma(\mu,\mu_0,\alpha_s(\mu)) = \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 f_i(\mu_0) \otimes \sigma_{ij}^0 \otimes f_j(\mu_0)$$

$$+ \left(\frac{\alpha_s(\mu)}{2\pi}\right)^3 f_i(\mu_0) \otimes \left[\sigma_{ij}^1 + 2\beta_0 L_R \sigma_{ij}^0\right] \otimes f_j(\mu_0)$$

$$+ \left(\frac{\alpha_s(\mu)}{2\pi}\right)^4 f_i(\mu_0)$$

$$\otimes \left[\sigma_{ij}^2 + 3\beta_0 L_R \sigma_{ij}^1 + (2\beta_1 L_R + 3\beta_0^2 L_R^2) \sigma_{ij}^0\right] \otimes f_j(\mu_0)$$

Inclusive Jet Production – ATLAS @ 7 TeV ($\mu = p_{T,max}$)

Inclusive Jet Production — Scale Variation

NLO NNI O ATLAS, 7 TeV, anti-kt jets, R=0.4 **NNLOXEW** NNLOJET 1.4 1.2 $|y_j| < 0.5$ 1 0.8 $|y_i| < 0.5$ 0.6 200 100 500 1000 p_T (GeV) 7 TeV. |vil < 0.5. 100 GeV < pt < 116 GeV 7 TeV, |y₁| < 0.5, 642 GeV < p_T < 688 GeV NNLOIFT NNLOJET 7x10⁶ 120 μ_F/ρ_T = 0.5 - - - μ_F/p_T = 0.5 - - μ_F/ρ_{T1}=1.0 ---μ_F/p_{T1}=1.0 ---μ_F/p_{T1}=2.0 μ_F/p_T=2.0 6x10⁶ 6x10° [A95/q]_[b/cp do/dp_T [fb/GeV] 100 NNI O 80 NLO 4x10⁶ NIC 3x10⁶ 60 0.25 0.5 0.25 HR/PT μ_R/P_T 7 TeV, |y_i| < 0.5, 290 GeV < p_T NNLOIET 2x10⁴ **NLO:** turn-over @ $\mu_{\rm R}/p_{\rm T,1} \sim 0.5$ -1 μ_F/p_T,=0.5 µ_F/p_{T1}=1.0 - \leftrightarrow asymmetric bands ця/рт.=2.0 1.8×104 \hookrightarrow pert. uncert. underestimated? 1.6×104 dp NNLO: monotonically decreasing 1.4×104 \hookrightarrow symmetric bands 1.2x10⁴ NLO 1×104 solid: analytic RGE, points: NNLOJET 0.25 0.5 1 2 μ_R/P_T,

Inc. Jet Production – CMS @ 7 TeV (R = 0.5) ($\mu = p_{T,max}$)

Inc. Jet Production – CMS @ 7 TeV (R = 0.7) ($\mu = p_{T,max}$)

Dijet Production - CMS @ 7 TeV

Dijet Production - CMS @ 7 TeV

NLO (~→ 1)

- NNLO

- large reduction of scale uncert.
- overlapping bands
- \hookrightarrow low $|y_{\max}|$:
 - shape distorted by NNLO
 - ▶ small @ low-m_{jj}
 - +20% @ high- m_{jj}
- \hookrightarrow high $|y_{\max}|$:
 - ▶ relatively flat: 10-20%
- \hookrightarrow NP corrections $\sim 5\text{--}10\%$ @ low- m_{jj}

scales in dijet production better behaved