Top modeling: studies and measurements

Markus Seidel

CERN

April 18, 2018

Overview of $t\bar{t}$ event generation

Each stage contained in multi-purpose generators but there also specialized toolsRelying on measurements to improve generators!

ME generators and scale uncertainties

CMS Preliminary 19.7 fb⁻¹ (8 TeV)

CMS Preliminary 19.7 fb⁻¹ (8 TeV)

- \blacksquare Vary renormalization and factorization scales by factors $1\!/\!2$ and 2
- Powheg (tt̄@NLO): data not covered by (small) shape scale uncertainties
 - can cover data when bins are assumed as uncorrelated
- MG5_aMCatNLO (tt̄ + 2 jets@NLO): larger shape variations, agreement with data

CMS PAS TOP-15-011

Tuning radiation using $t\bar{t}$ data

- Jet multiplicity predicted by Pythia8 default/Monash tune is too high \rightarrow tune $\alpha_s^{\rm ISR}$ to data, finding significantly lower values
- default/Monash: $\alpha_s^{\text{ISR}} = 0.1365$, CMS $\alpha_s^{\text{ISR}} = 0.1108$, ATLAS ATTBAR: $\alpha_s^{\text{ISR}} = 0.121$

CMS PAS TOP-16-021

Measurement of kinematic event variables

■ Measuring kinematic distributions in tt →lepton+jets, no top reconstruction: jet multiplicity, HT, ST, W p_T, lepton p_T, MET

- Powheg+Pythia 8 agrees well for jet multiplicity tuned to 8 TeV data
- Lepton p_T shows similar trend as top p_T . HT also driven by top decay products?

CMS TOP-16-014

Object definitions for top analyses at the particle level

- Presents objects that are safe to use for generator comparisons and compatible with Rivet
 - No access to quarks and gluons, only hadrons, leptons and photons
 - "Dressed" leptons: cluster lepton with surrounding FSR photons
 - "Ghost" tagging for bottom/charm jets (and taus)
- Discusses some physics cases
 - **1** Different approaches for top reconstruction in lepton+jets: mass-based vs. $p_T \Delta R$ based
 - 2 Compared particle \rightarrow reco level top/tt p_T resolution in lepton+jets and dilepton
 - 3 Presented implementation of single top at particle level

Measurement of differential cross sections

(Double!) differential cross section as function of top p_T, rapidity (had/lep, leading/trailing), tτ̄ p_T, mass, rapidity, jet p_T/η, ΔR_t; jet multiplicity, gap fractions

- Top p_T still not well described:
 - NNLO QCD + NLO EW agrees better with the data than Powheg+Pythia 8
 - Powheg+Herwig agrees at parton but not at particle level!

Measurement of differential cross sections

 Interesting data on the ΔR between had/lep b jets and nearest jet from tt system, not well described by any MC generator

Right plot: Herwig++ yields too much extra radiation in direction of the top quarks.
 Could explain the softer top p_T we see for Herwig!

CMS TOP-17-002

Jet substructure in $t\bar{t}$ events

Motivation

- Fragmentation of quarks and gluons to jets described by parton shower + hadronization model
- \blacksquare Current models are tuned to LEP Z
 ightarrow q ar q data
- Uncertainties relevant for many measurements, e.g. top mass

Measurement in $t\overline{t} \rightarrow$ lepton+jets

- "Standard candle" in pp collisions
- Jet substructure for each flavor: bottom, light-enriched, gluon-enriched
- Exhaustive analysis: more than 20 observables
 - Generalized angularities λ_{β}^{κ} (particle multiplicity, $p_{\rm T}$ dispersion, width, ...)
 - Eccentricity, soft drop observables, N-subjettiness, energy correlation function ratios

 τ_{43}

Jet substructure: jet width, eccentricity

■ Jet width λ_1^1 , $\lambda_{\beta}^{\kappa} = \sum_i z_i^{\kappa} \left(\frac{\Delta R(i,\hat{n}_r)}{R}\right)^{\beta}$ with $z_i = p_T^i / \sum_i p_T^i$ and recoil-free axis \hat{n}_r ■ * Dire (NLO) 2.001: full $b \to bg$ structure not covered yet, \circ Pythia 8 requires FSR down

Perfectly circular jet: $\varepsilon = 0$, elliptical jet: $\varepsilon \to 1$; best agreement with \Box Herwig 7

Jet substructure: softdrop splitting function, N-subjettiness CMS PAS TOP-17-013

- Groomed momentum fraction z_g : related to QCD splitting function, independent of α_s
- Best agreement with □ Herwig 7 (angular-ordered)

• τ_{NM} used for distinguishing jets with N or M subjets, correlated with multiplicity

Underlying event in $t\bar{t}$ events

■ Probe the underlying event in high-scale process → measured in tt dilepton events: charged multiplicity, summed/average momenta; event shapes: sphericity/aplanarity/C/D

Large sensitivity to ISR/FSR variations, prefer less radiation

Data compared to large range of models: CR models, rope hadronization, Sherpa, Herwig

Underlying event: measurement in different categories

CMS PAS TOP-17-015

- Measured in categories of N_{jets} , dilepton p_T , dilepton mass, and region wrt $p_T(\ell \ell)$
- Mean charged particle p_T in toward/transverse/away region for different N_{jet} :

- Large dependence on N_{jet} for transverse/away regions
- Same mean p_{T} for transverse and away when $N_{jet} = 0$

Fits of Powheg+Pythia 8 $\alpha_s^{FSR}(m_Z)$

• Scan of $\alpha_s^{FSR}(m_Z)$ in underlying events and jet shape observables

• From $\overline{p_{\rm T}} \rightarrow \alpha_s^{\rm FSR}(m_Z) = 0.120 \pm 0.006$; from jet width $\rightarrow \alpha_s^{\rm FSR}(m_Z) = 0.1227 \pm 0.0013$

- Need more complete tuning to get agreement with all observables
- Comparison to world average needs CMW scheme and scale uncertainties ($\sim +0.014 \\ -0.012$)

Summary

- Gained first experience with tuning the MC generators to CMS tt
 data:
 jet p_T/multiplicity at 8 TeV to tune α^{ISR}_s and hdamp, used for 13 TeV samples
- Plethora of new particle-level measurements using 2016 data
 - kinematic event variables w/o top reconstruction
 - (double) differential $t\bar{t}$ cross sections with top reconstruction
 - jet substructure for different jet flavors
 - underlying event observables
- Probing different aspects of $t\bar{t}$ modeling, will allow for improving current MC generators
- All new analyses will be available in Rivet soon