Status of JLEIC and Its Interaction Region Design

Speaker: V.S. Morozov (JLab) on behalf of JLEIC Collaboration

JLEIC Layout

- Electron complex
 - -CEBAF
 - Electron collider ring
- Ion complex
 - Ion source
 - SRF linac (285 MeV/u for protons)
 - Booster
 - Ion collider ring
- Up to two detectors at minimum background locations

arXiv:1504.07961

May 17 update: https://eic.jlab.org/wiki/index.php/Main_Page

Key Design Concepts

- High luminosity: high collision rate of short modest-charge low-emittance bunches
 - -Small beam size
 - Small $\beta^* \Rightarrow$ Short bunch length \Rightarrow Low bunch charge \Rightarrow High repetition rate
 - Small emittance \Rightarrow Cooling

-Similar to lepton colliders such as KEK-B with L > 2×10³⁴ cm⁻²s⁻¹ $L = f \frac{n_1 n_2}{4\pi \sigma_v^* \sigma_v^*} \sim f \frac{n_1 n_2}{\varepsilon \beta_v^*}$

High polarization: figure-8 ring design

- >80% for electrons and protons

Full acceptance primary detector including far-forward acceptance

JLEIC Energy Reach and Luminosity

JLEIC Parameters (3T option)

CM energy	GeV	21.9 (low)		44.7 (m	edium)	63.3 (high)		
		р	e	р	e	р	e	
Beam energy	GeV	40	3	100	5	100	10	
Collision frequency	MHz	476		476		476/4=119		
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7	
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71	
Polarization	%	80%	80%	80%	80%	80%	75%	
Bunch length, RMS	cm	3	1	1	1	2.2	1	
Norm. emittance, hor / ver	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4	
Horizontal & vertical β*	cm	8/8	13.5/13.5	6/1.2	5.1/1.0	10.5/2.1	4/0.8	
Ver. beam-beam parameter		0.015	0.092	0.015	0.068	0.008	0.034	
Laslett tune-shift		0.06	7X10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵	
Detector space, up/down	m	3.6/7	3.2/3	3.6/7	3.2/3	3.6/7	3.2/3	
Hourglass(HG) reduction		1		0.87		0.75		
Luminosity/IP, w/HG, 10 ³³	CM ⁻² S ⁻¹	2.5		21.4		5.9		

High-Energy Electron Cooling

- Magnetized electron beam for higher cooling efficiency
- Cooling electron beam is energy-recovered to minimize power consumption
- Circulator ring to relax electron source requirements

-Ultra-fast harmonic kicker to kick electrons in and out of the circulator ring top ring: CCR

bottom ring: ERL

Ion Polarization

- Figure-8 concept: Spin precession in one arc is exactly cancelled in the other
- Spin stabilization by small fields: ~3 Tm vs. < 400 Tm for deuterons at 100 GeV
 —Criterion: induced spin rotation >> spin rotation due to orbit errors
- No depolarization during acceleration verified by simulations, final P ~80%
- 3D spin rotator: combination of small rotations about different axes provides any polarization orientation at IP or any other point in the collider ring
- No effect on the beam orbit including IP position
- Polarized deuterons
- Frequent adiabatic spin flips with no depolarization

Electron Polarization

•	Estimated polarization lifetime	Energy (GeV)	3	5	7	9	10
		Lifetime (hours)	66	8	2.2	0.9	0.3

- Constant polarization is maintained by continuous injection of highly polarized (~85%) electron beam from CEBAF
- A relatively low average injected beam current of tens-of-nA level can maintain a high equilibrium polarization in the whole energy range
- Beam lifetime must be balanced with the beam injection rate and $\tau_{beam} \ll \tau_{pol}$

Interaction Region Concept

Detector Region

- Integrated detector region design developed satisfying requirements of detection, beam dynamics and geometric match
- GEANT4 detector model developed, simulations in progress

Forward Hadron Detection

- Electron and ion beams have to cross at an angle in an EIC, JLEIC: 50 mrad
 - Create space for independent electron and ion IR magnets
 - Avoid parasitic collisions of shortly-spaces bunches
 - Improves detections
 - Improves detector background
- Two forward charged hadron detector regions:
 - Region 1: Forward, small dipole covering scattering angles from 0.5 up to a few degrees (before quads)
 - Region 2: Far forward, up to 1°, for particles passing through (large aperture) accelerator quads. Subsequent dipoles for precision measurements.
- Neutrals are detected in a zero-degree calorimeter (ZDC)

Forward Ion Side of JLEIC IR

- $\beta_{x,y}^* = 10 / 2 \text{ cm}, D^* = 0 \text{ m}, D'^* = 0$
- Three spectrometer dipoles (SD)
- Large-aperture final focusing quadrupoles (FFQ)
- Secondary focus with large D and small D'

geom. match/

Ion Beam Envelope & 99%p Trajectory

- Assuming beam momentum of 100 GeV/c, ultimate normalized x/y emittances $\epsilon_{xN}/\epsilon_{yN}$ of 0.35/0.07 µm, and ultimate momentum spread $\Delta p/p$ of 3×10⁻⁴
- The horizontal size includes both betatron and dispersive components

Momentum & Angular Resolution

- Protons with $\Delta p/p$ spread are launched at different angles to nominal trajectory
- · Resulting deflection is observed at the second focal point
- Particles with large deflections can be detected closer to the dipole
- Crab tilt at the second focus may reduce momentum acceptance to $\Delta p/p > 1\%$

Acceptance to Neutrals

- Transmission of neutrals with initial x and y angular spread
 - Quad apertures = B max / (field gradient @ 100 GeV/c)
 - Uniform neutral particle distribution of $\pm 1^\circ$ in x and y angles around proton beam at IP
 - Transmitted particles are indicated in blue (the circle outlines $\pm 0.5^{\circ}$ cone)

Electron IR optics

- IR region
 - Final focusing quads with maximum field gradient ~63 T/m
 - Four 3m-long dipoles (chicane) with 0.44 T @ 10 GeV for low-Q² tagging with small momentum resolution, suppression of dispersion and Compton polarimeter

Workshop on Deep Inelastic Scattering, Kobe, Japan, April 16-20, 2018

D (m)

Forward e⁻ Detection & Polarization Measurement

- Dipole chicane for high-resolution detection of low-Q² electrons
- Compton polarimetry has been integrated to the interaction region design
 - -same polarization at laser as at IP due to zero net bend
 - -non-invasive monitoring of electron polarization

Beam Pipe Design

- Minimum multiple scattering in the beam pipe material
- Synchrotron radiation collimation
- Impedance
- Vacuum
- L. Elouadrhiri et al. (JLab), C. Hyde (ODU), M. Sullivan (SLAC)

Detector Background

- Performance of ZEUS at HERA was limited by background in the Central Tracking Detector (CTD)
- Background was generated by ion beam scattering on residual gas generated by electron beam's synchrotron radiation
- Background was monitored using a small scintillator counter C5
- Simulation tools and procedures validated using HERA data (L. Elouadrhiri et al.)

Detector Simulations

Detection of ${}^{1}H(e,e'K')\Lambda$

Workshop on Deep Inelastic Scattering, Kobe, Japan, April 16-20, 2018

Figure from K.Park

Conclusion

- JLEIC conceptual design is nearly complete
- Key features:
 - -High luminosity
 - -High polarization
 - -Full-acceptance detection
- The detector region has been closely integrated with accelerator design and optimized for forward detection
- Work in progress
 - -Verification of consistency of the JLEIC design
 - -Completion of a pre-CDR
 - -Detector region design
 - Engineering design: magnets, cryogenics, vacuum
 - Beam pipe design
 - Detector background studies
 - Physics simulations
 - Polarimetry

