

Multiboson Production at CMS

Andrew Levin

DIS 2018

17 April 2018

Introduction

- Multiboson final state = [WZy][WZy]+[j]*
 - Includes both leptonically decaying W and Z bosons and hadronically decaying W and Z bosons
 - Includes both precision measurements and searches
- Motivation
 - Test of Standard Model electroweak cubic and quartic interactions
 - Indirect study the Higgs boson
 - Background for direct Higgs measurements
- No recently released multiboson results from CMS, but several previously released multiboson results were recently published
 - Production of ZZ
 - Electroweak Production of W[±]W[±]jj
 - Electroweak Production of ZZjj

Generator Tools

- MadGraph_aMC@NLO
 - Automated LO and NLO generator
- Sherpa
 - Automated LO and NLO generator
- VBFNLO
 - For final states involving Higgs bosons and vector bosons
- Phantom
 - For QCD and electroweak for vector boson scattering (VBS) and vector boson fusion (VBF)
- POWHEG
 - NLO-QCD generator for specific list of processes with almost very few negative event weights
- MCFM
 - Generator and differential cross-section calculator with a long list of processes implemented
- Multiboson processes can involve thousands of diagrams --> stress test of generators

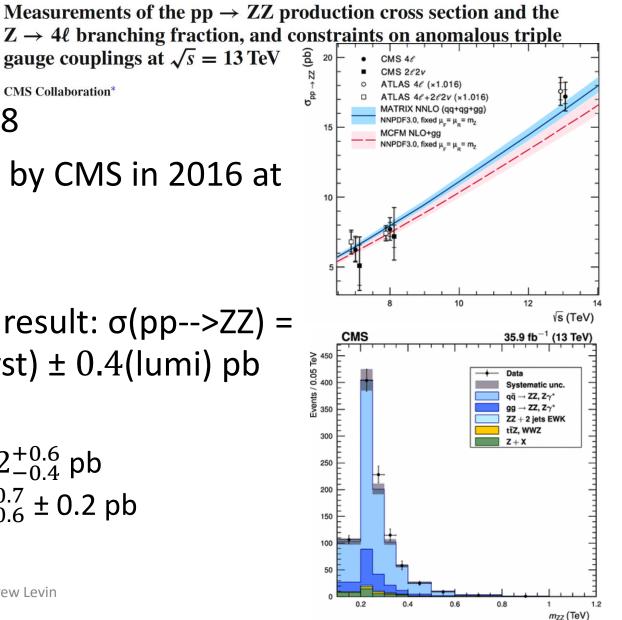
1 processes with 18818 diagrams generated in 34.243 s Total: 1 processes with 18818 diagrams MG5_aMC>

- Pythia8 or Herwig
 - for parton showering and hadronization

Anomalous Couplings Frameworks

- Quantify deviations from the Standard Model in a general or model-independent way
- Allows us to compare measurements in different channels and different experiments
- Anomalous Triple Gauge Couplings
 - For example: $Q_W = e \rightarrow Q_W = (\Delta g_1^Z + 1)e$
 - Charged triple gauge coupling parameters: Δg_1^Z , λ_Z , $\Delta \kappa_Z$
 - Neutral triple gauge coupling parameters: h_3^{Y} , \bar{h}_3^{Z} , h_4^{Y} , h_4^{Z} , f_5^{Y} , f_5^{Z} , f_4^{Y} , f_4^{Z}
- Dimension 8 Effective Field Theory
 - $\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{F_i}{\Lambda^4} \mathcal{O}_i$
 - Operators involving $D_{\mu}\phi$: L_{S0-1}
 - Operators involving $B_{\mu\nu}^{\mu}$ or $W_{\mu\nu}^{i}$: L_{T0-9}
 - Operators involving $D_{\mu} \phi$ and either $B_{\mu\nu}$ or $W^{i}_{\ \mu\nu}$: L_{M0-7}
 - For example: $L_{T8} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$

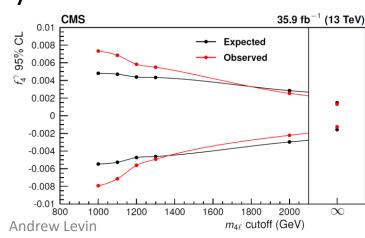
Eur. Phys. J. C (2018) 78:165 https://doi.org/10.1140/epjc/s10052-018-5567-9

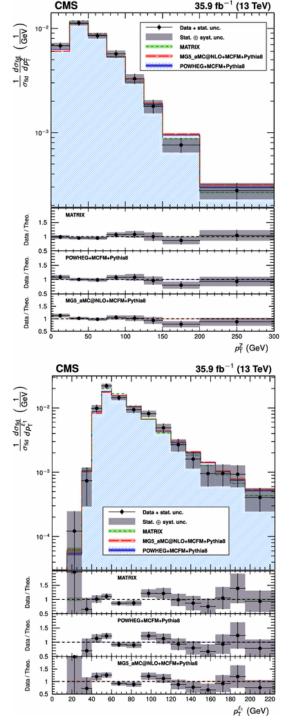

THE EUROPEAN CrossMark PHYSICAL JOURNAL C

Regular Article - Experimental Physics

CMS Collaboration*

Production of ZZ (I)


- Published in EPJC in February 2018
- Based on 36 fb⁻¹ of data collected by CMS in 2016 at 13 TeV
- Use ZZ --> 4l channel ($l = e \text{ or } \mu$)
- Total cross-section measurement result: $\sigma(pp ZZ) =$ $17.5^{+0.6}_{-0.5}$ (stat) ± 0.6(syst) ± 0.4(syst) ± 0.4(lumi) pb
- Can be compared to
 - NNLO prediction from MATRIX: $16.2^{+0.6}_{-0.4}$ pb
 - NLO prediction from MCFM: $15.0^{+0.7}_{-0.6} \pm 0.2$ pb



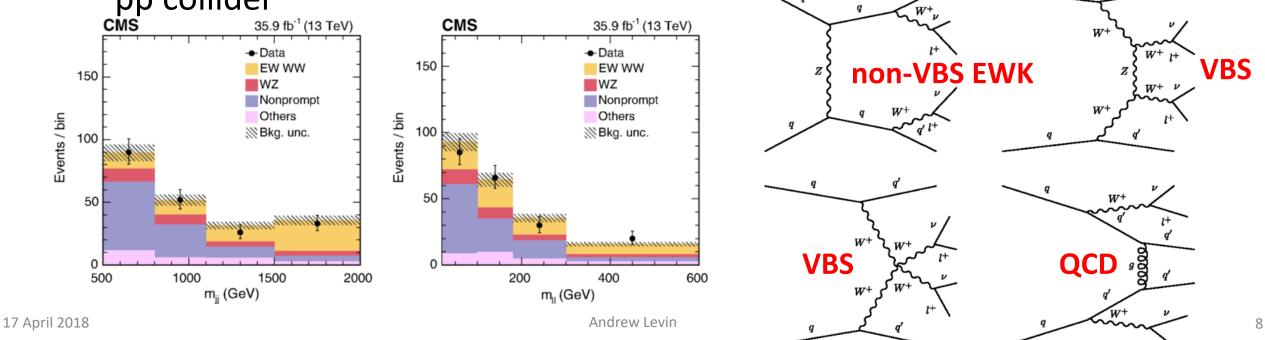
Production of ZZ (II)

- Unfolding
 - Unfolding performed by iterative technique, using RooUnfold
 - Unfolded distributions for m_{ZZ} , $\Delta R_{Z_1,Z_2}$, $p_T^{l_1}$, and p_T^Z provided
- Anomalous Couplings
 - World's best limits on f_5^{γ} , f_5^{Z} , f_4^{γ} , f_4^{Z}
 - Use m₄₁ cutoffs to impose unitarity constraints

$$\begin{array}{l} -0.0012 < f_5^{\,\rm V} < 0.0013 \\ -0.0010 < f_5^{\,\rm Z} < 0.0013 \\ -0.0012 < f_4^{\,\rm V} < 0.0013 \\ \hline 0.0012 < f_4^{\,\rm Z} < 0.0010 \end{array}$$

Production of ZZ (III)

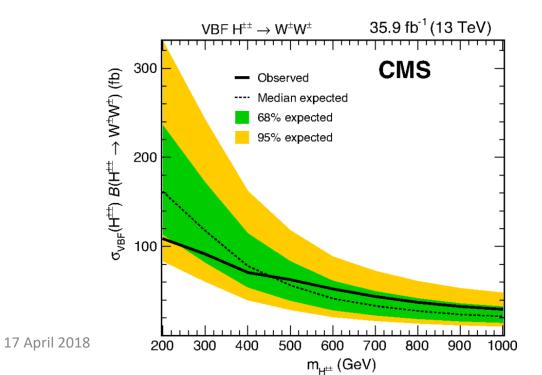
- Selection
 - Follows the H --> ZZ --> 4l analysis
 - Require Z boson masses > 60 GeV_
- Systematic Uncertainties -
- Background estimation


Uncertainty Source	Uncertainty Size (%)
Lepton efficiency	2–6
Trigger efficiency	2
Statistical (simulation)	0.5
Background	0.5–1
Pileup	1
PDF	1
μ _R , μ _F	1
Integrated luminosity	2.5

- Main background comes from events in which a jet causes a lepton to be reconstructed are the main background
- We use the following data-driven method to estimate this background:
 - 1. Define "lepton fake rate" to be the rate at which a reconstructed lepton which passes a loose ID also passes the final tight ID
 - 2. Using Z + 1 reconstructed lepton events in data, we measure lepton fake rate in data as a function of p_T , $|\eta|$, and lepton flavor
 - 3. We then apply appropriate factors of the lepton fake rates to control regions with one or more leptons failing the lepton ID to extrapolate to the signal region
- There are a large number of subtleties and complications involved this method, and also a large number of validation studies

Electroweak Production of W[±]W[±]jj (I)

PHYSICAL REVIEW LETTERS 120, 081801 (2018)

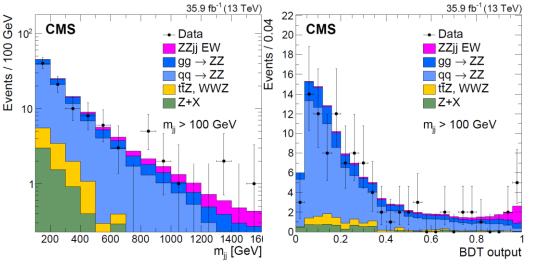

- Published in PRL in February 2018
- Observation of Electroweak Production of Same-Sign W Boson Pairs in the Two Jet and Two Same-Sign Lepton Final State in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV
- Signal significance: 5.5 σ observed, 5.7 σ expected (CMS Collaboration)
- World's first observation of electroweak-induced VVjj production at a pp collider

Electroweak Production of W[±]W[±]jj (II)

- Limits on 9 dimension 8 EFT operator coefficients
- Limits on VBF production and decay to W[±]W[±] of H⁺⁺ boson in the Georgi-Macachek model

Andrew Levin

	Observed limits (TeV ⁻⁴)	Expected limits (TeV ⁻⁴)
f_{S0}/Λ^4	[-7.7,7.7]	[-7.0,7.2]
f_{S1}/Λ^4	[-21.6,21.8]	[-19.9,20.2]
f_{MO}/Λ^4	[-6.0,5.9]	[-5.6,5.5]
f_{M1}/Λ^4	[-8.7,9.1]	[-7.9,8.5]
f_{M6}/Λ^4	[-11.9,11.8]	[-11.1,11.0]
f_{M7}/Λ^4	[-13.3,12.9]	[-12.4,11.8]
f_{T0}/Λ^4	[-0.62,0.65]	[-0.58,0.61]
f_{T1}/Λ^4	[-0.28,0.31]	[-0.26,0.29]
f_{T2}/Λ^4	[-0.89,1.02]	[-0.80,0.95]


Electroweak Production of W[±]W[±]jj (III)

- Selection
 - m_{ii} > 500 GeV
 - |Δη_{ii}| > 2.5
 - $\max\left(\left|\eta^{l_1} \frac{\eta^{j_1} + \eta^{j_2}}{2}\right|, \left|\eta^{l_2} \frac{\eta^{j_1} + \eta^{j_2}}{2}\right|\right) / \left|\Delta\eta_{jj}\right| < 0.75$
 - Missing Transverse Energy (MET) > 40 GeV
 - Third lepton veto, including hadronic τs
 - Veto events with high b-tagging discriminator jets
- Systematic Uncertainties
- Background estimation
 - WZ, where one lepton is somehow missed, including electroweak-induced WZjj production, estimated from Monte Carlo and normalized with a triboson control region
 - Semileptonic ttbar and w+jets, where one jet causes a lepton to be reconstructed, estimated using the same data-driven method as for the ZZ analysis

	Uncertainty Source	Signal (%)	WZ (%)	Leptons caused by jets (%)
	Lepton efficiency	< 2 per lepton	< 2 per lepton	
5	Jet energy scale/resolution	up to 7	up to 7	
•	Integrated luminosity	2.5	2.5	
	EWK/QCD Interference	4.5		
	PDF	5		
	μ _R , μ _F	12		
	Normalization with CR		20-40	
	Data-driven method			30

Electroweak Production of ZZjj (I)

- Published in PLB in November 2017
- Use BDT to separate electroweak and QCD ZZjj
- Signal significance: 2.6 σ observed, 1.6 σ expected

CrossMark

.....

 q
 q
 q
 q

 VBS
 l
 w
 VBS

 w
 VBS
 l
 w

 q'
 q'
 q'
 q'

 q
 q'
 q'
 q'

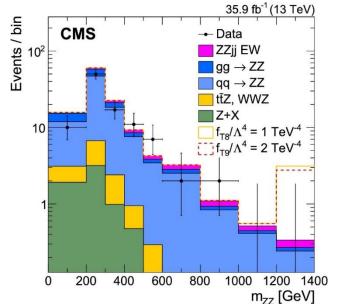
 Q
 q
 q
 q'

 VBS
 H
 q'
 q'

Physics Letters B 774 (2017) 682-705

	Contents lists available at ScienceDirect	PHYSICS LETTERS B
ドロア	Physics Letters B	
	www.elsevier.com/locate/physletb	Sincether
11		

Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton–proton collisions at $\sqrt{s} = 13$ TeV

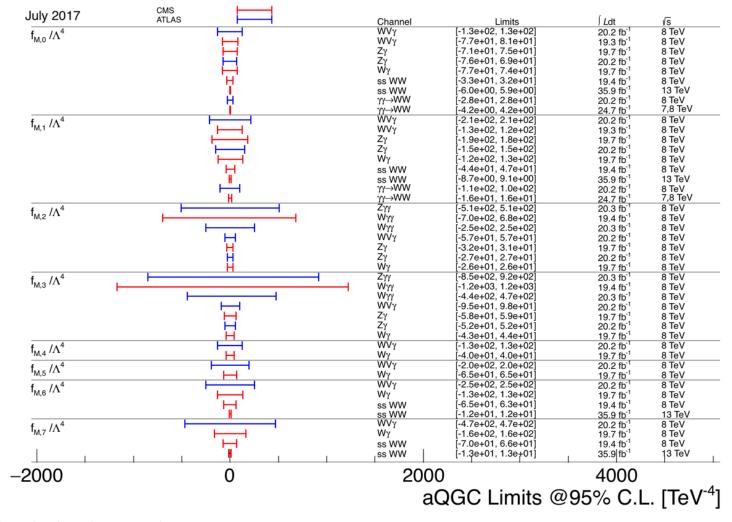

tput The CMS Collaboration*

ELSEVIE

Electroweak Production of ZZjj (II)

• Anomalous couplings

- F_T operators introduces extra events in tail of the m_{ZZ} mass distribution
- Shows up as bump when we use an overflow bin
- World's best limits on F_{T0-2} and F_{T8-9}
- Unitary bounds of 2.3 2.9

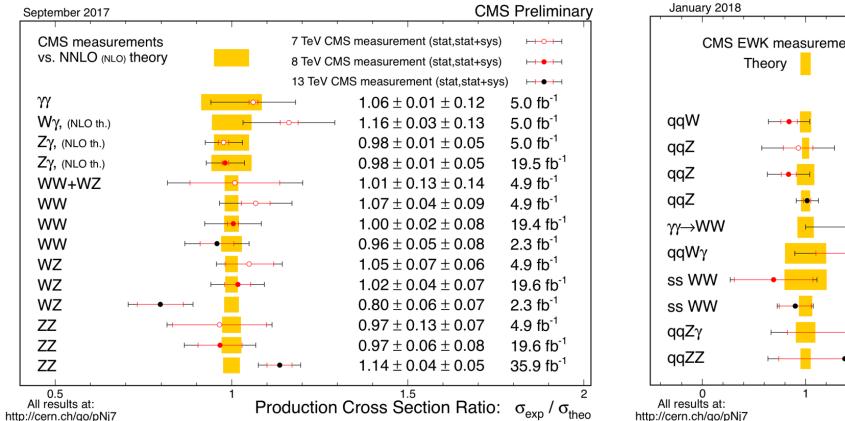


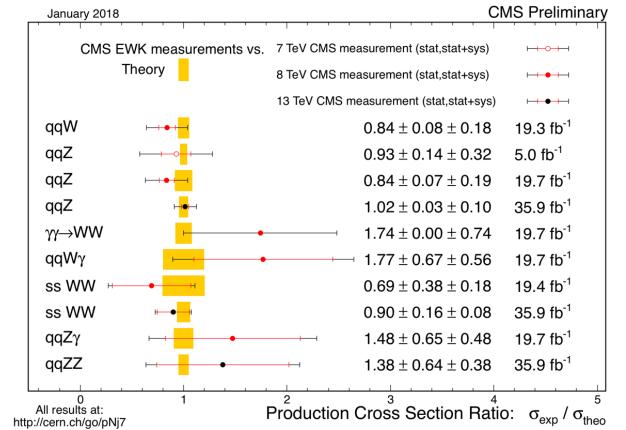
Electroweak Production of ZZjj (III)

- Selection
 - Again follows the CMS H --> ZZ -->4l analysis
 - + VBS cuts: m_{ii} > 500 GeV and $|\Delta \eta_{ii}|$ > 2.5
- Systematic Uncertainties -
 - NLO-EWK corrections on the signal process are not considered because they are not available, but they are expected to be smaller than data statistical uncertainties
- Background estimation
 - The dominant background, QCD-induced ZZ + jets production, is taken from Madgraph5_aMC@NLO simulation
 - The estimation of the background due to jets causing leptons to be reconstructed again uses the data-driven "lepton fake rate" method

Uncertainty Source	signal (%)	QCD ZZjj (%)	leptons caused by jets (%)
μ _R , μ _F	7	10	
PDF	6-9	6-9	
Jet energy scale	4-20	4-20	
Jet energy resolution	8	8	
Lepton efficiency	2-6	2-6	
Integrated luminosity	2.5	2.5	
Data-driven method			40

Anomalous Couplings Summary Plots (I)

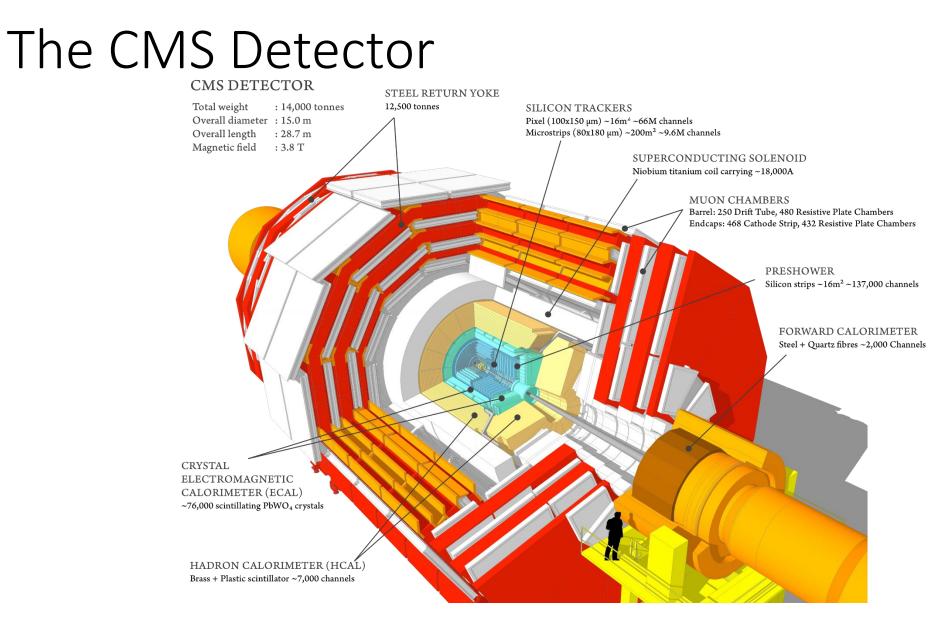



Anomalous Couplings Summary Plots (II)

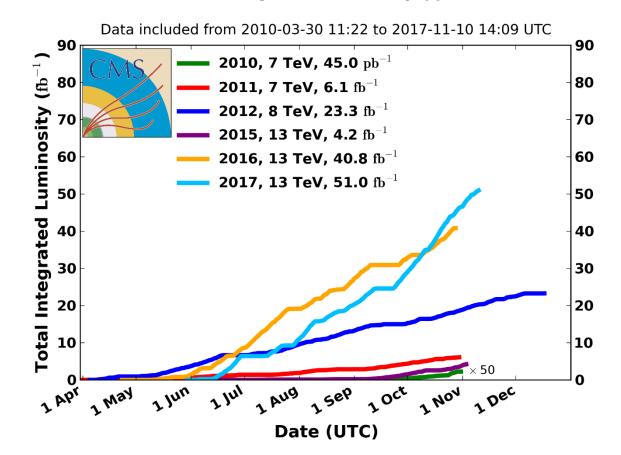
uly 2017	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	√s
f / A 4		Wγγ	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV
$f_{T,0} / \Lambda^4$	· · · · · · · · · · · · · · · · · · ·	Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	É CARACTER STATE	ŴVγ	[-1.8e+01, 1.8e+01]	20.2 fb ⁻¹	8 TeV
		wvγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
	і ні	Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	H H	Zγ	[-3.4e+00, 2.9e+00]	29.2 fb ⁻¹	8 TeV
	i i i i i i i i i i i i i i i i i i i	Ŵγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	Η	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
	стан стан стан стан стан стан стан стан	ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV
	i i i i i i i i i i i i i i i i i i i	ZZ	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV
¢ 1,4		Ŵνγ	[-3.6e+01, 3.6e+01]	20.2 fb ⁻¹	8 TeV
$f_{T,1} / \Lambda^4$	· · · ·	Zγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	H	Ŵγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	H H	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
	Ϋ́Υ.	ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV
	i i i i i i i i i i i i i i i i i i i	ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV
¢ 1,4	.	 	[-7.2e+01, 7.2e+01]	20.2 fb ⁻¹	8 TeV
$f_{T,2} / \Lambda^4$	<u> </u>	Zγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	<u>i i i</u>	wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	' <u> </u>	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
	'H '	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV
	ÿ	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV
4		Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
$f_{T,5} / \Lambda^4$		ŴVγ	[-2.0e+01, 2.1e+01]	20.2 fb ⁻¹	8 TeV
	' <u> </u>	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
		WVγ	[-2.5e+01, 2.5e+01]	20.2 fb ⁻¹	8 TeV
$f_{T,6} / \Lambda^4$	н	Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
		WVγ	[-5.8e+01, 5.8e+01]	20.2 fb ⁻¹	8 TeV
$f_{T,7} / \Lambda^4$		Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
4	'н'	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,8} / \Lambda^4$	Li L	Zγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV
	H	ZZ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV
4	 _	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
$f_{T,9} / \Lambda^4$	''	Zγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
		Zγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV
1	щ	ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV
-100	0	100	200)	
		а	QGC Limits @	95% CI	[TeV

17 April 2018 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC Andrew Levin

Cross-Section Summary Plots



Conclusions


- Several newly published papers from the CMS Collaboration multiboson group
- CMS has accumulated a large set of multiboson results → major efforts to interpret the results in a uniform way and combine them
- As many measurements are statistically limited, the total run 2 dataset will reduce uncertainties a lot
- More and more triboson production measurements and vector boson scattering measurements are becoming possible

Backup

CMS Integrated Luminosity

CMS Integrated Luminosity, pp

Dimension 8 Operator Definitions

 $\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$ $\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$ $\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$ $\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$ $\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$ $\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$ $\mathcal{L}_{T,8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta}$ $\mathcal{L}_{T.9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\ \mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right] \\ \mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\ \mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\ \mathcal{L}_{M,2} = \left[B_{\mu\nu}B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right] \\ \mathcal{L}_{M,3} = \left[B_{\mu\nu}B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right] \\ \mathcal{L}_{M,4} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu} \\ \mathcal{L}_{M,5} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\nu}\Phi \right] \times B^{\beta\mu} \\ \mathcal{L}_{M,6} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\mu}\Phi \right] \\ \mathcal{L}_{M,7} = \left[(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\nu}\Phi \right]$$