α_s review (2018)

DIS 2018 Kobe (Japan), 18th April 2018 David d'Enterria CERN

Mostly based on: D. d'Enterria, P.Z. Skands (eds.), Proceeds. "High-precision α_s from LHC to FCC-ee", CERN Oct. 2015; arXiv:1512.05194 (plus 2017, 2018 updates)

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter in QCD in the $m_{q} \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m₇), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^1$, $\Lambda \sim 0.2$ GeV

QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- → Single free parameter in QCD in the $m_{q} \rightarrow 0$ limit.
- Determined at a ref. scale (Q=m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^1$, $\Lambda \sim 0.2$ GeV

• Least precisely known of all interaction couplings ! $\delta \alpha \sim 10^{-10} \ll \delta G_{_{\rm F}} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{_{\rm S}} \sim 10^{-3}$

Importance of the QCD coupling α_s

Impacts all QCD x-sections & decays (H), precision top & parametric EWPO:

						Msbar mass error budget (from threshold scan)		
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)	$(\delta M_t^{ m SD-low})^{ m exp}$	$(\delta M_t^{ m SD-low})$	$(\delta \overline{m}_t(\overline{m}_t))^{\text{conversion}}$	$^{\mathrm{on}}\left(\left(\delta\overline{m}_{t}(\overline{m}_{t})\right)^{lpha_{s}} ight)$
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32	40 MeV	50 MeV	7 – 23 MeV	70 MeV
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9	\Rightarrow improvemen	t in α_s crucial		$\delta\alpha_s(M_z) = 0.001$
Channel	$M_{ m H}[{ m GeV}]$	$\delta \alpha_s(\%)$	Δm_b Δ	Δm_c	Quantity	FCC-ee	future param.unc	. Main source
$H \rightarrow c\bar{c}$	126	± 7.1	$\pm 0.1\%$ \pm	2.3 %	Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$
$H \rightarrow gg$	126	± 4.1	$\pm 0.1\%$ \pm	0 %	$R_b \ [10^{-5}]$	6	< 1	$\delta lpha_s$
00					$R_{\ell}~[10^{-3}]$	1	1.3	$\delta \alpha_s$

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017

Impacts physics approaching Planck scale: EW vacuum stability, GUT

World α_s determination (PDG 2017)

Determined today by comparing 6 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

[Bethke/Dissertori/Salam] April 2016 1) lattice $\alpha_{s}(Q^{2}$ \mathbf{v} τ decays (N³LO) △ DIS jets (NLO) (2) τ decays Heavy Quarkonia (NLO) • e⁺e⁻ jets & shapes (res. NNLO) 0.3 e.w. precision fits (N³LO) ∇ p(\overline{p}) -> jets (NLO) ▼ pp -> tt (NNLO) 3) PDFs 0.2 (4) e⁺e⁻ jets (shapes, rates) (5) Z decays pp→ttbar 0.1 $\equiv QCD \alpha_s(M_z) = 0.1181 \pm 0.0011$ 100 1000 10 [GeV]

(1) α_s from lattice QCD

Comparison of short-distance quantities (Wilson loops, q static potential, vacuum polariz.,...) computed at NNLO in pQCD, to lattice QCD "data":

 $K^{\rm NP} = K^{\rm PT} = \sum_{i=0}^{n} c_i \alpha_s^i$

 Currently, it's extraction with smallest uncertainties: ±1% (lattice spacing & statistics).

Extracted value depends on observables:

Uncertainty increased: 2013 (±0.4%) → 2017 (±1.0%)

Future prospects:

- Uncertainty in α_s could be halved with (much) better numerical data.
- Reaching ±0.1% requires 4th-loop perturbation theory (~10 years?)

[FLAG Collab. http://itpwiki.unibe.ch/flag]

(2) α_s from hadronic τ -lepton decays

• Computed at N³LO:
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

♦ Experimentally: R_{τ.exp} = 3.4697 ± 0.0080 (±0.23%)

 Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD corrections (note: (Λ/m_τ)² ~2%), yield different results.

Uncertainty slightly increased: 2013 ($\pm 1.3\%$) \rightarrow 2017 ($\pm 1.5\%$)

- Future prospects:
 - Better understanding of FOPT vs CIPT differences.
 - Better spectral functions needed (high stats & better precision):
 B-factories (BELLE-II)
 - High-stats: $\mathcal{O}(10^{11})$ from Z($\tau\tau$) at FCC-ee(90) : $\delta\alpha_s/\alpha_s < 1\%$

(3) α_s from proton structure functions

- Computed at N^{2,3}LO: $F_2(x,Q^2) = x \sum_{n=0}^{\infty} \frac{\alpha_s^n(\mu_R^2)}{(2\pi)^n} \sum_{i=q,q} \int_x^1 \frac{dz}{z} C_{2,i}^{(n)}(z,Q^2,\mu_R^2,\mu_F^2) f_{i/p}\left(\frac{x}{z},\mu_F^2\right) + \mathcal{O}\left(\frac{\Lambda^2}{Q^2}\right)$
- Experimentally: Multiple F₂(x,Q²), F^c₂(x,Q²), F_L(x,Q²), PDFs(x,Q²)
- Different approaches:

Non-singlet fits, singlet+non-singlet fits, global fits of PDFs, ...

Uncertainty ~stable: 2013 (±1.7%) → 2015 (±1.8%)

 Lowest central value among all extractions methods.

(3) α_s from proton structure functions (updates)

- Computed at N^{2,3}LO: $F_2(x, Q^2) = x \sum_{n=0}^{\infty} \frac{\alpha_s^n(\mu_R^2)}{(2\pi)^n} \sum_{i=q,g} \int_x^1 \frac{dz}{z} C_{2,i}^{(n)}(z, Q^2, \mu_R^2, \mu_F^2) f_{i/p}\left(\frac{x}{z}, \mu_F^2\right) + \mathcal{O}\left(\frac{\Lambda^2}{Q^2}\right)$
- Updates by MMHT (R.Thorne, DIS'18) & NNPDF3.1 (N.Hartland, DIS'18)

Future: LHeC/FCC-eh stats. should lead to 3-permille uncertainty.

M Klein, V Radescu

combined fit to PDFs+ α s using LHeC data

David d'Enterria (CERN)

NC,CC
 NC,CC+F2c

(4) α_s from e⁺e⁻ event shapes & jet rates

- Computed at N^{2,3}LO+N⁽²⁾LL accuracy.
- Experimentally (LEP): Thrust, C-parameter, jet shapes 3-jet x-sections
- Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$$
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{\left(\sum_i |\vec{p}_i|\right)^2}$$

(4) α_{s} from e⁺e⁻ event shapes & jet rates (2018)

 $C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$

OPAL 3 jet event

- Computed at N^{2,3}LO+N⁽²⁾LL accuracy. $\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$
- Experimentally (LEP): Thrust, C-parameter, jet shapes 3-jet x-sections
- Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

(5) α_s from hadronic Z decays

(6) α_s from top-pair p-p cross sections

Total top-antitop cross section (known at NNLO+NNLL) is the 1^{st} p-p collider observable to constrain α_s at NNLO accuracy:

(6) α_s from top-pair p-p cross sections (update)

Total top-antitop cross section (known at NNLO+NNLL) is the 1^{st} p-p collider observable to constrain α_s at NNLO accuracy:

Inclusion of full set of t-tbar data increases $\alpha_s(m_z)$ & uncertainty: ±2.9%

David d'Enterria (CERN)

PDG 2017 α_s world average (NNLO)

unweighted χ^2 average:

class averages:

 $\alpha_{s}(M_{z}) = 0.1192 \pm 0.0018 (\pm 1.5\%)$

 $\alpha_{s}(M_{z}) = 0.1184 \pm 0.0012 (\pm 1.0\%)$

 $\alpha_{s}(M_{z}) = 0.1156 \pm 0.0021 \ (\pm 1.8\%)$

 $\alpha_{s}(M_{z}) = 0.1169 \pm 0.0034 \ (\pm 2.9\%)$

 $\alpha_s(M_z) = 0.1196 \pm 0.0030 \ (\pm 2.5\%)$ $\alpha_s(M_z) = 0.1151 \pm 0.0028 \ (\pm 2.5\%)$

 $\alpha_{s}(M_{z}) = 0.1181 \pm 0.0011 (\pm 0.9\%)$

2018 "updated" α_s world average (NNLO)

class averages:

 $\alpha_{s}(M_{z}) = 0.1192 \pm 0.0018 (\pm 1.5\%)$

 $\alpha_{s}(M_{z}) = 0.1184 \pm 0.0012 (\pm 1.0\%)$

 $\alpha_s(M_z) = 0.1156 \pm 0.0021 (\pm 1.8\%)$ $\alpha_s(M_z) = 0.1157 \pm 0.0020 (\pm 1.8\%)$

 $\alpha_{s}(M_{z}) = 0.1169 \pm 0.0034 \ (\pm 2.9\%)$

 $\alpha_{s}(M_{z}) = 0.1196 \pm 0.0030 (\pm 2.5\%)$ $\alpha_{s}(M_{z}) = 0.1151 \pm 0.0028 (\pm 2.5\%)$ $\alpha_{s}(M_{z}) = 0.1177 \pm 0.0035 (\pm 2.9\%)$ $\alpha_{s}(M_{z}) = 0.1181 \pm 0.0011 (\pm 0.9\%)$

Other α_s extractions (not yet in world average)

There exist at least 8 other classes of observables, computed at lower accuracy (NLO, NNLO*), used to extract the QCD coupling:

α_s from hadronic W decays (NNLO)

FCC-ee: – Huge W stats (×10⁴ LEP) will lead to: δα_s/α_s < 0.3% – TH (param.) uncertainty: δV_{cs} to be significantly improved (10⁻⁴)

DIS 2018, Kobe, April 2018

α_s coupling from e-p \rightarrow jets (NNLO)

DIS H1 jet x-sections and jets+PDF-fit compared for the 1st time to NNLOjet calculations: [Radek Žlebčík, H1, arxiv:1709.07251]

α_s coupling from other LHC jet results (NLO)

Ratio of 3-jets to 2-jets, 3-jet mass x-sections & energy-energy correl. test running α_s (NLO only) up to so-far unprobed scales Q ~ 1.5 TeV:

α_s from γ QCD structure function (NNLO)

David d'Enterria (CERN)

Other α_s extractions (NLO, NNLO*)

Jet x-sections in γ-p (NNLO*):
 α_s(m_z) = 0.112 ± 0.002 ± 0.003 (±4%)

Y decay (NLO): [Mambrilla et al. PRD75(07)074014]

 $\alpha_{s}(m_{z}) = 0.1190 \pm 0.007 (\pm 6\%)$

$$R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1S) \to \gamma X)}{\Gamma(\Upsilon(1S) \to X)} = \frac{36}{5} \frac{e_b^2 \alpha}{\alpha_s} \frac{N}{D},$$

$$N, D = 1 + \mathcal{O}(\alpha_s) + \mathcal{O}(v^2) + \mathcal{O}(\frac{v^4}{\alpha_s}) + \mathcal{O}(\alpha_s^2) + \mathcal{O}(\alpha_s v^2) + \mathcal{O}(\alpha_s \frac{v^4}{\alpha_s}) + \mathcal{O}(v^4) + \mathcal{O}(\frac{v^6}{\alpha_s})$$

22/23

Summary: α_s status (2018)

- World-average QCD coupling at NNLO:
 - Determined from
 6 observables with
 1% uncertainty
 (least well-known coupling)
 - Impacts all LHC QCD x-sections & decays.
 - Role beyond SM: GUT, EWK vacuum stability New colored sectors?
- 4 new extractions/updates:
 - PDF fits (with NNLO pp jets)
 - e-p jets at NNLO
 - Full $pp \rightarrow ttbar data$
 - W hadronic BR at NNLO
- 8 other extraction methods proposed. Work towards NNLO accuracy.
 LHC: Running up to Q~1.5 TeV

(Simple updated average gives +0.001 increase)

Backup slides

α_s from pion and Y decays

$$F_{\pi}^{2}(pert)_{\overline{\text{MS}}} = N_{c} \frac{m^{2}}{2\pi^{2}} \left[-L + \frac{\alpha_{S}}{4\pi} (8L^{2} + \frac{4}{3}L + \frac{1}{6}) + (\frac{\alpha_{S}}{4\pi})^{2} [f_{30}(n_{f})L^{3} + f_{31}(n_{f})L + f_{32}(n_{f})L + f_{33}(n_{f})] + \mathcal{O}(\alpha_{S}^{3}) \right]$$
$$L \equiv \ln \frac{m}{\mu}, n_{f} = 2(3)$$

 $\overline{\alpha}_S(m_Z) = 0.1174^{+.0010}_{-.0005}$ (rgopt th) $\pm .0010|_{(F_{\pi}/F_0)} \pm .0005_{evol}$

 $R_{\gamma} \equiv \frac{\Gamma(\Upsilon(1S) \to \gamma X)}{\Gamma(\Upsilon(1S) \to X)} = \frac{36}{5} \frac{e_b^2 \alpha}{\alpha_*} \frac{N}{D},$

 $N, D = 1 + \mathcal{O}(\alpha_{s}) + \mathcal{O}(v^{2}) + \mathcal{O}(\frac{v^{4}}{\alpha})$

Issues:

- Too low scale for pQCD?
 - Optimization approach,...
- Intriguing agreement with world average.

 $\alpha_s = 0.1174 \pm 0.0017 (\pm 1.5\%)$

[J. Soto]

[J.L.Kneur]

 α_{s} (NLO)= 0.1190±0.007 (±6%)

• A NNLO extraction of α_s appears feasible in the coming years, the key ingredients being:

 $+\mathcal{O}(\alpha_{\rm s}^{2})+\mathcal{O}(\alpha_{\rm s}v^{2})+\mathcal{O}(\alpha_{\rm s}\frac{v^{4}}{\alpha})+\mathcal{O}(v^{4})+\mathcal{O}(\frac{v^{6}}{\alpha})$

- More precise data for the $\Upsilon(1S)$ photon spectrum (and total hadronic width)
- Non-trivial higher order perturbative calculations

DIS 2018, Kobe, April 2018