DIS 2018

16-20 April 2018 Kobe, Japan

"Accessing Quark Helicity in $\mathrm{e}^{+} \mathrm{e}^{-}$and SIDIS via Dihadron Correlations.

P.R.D97, 0740 I 9 (20 I 8); arXiv: I 7 I 2.06384.

OCOEPP

Hrayr Matevosyan
** THE UNIVERSITY of ADELAIDE

MEASURING PDF WITH TRANSVERSE MOMENTUM DEPENDENCE

- Measurement of the transverse momentum of the produced hadron in SIDIS provides access to TMD PDFs/FFs.
- SIDIS Process with TM of hadron measured.
- TMD PDF

N / q	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}^{\perp}$	$h_{1} h_{1 T}^{\perp}$

- TMD FF

q / h	U
U	D_{1}
L	
T	H_{1}^{\perp}

2

TMD PDFs with Two-Hadron FFs

- Measuring two-hadron semi-inclusive DIS: an additional method for accessing TMD PDFs.
- SIDIS Process with TM of hadrons measured.
- TMD PDFs

N/q	U	L	T
U	f_{1}		h_{1}^{\perp}
L		$g_{1 L}$	$h_{1 L}^{\perp}$
T	$f_{1 T}^{\perp}$	$g_{1 T}^{\perp}$	$h_{1} h_{1 T}^{\perp}$

- TMD DiFFs

SYSTEMATICS OF DIHADRON FRAGMENTATION FUNCTIONS

Two-Hadron Kinematics

Total and Relative TM of hadron pair.

$$
\begin{array}{rlrl}
P & =P_{1}+P_{2} & z=z_{1}+z_{2} \\
R & =\frac{1}{2}\left(P_{1}-P_{2}\right) & \xi=\frac{z_{1}}{z}=1-\frac{z_{2}}{z}
\end{array}
$$

\uparrow Two Coordinate systems:
$\bullet \perp$: modelling hadronization

- Lorentz Boost:

$$
\begin{aligned}
\boldsymbol{P}_{1 T} & =\boldsymbol{P}_{1 \perp}+z_{1} \boldsymbol{k}_{T} \\
\boldsymbol{P}_{2 T} & =\boldsymbol{P}_{2 \perp}+z_{2} \boldsymbol{k}_{T} \\
\boldsymbol{k}_{T} & =-\frac{\boldsymbol{P}_{\perp}}{z}
\end{aligned}
$$

\% Relative TM in two systems

$$
\begin{aligned}
\boldsymbol{R}_{\perp} & =\frac{1}{2}\left(\boldsymbol{P}_{1 \perp}-\boldsymbol{P}_{2 \perp}\right) \\
\boldsymbol{R}_{T} & =\frac{z_{2} \boldsymbol{P}_{1 \perp}-z_{1} \boldsymbol{P}_{2 \perp}}{z}
\end{aligned}
$$

Field-Theoretical Definitions

- The quark-quark correlator.

$$
\Delta_{i j}\left(k ; P_{1}, P_{2}\right)=\sum_{X} \int d^{4} \zeta e^{i k \cdot \zeta}\langle 0| \psi_{i}(\zeta)\left|P_{1} P_{2}, X\right\rangle\left\langle P_{1} P_{2}, X\right| \bar{\psi}_{j}(0)|0\rangle
$$

- The definitions of DiFFs from the correlator.

Quark Polarization

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

Unpolarised

$$
\Delta^{\left.\gamma^{-} \gamma_{5}\right]}=\frac{\epsilon_{T}^{i j} R_{T i} k_{T j}}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

$$
\begin{aligned}
\Delta^{\left[i \sigma^{i-} \gamma_{5}\right]} & =\frac{\epsilon_{T}^{i j} R_{T j}}{M_{h}} H_{1}^{\varangle}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& +\frac{\epsilon_{T}^{i j} k_{T j}}{M_{h}} H_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
\end{aligned}
$$

Field-Theoretical Definitions

- The quark-quark correlator.

$$
\Delta_{i j}\left(k ; P_{1}, P_{2}\right)=\sum_{X} \int d^{4} \zeta e^{i k \cdot \zeta}\langle 0| \psi_{i}(\zeta)\left|P_{1} P_{2}, X\right\rangle\left\langle P_{1} P_{2}, X\right| \bar{\psi}_{j}(0)|0\rangle
$$

- The definitions of DiFFs from the correlator.

Quark Polarization

$$
\Delta^{\left[\gamma^{-}\right]}=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

Unpolarised
related to "jet handedness"
$\Delta^{\left.\gamma^{-} \gamma_{5}\right]}=\frac{\epsilon_{T}^{i j} R_{T i} k_{T j}}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)$
Longitudinal
$\begin{aligned} \Delta^{\left[i \sigma^{i-} \gamma_{5}\right]} & =\frac{\epsilon_{T}^{i j} R_{T j}}{M_{h}} H_{1}^{\varangle}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\ & +\frac{\epsilon_{T}^{i j} k_{T j}}{M_{h}} H_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)\end{aligned}$
Transverse

Fourier Moments of DiFFs

- Expanded dependence on $\varphi_{R K} \equiv \varphi_{R}-\varphi_{k}$ in cos series

$$
\begin{gathered}
D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{K R}\right)\right)=\frac{1}{\pi} \sum_{n=0}^{\infty} \frac{\cos \left(n \cdot \varphi_{K R}\right)}{1+\delta_{0, n}} D_{1}^{[n]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right), \\
F^{[n]}=\int d \varphi_{K R} \cos \left(n \varphi_{K R}\right) F\left(\cos \left(\varphi_{K R}\right)\right)
\end{gathered}
$$

- Integrated DiFFs and Fourier moments

$$
\begin{aligned}
& D_{1}^{a}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi D_{1}^{a,[0]}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}\right) \\
& G_{1}^{\perp a,[n]}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi\left(\frac{\boldsymbol{k}_{T}^{2}}{2 M_{h}^{2}}\right) \frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} G_{1}^{\perp a,[n]}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}\right) . \\
& H_{1}^{\varangle,[n]}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi \frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} H_{1}^{\varangle,[n]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right) \\
& H_{1}^{\perp,[n]}\left(z, M_{h}^{2}\right)=z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi \frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} H_{1}^{\perp,[n]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right)
\end{aligned}
$$

ACCESS TO TRANSVERSITY PDF From DiFF

M. Radici, et al: PRD 65, 07403 I (2002).

- In two hadron production from polarized target the cross section factorizes collinearly - no TMD!
- Allows clean access to transversity.
- Unpolarized and Interference

Dihadron FFs are needed!

$$
\frac{d \sigma^{\uparrow}-d \sigma^{\downarrow}}{d \sigma^{\uparrow}+d \sigma^{\downarrow}} \propto \sin \left(\phi_{R}+\phi_{S}\right) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) / x H_{1}^{\varangle q}\left(z, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) / x D_{1}^{q}\left(z, M_{h}^{2}\right)}
$$

- Empirical Model for D_{1}^{q} has been fitted to PYTHIA simulations.
A. Bacchetta and M. Radici, PRD 74, I I 4007 (2006).

Experiments:

BELLE, HERMES, COMPASS.

Moments of DiFFs in SIDIS

A. Bacchetta, M. Radici: PRD 69, 074026 (2004).

- Here transversely polarised DiFFs are admixture of cos Fourier moments of both unintegrated DiFFs:

$$
\begin{aligned}
& H_{1, S I D I S}^{\varangle}\left(z, M_{H}^{2}\right)=\left[H_{1}^{\varangle[0]}+H_{1}^{\perp[1]}\right] \\
& H_{1, S I D I S}^{\perp}\left(z, M_{H}^{2}\right)=\left[H_{1}^{\perp[0]}+H_{1}^{\varangle[1]}\right]
\end{aligned}
$$

- Generated by $\cos \left(\varphi_{R K}\right)$ dependences of unintegrated DiFFs:

$$
\begin{aligned}
\varphi_{R K} \equiv \varphi_{R} & -\varphi_{k} \\
d \sigma_{U T} & \sim \sin \left(\varphi_{R}+\varphi_{S}\right) \mathcal{C}\left[h_{1}^{\perp} H^{\varangle}\left(\cos \left(\varphi_{R K}\right)\right)\right] \\
& +\sin \left(\varphi_{k}+\varphi_{S}\right) \mathcal{C}\left[h_{1}^{\perp} H^{\perp}\left(\cos \left(\varphi_{R K}\right)\right)\right]+. .
\end{aligned}
$$

Back-to-back two hadron pairs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

$d \sigma\left(e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X\right)$
$\overline{d \boldsymbol{q}_{T} d z d \xi d M_{h}^{2} d \phi_{R} d \bar{z} d \bar{\xi} d \bar{M}_{h}^{2} d \phi_{\bar{R}} d y d \phi^{l}}$

$$
\begin{aligned}
= & \sum_{a, \bar{a}} e_{a}^{2} \frac{6 \alpha^{2}}{Q^{2}} z^{2} \bar{z}^{2}\left\{A(y) \mathcal{F}\left[D_{1}^{a} \bar{D}_{1}^{a}\right]+\cos \left(2 \phi_{1}\right) B(y) \mathcal{F}\left[\left(2 \hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T}-\boldsymbol{k}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right) \frac{H_{1}^{\perp a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]\right. \\
& -\sin \left(2 \phi_{1}\right) B(y) \mathcal{F}\left[\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T}+\hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T}\right) \frac{H_{1}^{\perp a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+\cos \left(\phi_{R}+\phi_{\bar{R}}-2 \phi^{l}\right) \\
& \times B(y)\left|\boldsymbol{R}_{T}\right|\left|\overline{\boldsymbol{R}}_{T}\right| \mathcal{F}\left[\frac{H_{1}^{\Varangle a} \bar{H}_{1}^{\Varangle a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+\cos \left(\phi_{1}+\phi_{R}-\phi^{l}\right) B(y)\left|\boldsymbol{R}_{T}\right| \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \frac{H_{1}^{\Varangle a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]
\end{aligned}
$$

$$
-\sin \left(\phi_{1}+\phi_{R}-\phi^{l}\right) B(y)\left|\boldsymbol{R}_{T}\right| \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T} \frac{H_{1}^{\Varangle a} \bar{H}_{1}^{\perp a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+\cos \left(\phi_{1}+\phi_{\bar{R}}-\phi^{l}\right) B(y)\left|\overline{\boldsymbol{R}}_{T}\right|
$$

$$
\times \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \frac{H_{1}^{\perp a} \bar{H}_{1}^{\Varangle a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]-\sin \left(\phi_{1}+\phi_{\bar{R}}-\phi^{l}\right) B(y)\left|\overline{\boldsymbol{R}}_{T}\right| \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T} \frac{H_{1}^{\perp a} \bar{H}_{1}^{\Varangle a}}{\left(M_{1}+M_{2}\right)\left(\bar{M}_{1}+\bar{M}_{2}\right)}\right]+A(y)\left|\boldsymbol{R}_{T}\right|\left|\overline{\boldsymbol{R}}_{T}\right|
$$

$$
\times\left(\sin \left(\phi_{1}-\phi_{R}+\phi^{l}\right) \sin \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right) \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \bar{G}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]+\sin \left(\phi_{1}-\phi_{R}+\phi^{l}\right) \cos \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right)\right.
$$

$$
\times \mathcal{F}\left[\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \overline{\boldsymbol{G}}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]+\cos \left(\phi_{1}-\phi_{R}+\phi^{l}\right) \sin \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right) \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{h}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \bar{G}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]+\cos \left(\phi_{1}-\phi_{R}+\phi^{l}\right)
$$

$$
\begin{equation*}
\left.\left.\times \cos \left(\phi_{1}-\phi_{\bar{R}}+\phi^{l}\right) \mathcal{F}\left[\hat{\boldsymbol{g}} \cdot \boldsymbol{k}_{T} \hat{\boldsymbol{g}} \cdot \overline{\boldsymbol{k}}_{T} \frac{G_{1}^{\perp a} \bar{G}_{1}^{\perp a}}{M_{1} M_{2} \bar{M}_{1} \bar{M}_{2}}\right]\right)\right\} \tag{19}
\end{equation*}
$$

- Can access both helicity and transverse pol. dependent DiFFs:

$$
A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)} \sim \frac{H_{1}^{\varangle}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

$$
A^{\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)} \sim \frac{G_{1}^{\perp}\left(z, M_{h}^{2}\right) \bar{G}_{1}^{\perp}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

Moments of DiFFs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

- Entering the integrated cross-section expressions.

$\cos \left(\varphi_{R}-\varphi_{k}\right)$ moment

$$
G_{1}^{\perp}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T}\left(\boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

-Differ from SIDIS ! Might affect combined analysis.

$$
\begin{aligned}
& H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T}\left|\boldsymbol{R}_{T}\right| H_{1}^{\varangle}\left(z_{h}, \xi, k_{T}^{2}, R_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=H_{1}^{\varangle,[0]} \\
& H_{1, e^{+} e^{-}}^{\perp}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T}\left|\boldsymbol{k}_{T}\right| H_{1}^{\perp}\left(z_{h}, \xi, k_{T}^{2}, R_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& H_{1, e^{+} e^{-}}^{\perp}\left(z, M_{h}^{2}\right)=H_{1}^{\perp,[0]}
\end{aligned}
$$

Helicity DiFFs in SIDIS

- SIDIS extraction in COMPASS

$$
\begin{aligned}
d \sigma_{U L} \sim & -A(y) \mathcal{G}\left[\frac{k_{T} R_{T} \sin \left(\varphi_{k}-\varphi_{R}\right)}{M_{h}^{2}} g_{1 L}^{a} G_{1}^{\perp a}\right] \\
& +B(y) \mathcal{G}\left[\frac{p_{T} k_{T} \sin \left(\varphi_{p}+\varphi_{k}\right)}{M M_{h}} h_{1 L}^{\perp a} H_{1}^{\perp a}\right] \\
& +B(y) \mathcal{G}\left[\frac{p_{T} R_{T} \sin \left(\varphi_{p}+\varphi_{R}\right)}{M M_{h}} h_{1 L}^{\perp a} H_{1}^{\varangle a}\right]
\end{aligned}
$$

$$
\mathcal{G}\left[w f^{q} D^{q}\right] \equiv \int d^{2} \boldsymbol{p}_{T} \int d^{2} \boldsymbol{k}_{T} \delta^{2}\left(\boldsymbol{k}_{T}-\boldsymbol{p}_{T}+\frac{\boldsymbol{P}_{h \perp}}{z}\right)
$$

$$
\times w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right) f^{q}\left(x, \boldsymbol{p}_{T}^{2}\right) D^{q}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

$\downarrow A^{\sin \left(n\left(\varphi_{h}-\varphi_{R}\right)\right)}$ are convolutions of $g_{1 L}$ and G_{1}^{\perp} !

Back-to-back two hadron pairs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

- Can access both helicity and transverse pol. dependent DiFFs:

$$
A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)} \sim \frac{H_{1}^{\varangle}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

$$
A^{\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)} \sim \frac{G_{1}^{\perp}\left(z, M_{h}^{2}\right) \bar{G}_{1}^{\perp}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

\checkmark BELLE results.

Phys.Rev.Lett. I 07 (201 I) 072004

PoS DIS2015 (2015) 216

Back-to-back two hadron pairs in $\mathrm{e}^{+} \mathrm{e}^{-}$

D. Boer et al: PRD 67, 094003 (2003).

- Can access both helicity and transverse pol. dependent DiFFs:

$$
A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)} \sim \frac{H_{1}^{\varangle}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

$$
A^{\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)} \sim \frac{G_{1}^{\perp}\left(z, M_{h}^{2}\right) \bar{G}_{1}^{\perp}\left(\bar{z}, M_{\bar{h}}^{2}\right)}{D_{1}\left(z, M_{h}^{2}\right) \bar{D}_{1}\left(\bar{z}, M_{\bar{h}}^{2}\right)}
$$

\downarrow BELLE results.

Phys.Rev.Lett. I 07 (201I) 072004

PoS DIS2015 (2015) 216

Re-derived $\mathrm{e}^{+} \mathrm{e}^{-}$Cross Section

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

- An error in kinematics was found:

published today!

- The new fully differential cross-section expression:

$$
\begin{aligned}
& \frac{d \sigma\left(e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X\right)}{d^{2} \boldsymbol{q}_{T} d z d \xi d \varphi_{R} d M_{h}^{2} d \bar{z} d \bar{\xi}^{d} d \varphi_{\bar{R}} d \bar{M}_{h}^{2} d y}=\frac{3 \alpha^{2}}{\pi Q^{2}} z^{2} \bar{z}^{2} \sum_{a, \bar{a}} e_{a}^{2}\left\{A(y) \mathcal{F}\left[D_{1}^{a} \bar{D}_{1}^{\bar{a}}\right]\right. \\
& \quad+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{k}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{k}+\varphi_{\bar{k}}\right) H_{1}^{\perp a} \bar{H}_{1}^{\perp \bar{a}}\right]+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{R}+\varphi_{\bar{R}}\right) H_{1}^{\varangle a} \bar{H}_{1}^{\varangle \bar{a}}\right] \\
& \quad+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{k}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{k}+\varphi_{\bar{R}}\right) H_{1}^{\perp a} \bar{H}_{1}^{\varangle \bar{a}}\right]+B(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|}{M_{h}} \frac{\left|\overline{\boldsymbol{k}}_{T}\right|}{\bar{M}_{h}} \cos \left(\varphi_{R}+\varphi_{\bar{k}}\right) H_{1}^{\varangle a} \bar{H}_{1}^{\perp \bar{a}}\right] \\
& \left.\quad-A(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|\left|\boldsymbol{k}_{T}\right|}{M_{h}^{2}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|\left|\overline{\boldsymbol{k}}_{T}\right|}{\bar{M}_{h}^{2}} \sin \left(\varphi_{k}-\varphi_{R}\right) \sin \left(\varphi_{\bar{k}}-\varphi_{\bar{R}}\right) G_{1}^{\perp a} \bar{G}_{1}^{\perp \bar{a}}\right]\right\} .
\end{aligned}
$$

Re-derived $\mathrm{e}^{+} \mathrm{e}^{-}$Cross Section

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

- An error in kinematics was found:

published today!

- The new fully differential cross-section expression:

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow\left(h_{1} h_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right) X\right)}{d^{2} \boldsymbol{q}_{T} d z d \xi d \varphi_{R} d M_{h}^{2} d \bar{z} d \bar{\xi} d \varphi_{\bar{R}} d \bar{M}_{h}^{2} d y}=\frac{3 \alpha^{2}}{\pi Q^{2}} z^{2} \bar{z}^{2} \sum_{a, \bar{a}} e_{a}^{2}\left\{A(y) \mathcal{F}\left[D_{1}^{a} \bar{D}_{1}^{\bar{a}}\right]\right.
$$

$$
\mathcal{F}\left[w D^{a} \bar{D}^{\bar{a}}\right]=\int d^{2} \boldsymbol{k}_{T} d^{2} \overline{\boldsymbol{k}}_{T} \delta^{2}\left(\boldsymbol{k}_{T}+\overline{\boldsymbol{k}}_{T}-\boldsymbol{q}_{T}\right) w\left(\boldsymbol{k}_{T}, \overline{\boldsymbol{k}}_{T}, \boldsymbol{R}_{T}, \overline{\boldsymbol{R}}_{T}\right) D^{a} D^{\bar{a}}
$$

$$
\left.-A(y) \mathcal{F}\left[\frac{\left|\boldsymbol{R}_{T}\right|\left|\boldsymbol{k}_{T}\right|}{M_{h}^{2}} \frac{\left|\overline{\boldsymbol{R}}_{T}\right|\left|\overline{\boldsymbol{k}}_{T}\right|}{\bar{M}_{h}^{2}} \sin \left(\varphi_{k}-\varphi_{R}\right) \sin \left(\varphi_{\bar{k}}-\varphi_{\bar{R}}\right) G_{1}^{\perp a} \bar{G}_{1}^{\perp \bar{a}}\right]\right\} .
$$

IFFs in $\mathrm{e}^{+} \mathrm{e}^{-}$and SIDIS.

H.M. , Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

- The asymmetry now involves exactly the same integrated IFF as in SIDIS!

$$
\begin{aligned}
& A^{\cos \left(\varphi_{R}+\varphi_{\bar{R}}\right)}=\frac{1}{2} \frac{B(y)}{A(y)} \frac{\sum_{a, \bar{a}} e_{a}^{2} H_{1}^{\varangle a}\left(z, M_{h}^{2}\right) \bar{H}_{1}^{\varangle \bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{a, \bar{a}}^{2} e_{a}^{2} D_{1}^{a}\left(z, M_{h}^{2}\right) \bar{D}_{1}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)} \\
& D_{1}\left(z, M_{h}^{2}\right) \equiv z^{2} \int d^{2} \boldsymbol{k}_{T} \int d \xi D_{1}^{[0]}\left(z, \xi,\left|\boldsymbol{k}_{T}\right|,\left|\boldsymbol{R}_{T}\right|\right) \\
& H_{1, e^{+} e^{-}}^{\varangle}\left(z, M_{h}^{2}\right)=H_{1}^{\varangle,[0]}+H_{1}^{\perp,[1]} \equiv H_{1, \text { SIDIS }}^{\varangle}\left(z, M_{h}^{2}\right)
\end{aligned}
$$

- All the previous extractions of the transversity are valid !

Helicity-dependent DiFF in $\mathrm{e}^{+} \mathrm{e}^{-}$

H.M. , Kotzinian, Thomas: arXiv:I7I2.06384.

- The relevant terms involving G_{1}^{\perp} :
$d \sigma_{L} \sim \mathcal{F}\left[\frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right)_{3}}{M_{h}^{2}} \frac{\left(\overline{\boldsymbol{R}}_{T} \times \overline{\boldsymbol{k}}_{T}\right)_{3}}{\bar{M}_{h}^{2}} G_{1}^{\perp a}\left(\boldsymbol{R}_{T} \cdot \boldsymbol{k}_{T}\right) \bar{G}_{1}^{\perp \bar{a}}\left(\overline{\boldsymbol{R}}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right)\right]$
- Note: any azimuthal moment involving only $\varphi_{R}, \varphi_{\bar{R}}$ is zero. Break-up the convolution: $\int d^{2} \boldsymbol{q}_{T} \delta^{2}\left(\boldsymbol{k}_{T}+\overline{\boldsymbol{k}}_{T}-\boldsymbol{q}_{T}\right)$ \qquad
Using: $\varphi_{k} \rightarrow \varphi_{k}^{\prime}+\varphi_{R}, \int d^{2} \boldsymbol{k}_{T} \sin \left(\varphi_{k}\right) \cos \left(n \varphi_{k}\right)=0$

$$
\left\langle f\left(\varphi_{R}, \varphi_{\bar{R}}\right)\right\rangle_{L}=0
$$

- The old asymmetry by Boer et. al. exactly vanishes!
- Explains the BELLE results.

$$
A^{\Rightarrow}=\frac{\left\langle\cos \left(2\left(\varphi_{R}-\varphi_{\bar{R}}\right)\right)\right\rangle}{\langle 1\rangle}=0!
$$

New way to access G_{1}^{\perp} DiFF in $\mathrm{e}^{+} \mathrm{e}^{-}$

H.M. , Kotzinian, Thomas: arXiv:I7|2.06384.

- The relevant terms involving G_{1}^{\perp} :
$d \sigma_{L} \sim \mathcal{F}\left[\frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right)_{3}}{M_{h}^{2}} \frac{\left(\overline{\boldsymbol{R}}_{T} \times \overline{\boldsymbol{k}}_{T}\right)_{3}}{\bar{M}_{h}^{2}} G_{1}^{\perp a}\left(\boldsymbol{R}_{T} \cdot \boldsymbol{k}_{T}\right) \bar{G}_{1}^{\perp \bar{a}}\left(\overline{\boldsymbol{R}}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right)\right]$
- Need a q_{T}-weighted asymmetry to get non-zero result

$$
\begin{aligned}
& \left\langle\frac{q_{T}^{2}\left(3 \sin \left(\varphi_{q}-\varphi_{R}\right) \sin \left(\varphi_{q}-\varphi_{\bar{R}}\right)+\cos \left(\varphi_{q}-\varphi_{R}\right) \cos \left(\varphi_{q}-\varphi_{\bar{R}}\right)\right)}{M_{h} \bar{M}_{h}}\right\rangle \\
& =\frac{12 \alpha^{2} A(y)}{\pi Q^{2}} \sum_{a, \bar{a}} e_{a}^{2}\left(G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}\right)\left(\bar{G}_{1}^{\perp \bar{a},[0]}-G_{1}^{\perp \bar{a},[2]}\right),
\end{aligned}
$$

- A new asymmetry to access $G_{1}^{\perp a} \equiv G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}$

$$
A_{e^{+} e^{-}}^{\Rightarrow}\left(z, \bar{z}, M_{h}^{2}, \bar{M}_{h}^{2}\right)=4 \frac{\sum_{a, \bar{a}} G_{1}^{\perp a}\left(z, M_{h}^{2}\right) G_{1}^{\perp \bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{a, \bar{a}} D_{1}^{a}\left(z, M_{h}^{2}\right) D_{1}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

New way to access G_{1}^{\perp} DiFF in $\mathrm{e}^{+} \mathrm{e}^{-}$

H.M. , Kotzinian, Thomas: arXiv:I7|2.06384.

- The relevant terms involving G_{1}^{\perp} :
$d \sigma_{L} \sim \mathcal{F}\left[\frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right)_{3}}{M_{h}^{2}} \frac{\left(\overline{\boldsymbol{R}}_{T} \times \overline{\boldsymbol{k}}_{T}\right)_{3}}{\bar{M}_{h}^{2}} G_{1}^{\perp a}\left(\boldsymbol{R}_{T} \cdot \boldsymbol{k}_{T}\right) \bar{G}_{1}^{\perp \bar{a}}\left(\overline{\boldsymbol{R}}_{T} \cdot \overline{\boldsymbol{k}}_{T}\right)\right]$
- Need a qт-weighted asymmetry to get non-zero result
additional $\sin \left(\varphi_{k}-\varphi_{R}\right)$

$$
\begin{aligned}
& \left\langle\frac{q_{T}^{2}\left(3 \sin \left(\varphi_{q}-\varphi_{R}\right) \sin \left(\varphi_{q}-\varphi_{\bar{R}}\right)+\cos \left(\varphi_{q}-\varphi_{R}\right) \cos \left(\varphi_{q}-\varphi_{\bar{R}}\right)\right)}{M_{h} \bar{M}_{h}}\right\rangle \\
& =\frac{12 \alpha^{2} A(y)}{\pi Q^{2}} \sum_{a, \bar{a}} e_{a}^{2}\left(G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}\right)\left(\bar{G}_{1}^{\perp \bar{a},[0]}-G_{1}^{\perp \bar{a},[2]}\right),
\end{aligned}
$$

- A new asymmetry to access $G_{1}^{\perp a} \equiv G_{1}^{\perp a,[0]}-G_{1}^{\perp a,[2]}$

$$
A_{e^{+} e^{-}}^{\Rightarrow}\left(z, \bar{z}, M_{h}^{2}, \bar{M}_{h}^{2}\right)=4 \frac{\sum_{a, \bar{a}} G_{1}^{\perp a}\left(z, M_{h}^{2}\right) G_{1}^{\perp \bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}{\sum_{a, \bar{a}} D_{1}^{a}\left(z, M_{h}^{2}\right) D_{1}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

New way to access G_{1}^{\perp} DiFF in SIDIS

H.M. , Kotzinian, Thomas: arXiv:I7|2.06384.

- The relevant terms involving G_{1}^{\perp} :

$$
d \sigma_{U L} \sim S_{L} \mathcal{G}\left[\frac{k_{T} R_{T} \sin \left(\varphi_{k}-\varphi_{R}\right)}{M_{h}^{2}} g_{1 L}^{a} G_{1}^{\perp a}\right]
$$

$$
\mathcal{G}\left[w f^{q} D^{q}\right] \equiv \int d^{2} \boldsymbol{p}_{T} \int d^{2} \boldsymbol{k}_{T} \delta^{2}\left(\boldsymbol{k}_{T}-\boldsymbol{p}_{T}+\frac{\boldsymbol{P}_{h \perp}}{z}\right)
$$

$$
\times w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right) f^{q}\left(x, \boldsymbol{p}_{T}^{2}\right) D^{q}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
$$

- Weighted moment accesses same G_{1}^{\perp} as in $\mathrm{e}^{+} \mathrm{e}^{-}$.

$$
\begin{aligned}
& \left\langle\frac{P_{h \perp} \sin \left(\varphi_{h}-\varphi_{R}\right)}{M_{h}}\right\rangle_{U L} \sim S_{L} \sum_{a} e_{a}^{2} g_{1 L}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right) \\
& A_{S I D I S}^{\Rightarrow}\left(x, z, M_{h}^{2}\right)=S_{L} \frac{\sum_{a} g_{1 L}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right)}{\sum_{a} f_{1}^{a}(x) D_{1}^{a}\left(z, M_{h}^{2}\right)}
\end{aligned}
$$

New way to access G_{1}^{\perp} DiFF in SIDIS: II

- The relevant terms involving G_{1}^{\perp} :

Consider a polarized beam.

$$
d \sigma_{L U} \sim \lambda_{e} \mathcal{G}\left[\frac{k_{T} R_{T} \sin \left(\varphi_{k}-\varphi_{R}\right)}{M_{h}^{2}} f_{1}^{a} G_{1}^{\perp a}\right]
$$

- Weighted moment accesses same G_{1}^{\perp} as in $\mathrm{e}^{+} \mathrm{e}^{-}$.

$$
\left\langle\frac{P_{h \perp} \sin \left(\varphi_{h}-\varphi_{R}\right)}{M_{h}}\right\rangle_{L U} \sim \lambda_{e} \sum_{a} e_{a}^{2} f_{1}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right)
$$

$$
A_{S I D I S}^{\overleftrightarrow{s}}\left(x, z, M_{h}^{2}\right) \sim \lambda_{e} \frac{C^{\prime}(y)}{A^{\prime}(y)} \frac{\sum_{a} f_{1}^{a}(x) z G_{1}^{\perp a}\left(z, M_{h}^{2}\right)}{\sum_{a} f_{1}^{a}(x) D_{1}^{a}\left(z, M_{h}^{2}\right)}
$$

CONCLUSIONS I

- DiFFs provide information on the polarization of the fragmenting quark.
* Two problems appeared recently:
- Inconsistency of IFF definitions in SIDIS and $\mathbf{e}^{+} \mathbf{e}^{-}$asymmetries.
- No signal for the helicity-dependent DiFF from BELLE.
* Re-derived cross section for $\mathrm{e}^{+} \mathrm{e}^{-}$resolved both issues.
* New asymmetries to measure G_{1}^{\perp} in SIDIS and $\mathbf{e}^{+} \mathbf{e}^{-}$.

PART II

Dihadron Correlations In Polarized Quark Hadronization:

The Quark-jet Framework

Phys. Rev. D96 0740I0, (20I7); Phys. Rev. D97, 0 I 4019 (20I8).

Current Challenges

I) Phenomenological Extractions of DiFFs.

- Unpolarised DiFFs from PYTHIA
- Still Large Uncertainties.
- Simplistic Approximations.
- Limited kinematic region.

2) Full Event Generators:

- No Mainstream MC generator includes spin in Full Hadronization yet: PYTHIA, HERWIG, SHERPA...
- MC generators are needed to support mapping of the 3D structure of nucleon at JLabl2, BELLE II, EIC.

The Quark-jet Framework

THE QUARK JET MODEL

Field, Feynman: Nucl.Phys.BI36:I, I 978.

Assumptions:

- Number Density interpretation
- No re-absorption

- ∞ hadron emissions

$$
\begin{aligned}
D_{q}^{h}(z)= & \hat{d}_{q}^{h}(z)+\int_{z}^{1} \hat{d}_{q}^{Q}(y) d y \cdot D_{Q}^{h}\left(\frac{z}{y}\right) \frac{1}{y} \\
& \hat{d}_{q}^{h}(z)=\left.\hat{d}_{q}^{Q^{\prime}}(1-z)\right|_{h=\bar{Q}^{\prime} q}
\end{aligned}
$$

THE QUARK JET MODEL

Field, Feynman: Nucl.Phys.BI36:I, I978.

Assumptions:

- Number Density interpretation
- No re-absorption

- $\quad \infty$ hadron emissions

Probability of finding hadron h with mom. frac. $[z, z+d z]$ in a jet of quark q

The probability scales with mom. fraction

$$
D_{q}^{h}(z) d z=\hat{d}_{q}^{h}(z) d z+\int_{z}^{1} \hat{d}_{q}^{Q}(y) d y \cdot D_{Q}^{h}\left(\frac{z}{y}\right) \frac{d z}{y}
$$

Prob. of emitting at step I
Prob. of mom. $[y, y+d y]$ is transferred to jet at step I.

INCLUDING THE TRANSVERSE MOMENTUM

H.M., Bentz, Cloet, Thomas, PRD.85:01402I, 2012

- Conserve transverse momenta at each link.

$$
\begin{aligned}
& \mathbf{P}_{\perp}=\mathbf{p}_{\perp}+z \mathbf{k}_{\perp} \\
& \mathbf{k}_{\perp}=\mathbf{P}_{\perp}+\mathbf{k}_{\perp}^{\prime}
\end{aligned}
$$

- Calculate the Number Density

$$
D_{q}^{h}\left(z, P_{\perp}^{2}\right) \Delta z \pi \Delta P_{\perp}^{2}=\frac{\sum_{N_{\text {Sims }}} N_{q}^{h}\left(z, z+\Delta z, P_{\perp}^{2}, P_{\perp}^{2}+\Delta P_{\perp}^{2}\right)}{N_{\text {Sims }}} .
$$

POLARIZATION IN QUARK-JET FRAMEWORK

H.M.,Bentz, Thomas, PRD.86:034025, (2012). H.M., Kotzinian, Thomas, PLB73I 208-2 16 (2014).

- Extend Quark-jet Model to include Spin.

$$
D_{h / q^{\uparrow}}\left(z, P_{\perp}^{2}, \varphi\right) \Delta z \frac{\Delta P_{\perp}^{2}}{2} \Delta \varphi=\left\langle N_{q^{\uparrow}}^{h}\left(z, z+\Delta z ; P_{\perp}^{2}, P_{\perp}^{2}+\Delta P^{2} ; \varphi, \varphi+\Delta \varphi\right)\right\rangle
$$

- Input Elementary Collins Function: Model or Parametrization
- Calc. Spin of the remnant quark: S^{\prime} Previously: constant values for spin flip probability: $\mathcal{P}_{S F}$

\checkmark Use fit form to extract unpol. and Collins FFs from $D_{h / q^{\uparrow}}$.

$$
\begin{gathered}
F\left(c_{0}, c_{1}\right) \equiv c_{0}-c_{1} \sin \left(\varphi_{C}\right) \\
D_{h / q^{\uparrow}}\left(z, p_{\perp}^{2}, \varphi\right)=D^{h / q}\left(z, p_{\perp}^{2}\right)-H^{\perp h / q}\left(z, p_{\perp}^{2}\right) \frac{p_{\perp} s_{T}}{z m_{h}} \sin \left(\varphi_{C}\right)
\end{gathered}
$$

SPIN TRANSFER

Bentz, Kotzinian, H.M, Ninomiya, Thomas, Yazaki: Phys.Rev. D94 034004 (2016).

-NJL-jet MKIII:

- The probability for the process $q \rightarrow Q$, initial spin s to S

$$
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right)=\alpha_{\mathbf{s}}+\boldsymbol{\beta}_{\mathbf{s}} \cdot \mathbf{S}
$$

- Intermediate quarks in quark-jet are unobserved!

Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii: QUANTUM ELECTRODYNAMICS (1982).

$$
\begin{aligned}
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right) & \sim \operatorname{Tr}\left[\rho^{\mathbf{S}^{\prime}} \rho^{\mathbf{S}}\right] \sim 1+\mathbf{S}^{\prime} \cdot \mathbf{S} \\
\mathbf{S}^{\prime}=\frac{\boldsymbol{\beta}_{\mathbf{s}}}{\alpha_{\mathbf{s}}} &
\end{aligned}
$$

- Remnant quark's \mathbf{S}^{\prime} uniquely determined by z, \mathbf{p}_{\perp} and s !
- Process probability is the same as transition to unpolarized state.

$$
F^{q \rightarrow Q}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{0}\right)=\alpha_{s}
$$

REMNANT QUARK'S POLARISATION

\downarrow We can express the spin of the remnant quark $\mathrm{S}^{\prime}=\frac{\beta_{\mathrm{s}}}{\alpha_{\mathrm{s}}}$ in terms of quark-to-quark TMD FFs.

$$
\begin{aligned}
& \alpha_{q} \equiv D\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\left(\boldsymbol{p}_{\perp} \times \boldsymbol{s}_{T}\right) \cdot \hat{z} \frac{1}{z \mathcal{M}} H^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
& \frac{\beta_{q \|} \equiv}{} s_{L} G_{L}\left(z, \boldsymbol{p}_{\perp}^{2}\right)-\left(\boldsymbol{p}_{\perp} \cdot s_{T}\right) \frac{1}{z \mathcal{M}} H_{L}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
& \boldsymbol{\beta}_{q \perp} \equiv \boldsymbol{p}_{\perp}^{\prime} \frac{1}{z \mathcal{M}} D_{T}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right)-\boldsymbol{p}_{\perp} \frac{1}{z \mathcal{M}} s_{L} G_{T}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \\
&+\boldsymbol{s}_{T} H_{T}\left(z, \boldsymbol{p}_{\perp}^{2}\right)+\boldsymbol{p}_{\perp}\left(\boldsymbol{p}_{\perp} \cdot s_{T}\right) \frac{1}{z^{2} \mathcal{M}^{2}} H_{T}^{\perp}\left(z, \boldsymbol{p}_{\perp}^{2}\right)
\end{aligned}
$$

$$
F^{q \rightarrow Q}\left(z, \boldsymbol{p}_{\perp} ; \boldsymbol{s}, \boldsymbol{S}\right)
$$

Q / q	U	L	T
U	D_{1}		H_{1}^{\perp}
L		$G_{1 L}$	$H_{1 L}^{\perp}$
T	$D_{1 T}^{\perp}$	$G_{1 T}$	$H_{1 T} H_{1 T}^{\perp}$

MC SIMULATION OF FULL HADRONIZATION

H.M., Kotzinian, Thomas: Phys. Rev. D95 0402I, (2017)
\downarrow We can consider many hadron emissions.

- We can sample the $h, z, p_{\perp}^{2}, \varphi_{h}$ using

$$
f^{q \rightarrow h}\left(z, p_{\perp}^{2}, \varphi_{h} ; \mathbf{S}_{T}\right)
$$

\checkmark Determine the momenta in the initial frame and calculate

$$
\Delta N=\left\langle N_{q}^{h_{1} h_{2}}(z, z+\Delta z, \varphi, \varphi+\Delta \varphi, \ldots)\right\rangle
$$

\uparrow Calculate the remnant quark's spin: $\mathbf{S}^{\prime}=\frac{\boldsymbol{\beta}_{\mathbf{s}}}{\alpha_{\mathrm{s}}}$
\uparrow We only need the "elementary" splittings.

$$
f^{q \rightarrow h} \quad f^{q \rightarrow Q}
$$

ELEMENTARY SPLITTINGS

H.M., Thomas, Bentz: PRD. 83:07400; PRD.83:II40I0, 20 II.

- Quark-quark correlator:
$\Delta_{i j}\left(z, p_{\perp}\right)=\frac{1}{2 N_{c} z} \sum_{X} \int \frac{d \xi^{+} d^{2} \xi_{\perp}}{(2 \pi)^{3}} e^{i p \cdot \xi} \times\left.\langle 0| \mathcal{U}_{(\infty, \xi)} \psi_{i}(\xi)|h, X\rangle_{\text {out out }}\langle h, X| \bar{\psi}_{j}(0) \mathcal{U}_{(0, \infty)}|0\rangle\right|_{\xi^{-}=0}$
- One-quark truncation of the wavefunction: $q \rightarrow Q h$

$$
d_{q}^{h}\left(z, p_{\perp}^{2}\right)=\frac{1}{2} \operatorname{Tr}\left[\Delta_{0}\left(z, p_{\perp}^{2}\right) \gamma^{+}\right]
$$

- Use Nambu--Jona-Lasinio (NJL) Effective quark model:

$$
\mathcal{L}_{N J L}=\bar{\psi}_{q}\left(i \not \partial-m_{q}\right) \psi_{q}+G\left(\bar{\psi}_{q} \Gamma \psi_{q}\right)^{2}
$$

TWO HADRON CORRELATIONS:
DIHADRON FRAGMENTATION FUNCTIONS

Number Densities

- The full number density:

$$
\begin{aligned}
& F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; \boldsymbol{s}\right)=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& +s_{L} \frac{\left(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}\right) \cdot \hat{\boldsymbol{z}}}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& \quad+\frac{\left(\boldsymbol{s}_{T} \times \boldsymbol{R}_{T}\right) \cdot \hat{\boldsymbol{z}}}{M_{h}} H_{1}^{\varangle}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right) \\
& \quad+\frac{\left(\boldsymbol{s}_{T} \times \boldsymbol{k}_{T}\right) \cdot \hat{\boldsymbol{z}}}{M_{h}} H_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T}\right)
\end{aligned}
$$

- The differential number of hadron pairs:

$$
d N_{q}^{h_{1} h_{2}}=F_{q}^{h_{1} h_{2}}\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; \boldsymbol{s}\right) d z d \xi d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{R}_{T}
$$

UNPOLARIZED DIHADRON FRAGMENTATIONS

H.M. , Thomas, Bentz: PRD.88:094022, (2013)

- The probability density for observing two hadrons:

$$
\begin{aligned}
& P_{1}=\left(z_{1} k^{-}, P_{1}^{+}, \boldsymbol{P}_{1, \perp}\right), P_{1}^{2}=M_{h 1}^{2} \\
& P_{2}=\left(z_{2} k^{-}, P_{2}^{+}, \boldsymbol{P}_{2, \perp}\right), P_{2}^{2}=M_{h 2}^{2}
\end{aligned}
$$

- The corresponding number density:

$$
\frac{\left(D_{q}^{h_{1} h_{2}}\left(z, M_{h}^{2}\right) \Delta z \Delta M_{h}^{2}=\left\langle N_{q}^{h_{1} h_{2}}\left(z, z+\Delta z ; M_{h}^{2}, M_{h}^{2}+\Delta M_{h}^{2}\right)\right\rangle\right.}{z=z_{1}+z_{2} \quad M_{h}^{2}=\left(P_{1}+P_{2}\right)^{2}}
$$

- Kinematic Constraint.

$$
\left(z_{1} z_{2} M_{h}^{2}-\left(z_{1}+z_{2}\right)\left(z_{2} M_{h 1}^{2}+z_{1} M_{h 2}^{2}\right) \geq 0\right.
$$

- In MC simulations record all the pairs in every decay chain.

Effect of VMs on Unpol. DiFFs

Effect of VMs on Unpol. DiFFs

Longitudinal Polarisation in DiHadron FFs

DIFFS FROM THE NUMBER DENSITY

H.M., Kotzinian, Thomas: Phys. Rev. D96 0740 I0, (20I7)
\downarrow Can only calculate number density form MC simulations.
\downarrow Extract DiFFs from specific angular modulations.

$$
\begin{aligned}
& F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right)=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{R K}\right)\right) \\
& -s_{L} \frac{R_{T} k_{T} \sin \left(\varphi_{R K}\right)}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{R K}\right)\right)
\end{aligned}
$$

\uparrow Unpolarized DiFF: straight forward integration of number density.

$$
D_{1}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T} F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right)
$$

- Need $\cot \left(\varphi_{R K}\right)$ to extract helicity dependent DiFF!

$$
\begin{gathered}
\tilde{G}_{1}^{\perp,[n]}\left(z, M_{h}^{2}\right)=\int d \xi \int d^{2} \boldsymbol{k}_{T} \frac{R_{T} k_{T}}{M_{h}^{2}} G_{1}^{\perp,[n]}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}\right) \\
\tilde{G}_{1}^{\perp,[n]}\left(z, M_{h}^{2}\right)=-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{k}_{T} \int d \varphi_{R} \frac{\cos \left(n \varphi_{R K}\right)}{\sin \left(\varphi_{R K}\right)} F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right)
\end{gathered}
$$

$$
\tilde{G}_{1}^{\perp} \equiv \tilde{G}_{1}^{\perp,[1]}=-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{k}_{T} \int d \varphi_{R} \cot \left(\varphi_{R K}\right) F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right)
$$

DIFFS FROM THE NUMBER DENSITY

H.M., Kotzinian, Thomas: Phys. Rev. D96 0740 I0, (20I7)
\downarrow Can only calculate number density form MC simulations.
\downarrow Extract DiFFs from specific angular modulations.

$$
\begin{aligned}
& F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right)=D_{1}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{R K}\right)\right) \\
& -s_{L} \frac{R_{T} k_{T} \sin \left(\varphi_{R K}\right)}{M_{h}^{2}} G_{1}^{\perp}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \cos \left(\varphi_{R K}\right)\right)
\end{aligned}
$$

\uparrow Unpolarized DiFF: straight forward integration of number density.

$$
D_{1}\left(z, M_{h}^{2}\right)=\int d \xi \int d \varphi_{R} \int d^{2} \boldsymbol{k}_{T} F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right)
$$

\downarrow Need $\cot \left(\varphi_{R K}\right)$ to extract helicity dependent DiFF!

$$
\tilde{G}_{1}^{\perp[n]}\left(z, M_{h}^{2}\right)=\int d \xi \int d^{2} \boldsymbol{k}_{T} \frac{R_{T} k_{T}}{M_{h}^{2}} G_{1}^{\perp,[n]}\left(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}\right)
$$

$$
\tilde{G}_{1}^{\perp,[n]}\left(z, M_{h}^{2}\right)=-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{k}_{T} \int d \varphi_{R} \frac{\cos \left(n \varphi_{R K}\right)}{\sin \left(\varphi_{R K}\right)} F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right)
$$

$$
\begin{aligned}
& \text { Note here we use the definition by Boer et all } \\
& \tilde{G}_{1}^{\perp} \equiv \tilde{G}_{1}^{\perp}[\text { [l] }
\end{aligned}=-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{k}_{T} \int d \varphi_{R} \cot \left(\varphi_{R K}\right) F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}\right)
$$

The Total Number of Pion Pairs

\uparrow Validate MC by analytically calculating the total number of pion pairs produced for given N_{L}.

$$
\overbrace{\pi^{+}, \pi^{-}, \pi^{+}, \ldots, \pi^{0}, \pi^{0}, \pi^{0}}^{N_{L}-n_{0}})
$$

$$
\mathcal{N}^{\left(\pi^{+} \pi^{-}\right)}\left(N_{L}\right)=\sum_{n_{0}=0}^{n_{0}=N_{L}} C_{N_{L}}^{n_{0}}\left(\frac{2}{3}\right)^{N_{L}-n_{0}}\left(\frac{1}{3}\right)^{n_{0}} U\left(\frac{N_{L}-n_{0}}{2}\right) D\left(\frac{N_{L}-n_{0}}{2}\right) .
$$

- Extraction from DiFFs.

$$
\mathcal{N}_{M C}^{\left(\pi^{+} \pi^{-}\right)}\left(N_{L}\right)=\int_{0}^{1} d z D_{1,\left[N_{L}\right]}^{u \pi^{+}} \pi^{-}(z)
$$

\checkmark MC simulations and Integral Expressions agree very well!
\checkmark z cuts allow fast convergence with N_{L}.

N_{L}	$\mathcal{N}^{\left(\pi^{+} \pi^{-}\right)}$	$\mathcal{N}_{N}^{\left(\pi^{+} \pi^{-}\right)}$	$\mathcal{N}_{M C}^{\left(\pi^{+} \pi^{-}\right)}$	$\mathcal{N}_{M C, z_{\text {min }}}^{\left(\pi^{+} \pi^{-}\right)}$
2	$\frac{4}{9}$	0.44444	0.4444	0.350175
3	$\frac{28}{27}$	1.03704	1.03694	0.683999
4	$\frac{152}{81}$	1.87654	1.87641	0.959588
5	$\frac{712}{243}$	2.93004	2.92992	1.11531
6	$\frac{3068}{729}$	4.2085	4.20882	1.18162
7	$\frac{12484}{2187}$	5.70828	5.70867	1.20282
8	$\frac{48752}{6561}$	7.43057	7.43047	1.20809

LONGITUDINAL POLARISATION

\downarrow DiFF for longitudinally polarized quark: $s_{L}\left(\boldsymbol{k}_{T} \times \boldsymbol{R}_{T}\right) \cdot \hat{z}$

$$
\tilde{G}_{1}^{\perp}(z)=-\frac{1}{s_{L}} \int d \xi \int d^{2} \boldsymbol{R}_{T} \int d^{2} \boldsymbol{k}_{T} \cot \left(\varphi_{R K}\right) F\left(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T} ; s_{L}\right) .
$$

\downarrow The extraction method works: the angular dependence for $\mathrm{N}_{\mathrm{L}}=2$.

VALIDATION: 2 PRODUCED HADRONS

\uparrow Validate MC simulations by comparing to explicit Integral Expressions (IE). Only pions produced in the first two steps!

$$
F_{q \rightarrow h_{1} h_{2}}^{(2)}=\sum_{q_{1}} \hat{f}^{q \rightarrow q_{1}+h_{1}} \otimes \hat{f}^{q_{1} \rightarrow h_{2}}
$$

$$
D_{1}^{(2)}(z)=\hat{D}^{q \rightarrow q_{1}} \otimes \hat{D}^{q_{1} \rightarrow h}
$$

$$
\tilde{G}_{1}^{\perp(2)}=\hat{G}_{T}^{q \rightarrow q_{1}}
$$

$$
\otimes \hat{H}^{\perp\left(q_{1} \rightarrow h\right)}
$$

\checkmark Collins effect generates helicity dep. two-hadron correlation!

Results for G_{1}^{\perp}

\downarrow Results for helicity DiFFs, several moments, various pairs. Cuts: $z_{1,2} \geq 0.1$

\star Non-zero signal for various channels, sign change for $\pi^{+} \pi^{+}$pairs!
$\uparrow z_{1,2} \geq 0.1$ cut enhances the analysing power at high-z for larger \mathbf{N}_{L} !

Transverse Polarisation in DiHadron FFs

TRANSVERSELY POL. DIFFS FROM NUMBER DENSITY

H.M., Kotzinian, Thomas, Phys. Rev. D 97, 0|40I9 (20|8).

- Slightly more complicated procedure:

$$
\begin{aligned}
F\left(\varphi_{R}, \varphi_{k} ; s_{T}\right)= & D_{1}\left(\cos \left(\varphi_{R K}\right)\right) \\
& +a_{R} \sin \left(\varphi_{R}-\varphi_{s}\right) H_{1}^{\triangleleft}\left(\cos \left(\varphi_{R K}\right)\right) \\
& +a_{K} \sin \left(\varphi_{k}-\varphi_{s}\right) H_{1}^{\perp}\left(\cos \left(\varphi_{R K}\right)\right)
\end{aligned}
$$

\downarrow n-th moment of DiFFs:

$$
\begin{aligned}
& H_{1}^{\varangle,[n]}=\frac{2}{s_{T}}\left\langle\cos \left(\varphi_{k}-\varphi_{s}\right) \frac{\cos \left(n \cdot \varphi_{R K}\right)}{\sin \left(\varphi_{R K}\right)} F\right\rangle \\
& H_{1}^{\perp,[n]}=-\frac{2}{s_{T}}\left\langle\cos \left(\varphi_{R}-\varphi_{s}\right) \frac{\cos \left(n \cdot \varphi_{R K}\right)}{\sin \left(\varphi_{R K}\right)} F\right\rangle
\end{aligned}
$$

- SIDIS DiFFs:

$$
\begin{aligned}
& H_{1}^{\varangle, S I D I S}(z)=\frac{2}{s_{T}}\left\langle\sin \left(\varphi_{R}-\varphi_{s}\right) F\right\rangle \\
& H_{1}^{\perp, S I D I S}(z)=\frac{2}{s_{T}}\left\langle\sin \left(\varphi_{k}-\varphi_{s}\right) F\right\rangle
\end{aligned}
$$

VALIDATION: 2 PRODUCED HADRONS

\uparrow Validate MC simulations by comparing to explicit Integral Expressions (IE). Only pions produced in the first two steps!

$$
F_{q \rightarrow h_{1} h_{2}}^{(2)}=\sum_{q_{1}} \hat{f} q \rightarrow q_{1}+h_{1} \otimes \hat{f}^{q_{1} \rightarrow h_{2}}
$$

\checkmark Collins effect generates S_{T} dep. DiFF correlations as well!

Analysing Power for Transverse Spin

\uparrow Comparing the analysing powers for all polarized DiFFs.

\uparrow Alternate signs for the two DiFFs.
\checkmark Significant differences between SIDIS and 0-th moments!
\checkmark Signals for all possible hadron pairs.

Feasibility of new measurements of G_{1}^{\perp}

\uparrow The analysing powers of DiFFs from quark-jet framework.

- G_{1}^{\perp} naturally smaller than H_{1}^{\varangle}, but should be measurable!

\uparrow Reanalyze BELLE and COMPASS data.
\uparrow Measure it at BELLE II and JLab I 2 GeV .

CONCLUSIONS II

* Hadronization Models are needed to calculate polarised TMD FFs and DiFFs, and study various correlations between them.
* Polarised hadronisation in MC generators: support for future experiments to map the 3D structure of nucleon (COMPASS, JLabl2, BELLE II, EIC).
* The quark-jet framework describes hadronization of a quark with arbitrary polarization via spin density matrix formalism.
* All 3 DiHadron spin correlations from single-hadron effects in quark-jet!
* Naturally small, but measurable signal for helicity-dependent DiFFs.

Measurements in $\mathbf{e}^{+} \mathbf{e}^{-}$(BELLE) and SIDIS (JLab, COMPASS) would test the universality of the helicity-dependent DiFFs.

Thanks!

BACKUP SLIDES

Different Hadronization Mechanisms. LUND Model

- Fragmentation of $q \bar{q}$ pair: breakup of the string.
\uparrow Independent breaking of the string.
\uparrow Quark TM indep. of hadron type.

$$
u \rightarrow u+s \bar{s}, \quad s \rightarrow s+s \bar{s}
$$

+Fragmentation of q, similar to QFT definition of FFs.

- Time-ordered hadron emissions.
$\downarrow q \rightarrow Q h$ depends on h (spin, mass).

$$
\begin{aligned}
& u \rightarrow K^{+}+s, \quad s \rightarrow \phi+s \\
& u \rightarrow K^{*+}+s
\end{aligned}
$$

* No correlation in TM: h_{1} and h_{2}.

+ Recoil TM of h_{1} affects h_{2}

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

Different Hadronization Mechanisms. LUND Model
 Quark-Jet

+Fragmentation of $q \bar{q}$ pair: breakup of the string.
† Independent breaking of the string.

- Quark TM indep. of hadron type.

\uparrow Fragmentation of q, similar to QFT definition of FFs.
- Time-ordered hadron emissions.
$\star q \rightarrow Q h$ depends on h (spin, mass).

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

Different Hadronization Mechanisms. LUND Model

- Fragmentation of $q \bar{q}$ pair: breakup of the string.
\uparrow Independent breaking of the string.
\uparrow Quark TM indep. of hadron type.

$$
u \rightarrow u+s \bar{s}, \quad s \rightarrow s+s \bar{s}
$$

+Fragmentation of q, similar to QFT definition of FFs.

- Time-ordered hadron emissions.
$\downarrow q \rightarrow Q h$ depends on h (spin, mass).

$$
\begin{aligned}
& u \rightarrow K^{+}+s, \quad s \rightarrow \phi+s \\
& u \rightarrow K^{*+}+s
\end{aligned}
$$

* No correlation in TM: h_{1} and h_{2}.

+ Recoil TM of h_{1} affects h_{2}

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

TMD FFs and Collins Fragmentation Function

- Unpolarized TMD FF: number density for quark q to produce unpolarized hadron h carrying LC fraction \mathbf{Z} and $\mathrm{TM} \boldsymbol{P}_{\perp}$.

- Collins Effect: Azimuthal Modulation of Transversely Polarized Quark' FF. Fragmenting quark's transverse spin couples with produced hadron's TM!

$$
D_{h / q^{\uparrow}}\left(z, P_{\perp}^{2}, \varphi\right)=D_{1}^{h / q}\left(z, P_{\perp}^{2}\right)-H_{1}^{\perp h / q}\left(z, P_{\perp}^{2}\right) \frac{P_{\perp} S_{q}}{z m_{h}} \sin (\varphi)
$$

Unpolarized

- Collin FF is Chiral-ODD: Should to be coupled with another chiral-odd PDF/FF in observables.

TMD FFs for Spin-0 and Spin-I/2 Hadrons

* The transverse momentum (TM) of the hadron can couple with both its own spin and the spin of the quark!

$$
F^{q \rightarrow \pi}\left(z, \boldsymbol{p}_{\perp} ; \boldsymbol{s}\right)
$$

π / q	U	L	T
U	D_{1}		H_{1}^{\perp}

$$
F^{q \rightarrow h^{\uparrow}}\left(z, \mathbf{p}_{\perp} ; \mathbf{s}, \mathbf{S}\right)
$$

h / \mathbf{q}	\mathbf{U}	\mathbf{L}	\mathbf{T}
\mathbf{U}	D_{1}		H_{1}^{\perp}
\mathbf{L}		$G_{1 L}$	$H_{1 L}^{\perp}$
\mathbf{T}	$D_{1 T}^{\perp}$	$G_{1 T}$	$H_{1 T} H_{1 T}^{\perp}$

\checkmark TMD Polarized Fragmentation Functions at LO.

- Only two for unpolarised final state hadrons.
- 8 for spin I/2 final state (including quark). Similar to TMD PDFs.

Field-Theoretical Definitions

- The quark-quark correlator.

$$
\begin{aligned}
& \left.\Delta^{[\Gamma]}\left(z, \vec{p}_{T}\right) \equiv \frac{1}{4} \int \frac{d p^{+}}{(2 \pi)^{4}} \operatorname{Tr}[\Delta \Gamma]\right|_{p^{-}=z k^{-}} \\
& \quad=\frac{1}{4 z} \sum_{X} \int \frac{d \xi^{+} d^{2} \vec{\xi}_{T}}{2(2 \pi)^{3}} e^{i\left(p^{-} \xi^{+} / z-\vec{\xi}_{T} \cdot \vec{p}_{T}\right)}\langle 0| \psi\left(\xi^{+}, 0, \vec{\xi}_{T}\right)\left|p, S_{h}, X\right\rangle\left\langle p, S_{h}, X\right| \bar{\psi}(0) \Gamma|0\rangle
\end{aligned}
$$

- The definitions of FFs from the quark correlator

$$
\begin{aligned}
& \Delta^{\left[\gamma^{+}\right]}=D\left(z, p_{\perp}^{2}\right)-\frac{1}{M} \epsilon^{i j} k_{T i} S_{T j} D_{T}^{\perp}\left(z, p_{\perp}^{2}\right) \\
& \Delta^{\left[\gamma^{+} \gamma_{5}\right]}= S_{L} G_{L}\left(z, p_{\perp}^{2}\right)+\frac{\boldsymbol{k}_{T} \cdot S_{T}}{M} G_{T}\left(z, p_{\perp}^{2}\right) \\
& \Delta^{\left[i \sigma^{i+} \gamma_{5}\right]}= S_{T}^{i} H_{T}\left(z, p_{\perp}^{2}\right)+\frac{S_{L}}{M} k_{T}^{i} H_{L}^{\perp}\left(z, p_{\perp}^{2}\right) \\
& \quad+\frac{k_{T}^{i}\left(\boldsymbol{k}_{T} \cdot S_{T}\right)}{M^{2}} H_{T}^{\perp}\left(z, p_{\perp}^{2}\right)-\frac{\epsilon^{i j} k_{T j}}{M} H^{\perp}\left(z, p_{\perp}^{2}\right)
\end{aligned}
$$

Positivity and Polarisation of Quark

Bacchetta et al, PRL 85, 712 (2000).
\downarrow The probability density is Positive Definite: constraints on FFs.
\downarrow Leading-order T-Even functions FULLY Saturate these bounds!
\leftrightarrow For non-vanishing H^{\perp} and D_{T}^{\perp}, need to calculate T-Even FFs at next order!
\uparrow Average value of remnant quark's spin.

$$
\left\langle\boldsymbol{S}_{T}\right\rangle_{Q}=s_{T} \frac{\int d z\left[h_{T}^{(q \rightarrow Q)}(z)+\frac{1}{2 z^{2} M_{Q}^{2}} h_{T}^{\perp[1](q \rightarrow Q)}(z)\right]}{\int d z d^{(q \rightarrow Q)}(z)}
$$

\downarrow In spectator model, at leading order: $h_{T}(z)=-d(z)$
\downarrow Non-zero h_{T}^{\perp} means $\left\langle\boldsymbol{S}_{T}\right\rangle_{Q} \neq-\boldsymbol{s}_{T}$ (full flip of the spin)!

SPECTATOR MODELS

\downarrow Use Field-theoretical definition of FFs from a Correlator.

$$
\Delta\left(z, k_{T}\right)=\frac{1}{2 z} \int d k^{+} \Delta\left(k, P_{h}\right)=\left.\frac{1}{2 z} \sum_{X} \int \frac{d \xi^{+} d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle 0| \mathcal{U}_{(+\infty, \xi)}^{n_{+}} \psi(\xi)|h, X\rangle\langle h, X| \bar{\psi}(0) \mathcal{U}_{(0,+\infty)}^{n_{+}}|0\rangle\right|_{\xi^{-}=0}
$$

$$
D_{1}\left(z, z^{2} \vec{k}_{T}^{2}\right)=\operatorname{Tr}\left[\Delta\left(z, \vec{k}_{T}\right) \gamma^{-}\right] . \quad \frac{\epsilon_{T}^{i j} k_{T j}}{M_{h}} H_{1}^{\perp}\left(z, k_{T}^{2}\right)=\frac{1}{2} \operatorname{Tr}\left[\Delta\left(z, k_{T}\right) i \sigma^{i-} \gamma_{5}\right]
$$

- Approximate the remnant X as a "spectator" (quark).
\uparrow Calculate the FFs at leading-order in favourite quark model.

$$
D_{1}\left(z, p_{\perp}^{2}\right)
$$

$$
H_{1}^{\perp}\left(z, p_{\perp}^{2}\right)
$$

(a)

(b)

(c)

(d)

Model Calculations of $q \rightarrow Q$ Splittings

\checkmark We can use the same "spectator" type calculations as for pion.

T-even

T-odd

$$
q \rightarrow h
$$

$$
q \rightarrow Q
$$

\uparrow Positivity Constraints on TMD FFs:

$$
\begin{aligned}
& \left(H_{L}^{\perp[1]}\right)^{2}+\left(D_{T}^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2} \\
& \left(G_{T}^{[1]}\right)^{2}+\left(H^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2}
\end{aligned}
$$

\checkmark T-odd parts from previous models violate positivity!

$$
\begin{gathered}
\left(\hat{G}_{T}^{[1]}\right)^{2}=\left(\hat{H}_{L}^{\perp[1]}\right)^{2}=\frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(\hat{D}+\hat{G}_{L}\right)\left(\hat{D}-\hat{G}_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} \hat{D}^{2} \\
\hat{H}^{\perp}\left(z, p_{\perp}^{2}\right)=0, \quad \hat{D}_{T}^{\perp}\left(z, p_{\perp}^{2}\right)=0 .
\end{gathered}
$$

Model Calculations of $q \rightarrow Q$ Splittings

\checkmark Simple Model that is positive-definite:

$$
\hat{d}\left(z, p_{\perp}^{2}\right)=\because \dot{1} . \dot{1}: \hat{d}_{\text {tree }}\left(z, p_{\perp}^{2}\right)
$$

\downarrow Use Collins-ansatz for T-odd
J. C. Collins, NPB 396, I6I (1993)

$$
\begin{gathered}
\frac{p_{\perp}}{z M} \frac{\hat{h}^{\perp(q \rightarrow h)}\left(z, p_{\perp}^{2}\right)}{\hat{d}^{(q \rightarrow h)}\left(z, p_{\perp}^{2}\right)}=: \cdot \cdot \cdot \cdot: \cdot \frac{2 p_{\perp} M_{Q}}{p_{\perp}^{2}+M_{Q}^{2}} \\
d_{T}^{\perp}=-h^{\perp}
\end{gathered}
$$

\downarrow Ensures the inequalities

$$
\begin{gathered}
\left(H_{L}^{\perp[1]}\right)^{2}+\left(D_{T}^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2} \\
\left(G_{T}^{[1]}\right)^{2}+\left(H^{\perp[1]}\right)^{2} \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}}\left(D+G_{L}\right)\left(D-G_{L}\right) \leq \frac{p_{\perp}^{2}}{4 z^{2} M^{2}} D^{2}
\end{gathered}
$$

* Also: Evolution - mimicking ansatz

$$
\hat{d}^{\prime}\left(z, p_{\perp}^{2}\right)=(1-z)^{4} \hat{d}\left(z, p_{\perp}^{2}\right)
$$

Results for Collins Effect

HM et al, Phys. Rev. D95 0402I, (20I7)

- NJL Model

- Evolution-mimicking Ansatz.

Results for Collins Effect

\uparrow Opposite sign and similar size in mid-z range for charged pions. (Similar to empirical extractions).
\uparrow Dependence on model inputs: can be tuned to data.

Results for helicity dependant DiFFs

\uparrow Results for helicity DiFFs, \mathbf{N}_{L} dependence, various pairs. Cuts: $z_{1,2} \geq 0.1$

\uparrow Non-zero signal for various channels, sign change for $\pi^{+} \pi^{+}$pairs!
$\uparrow z_{1,2} \geq 0.1$ cut enhances the analysing power at high-z for larger \mathbf{N}_{L} !

Analysing powers for DiFFs in $\mathrm{e}^{+} \mathrm{e}^{-}$

\uparrow The analysing powers of DiFFs from quark-jet framework.

- G_{1}^{\perp} naturally smaller than H_{1}^{\varangle}, but should be measurable!

INCLUSION OF VECTOR MESONS AND (STRONG) DECAYS

- A naive assumption:VMs should have modest contribution due to relatively small production probability $P\left(\pi^{+}\right) / P\left(\rho^{+}\right) \approx 1.7$
- But: Combinatorial factors enhance VM contribution significantly!
- Let's consider only two hadron emission

Direct: $\quad u \rightarrow d+\pi^{+} \rightarrow u+\pi^{-}+\pi^{+}$

$$
\begin{array}{ll}
\text { VI: } & u \rightarrow d+\pi^{+} \rightarrow u+\rho^{-}+\pi^{+} \\
& u \rightarrow u+\rho^{0} \rightarrow u+\pi^{0}+\rho^{0} \rightarrow \pi^{+} \pi^{-} \\
& u \pi^{+} \pi^{-}
\end{array}
$$

$$
P_{D i r}\left(\pi^{+} \pi^{-}\right) / P_{V M}\left(\pi^{+} \pi^{-}\right) \approx \frac{1}{4}
$$

2- AND 3-BODY DECAYS

The M_{h}^{2} spectrum of pseudoscalars is strongly affected by VM decays.

- We include only the 2-body decays ρ, K^{*}.
- Both 2- and 3-body decays of ω, ϕ.

Achasov et al. (SND), PRD 68, 052006, (2003).

PYTHIA RESULTS FOR $u \rightarrow \pi^{-} \pi^{+}$

PYTHIA SIMULATIONS

- Setup hard process with back to back $q \bar{q}$ along z axis.
- Only Hadronize. Allow the same resonance decays as NJL-jet.
- Assign hadrons with positive p_{z} to q fragmentation.

$$
E_{q}=10 \mathrm{GeV}
$$

Single Hadron
Dihadron

Recent BELLE Results

\downarrow Invariant mass dependence of unroll DiFFs: arxiv:1706.08348

\uparrow Note: $D\left(z, M_{h}\right) d M_{h}=2 M_{h} D\left(z, M_{h}^{2}\right) d M_{h}$
\downarrow Large z favours large M_{h} !
\uparrow Non-resonant channels have no M_{h} structure, but are amplified!

Longitudinal Spin

\uparrow FF for longitudinally polarized quark: $(\mathbf{R} \times \mathbf{T}) \cdot \mathbf{s}_{L}$

$$
\begin{gathered}
D_{q \rightarrow}^{h_{1} h_{2}}\left(\varphi_{R-T}\right)=D_{q}^{h_{1} h_{2}}\left[\cos \left(\varphi_{R-T}\right)\right]+s_{L} \sin \left(\varphi_{R-T}\right) \mathcal{G}\left[\cos \left(\varphi_{R-T}\right)\right] \\
\varphi_{R-T} \equiv \varphi_{R}-\varphi_{T}
\end{gathered}
$$

\uparrow Proof of linear dependence on $\mathbf{s}_{L}: 9$ values of $\left(s_{L}, \mathbf{s}_{T}\right)$ for $N_{L}=6$.

Results for unpolarized DiFF

\checkmark Results for unpolarized DiFFs, \mathbf{N}_{L} dependence, various pairs:

- No Cuts

- z Cuts: $z_{1,2} \geq 0.1$

$\uparrow z_{1,2} \geq 0.1$ cut brings in convergence with \mathbf{N}_{L} !

Saturations of FFs with h Rank

\uparrow FFs vs Rank of produced hadron.

- NJL Model

- Evolution-mimicking Ansatz.

\checkmark Hadrons of Rank >4 are negligible for FFs at $z>0.1$

NAMBU--JONA-LASINIO MODEL

Yoichiro Nambu and Giovanni Jona-Lasinio:
"Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I"

Phys.Rev. I22, 345 (I96I)

Effective Quark model of QCD

- Effective Quark Lagrangian

$$
\mathcal{L}_{N J L}=\bar{\psi}_{q}\left(i \not \partial-m_{q}\right) \psi_{q}+G\left(\bar{\psi}_{q} \Gamma \psi_{q}\right)^{2}
$$

-Low energy chiral effective theory of QCD.
-Covariant, has the same flavor symmetries as QCD.

NAMBU--JONA-LASINIO MODEL

-Dynamically Generated Quark Mass from GAP Eqn.

-Pion mass and quark-pion coupling from •Pion decay constant t-matrix pole.

Fixing Model Parameters

- Use Lepage-Brodsky Invariant Mass cut-off regularisation scheme.

$$
M_{12} \leq \Lambda_{12}=\sqrt{\Lambda_{3}^{2}+M_{1}^{2}}+\sqrt{\Lambda_{3}^{2}+M_{2}^{2}}
$$

- Choose a $M_{u(d)}$ and use physical f_{π}, m_{π}, m_{K} to fix model parameters Λ_{3}, G, M_{s} and calculate $g_{h q Q}$.

DEPENDENCE ON NUMBER OF

 EMITTED HADRONS- Restrict the number of emitted hadrons, $N_{\text {Linkin }} \mathrm{MC}$.

- We reproduce the splitting function and the full solution perfectly.
- The low z region is saturated with just a few emissions.

SOLUTIONS OFTHE INTEGRAL EQUATIONS H.M., Thomas, Bentz, PRD. 83:074003, 201I

\checkmark Input elementary probabilities from NJL:

\checkmark Solutions of the integral equations:

SOLUTIONS OFTHE INTEGRAL EQUATIONS H.M., Thomas, Bentz, PRD. 83:074003, 201I

\checkmark Input elementary probabilities from NJL:

\checkmark Solutions of the integral equations:
z

Lorentz Transforms of TM

Diehl: NPB 596, 33 (200I)(2015) D Boosts from 0 TM frame that preserve "-" component.

$\left(\begin{array}{c|c|c|c}1 & \frac{\boldsymbol{k}_{\perp}^{2}}{2\left(k^{-}\right)^{2}} & \frac{k_{1}}{k^{-}} & \frac{k_{2}}{k^{-}} \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & \frac{k_{1}}{k^{-}} & 1 & 0 \\ \hline 0 & \frac{k_{2}}{k^{-}} & 0 & 1\end{array}\right)$

\mathcal{L}^{\prime}	$\left(k^{\prime+}, k^{\prime-}, \boldsymbol{k}_{\perp}^{\prime}=0\right)$	$\left(p^{+}, p^{-}, \boldsymbol{p}_{\perp}\right)$
\mathcal{L}	$\left(k^{+}, k^{-}=k^{\prime-}, \boldsymbol{k}_{\perp}\right)$	$\left(P^{+}, P^{-}=p^{-}, \boldsymbol{P}_{\perp}=\boldsymbol{p}_{\perp}+z \boldsymbol{k}_{\perp}\right)$
	$z \equiv \frac{p^{-}}{k^{-}}=\frac{p^{\prime-}}{k^{\prime-}}$	$\mathbf{P}_{\perp}=\mathbf{p}_{\perp}+z \mathbf{k}_{\perp}$

In case of two (or more) hadrons: same story!

$$
P_{1 \perp}=p_{1 \perp}+z_{1} k_{\perp} \quad P_{2 \perp}=p_{2 \perp}+z_{2} k_{\perp}
$$

AVERAGE Transverse Momenta vs z

FRAGMENTATION

$$
\left\langle\left\langle P_{\perp}^{2}\right\rangle_{u n f}\right\rangle\left\langle P_{\perp}^{2}\right\rangle_{f}
$$

\rightarrow Indications from HERMES
data: A. Signori, et al: JHEP |3||, |94(20|3)

\checkmark Multiple hadron emissions: broaden the TM dependence at low \mathbf{z} !

TMD FRAGMENTATION FUNCTIONS

FAVORED

- UNFAVORED

K

COMPARISON WITH GAUSSIAN ANSATZ

- Average TM: $\left\langle P_{\perp}^{2}\right\rangle \equiv \frac{\int d^{2} \mathbf{P}_{\perp} P_{\perp}^{2} D\left(z, P_{\perp}^{2}\right)}{\int d^{2} \mathbf{P}_{\perp} D\left(z, P_{\perp}^{2}\right)}$
- Gaussian ansatz assumes: $D\left(z, P_{\perp}^{2}\right)=D(z)^{e^{-P_{\perp}^{2} /\left\langle P_{\perp}^{2}\right\rangle}}$

$$
\text { Gaussian ansatz assumes: } D\left(z, P_{\perp}^{2}\right)=D(z) \frac{c}{\pi\left\langle P_{\perp}^{2}\right\rangle}
$$

