

DIS 2018

16-20 April 2018 Kobe, Japan

"Accessing Quark Helicity in e⁺e⁻ and SIDIS via Dihadron Correlations.

P.R.D97, 074019 (2018); arXiv:1712.06384.

© COEPP

Hrayr Matevosyan

MEASURING PDFS WITH TRANSVERSE MOMENTUM DEPENDENCE

 Measurement of the <u>transverse momentum</u> of the produced hadron in SIDIS provides access to <u>TMD PDFs/FFs</u>.

• SIDIS Process with TM of hadron measured.

TMD PDFs

N/q	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 h_{1T}^{\perp}$

q/h	U	
U	D_1	
L		
Т	H_1^{\perp}	

TMD PDFs with Two-Hadron FFs

- Measuring two-hadron semi-inclusive DIS: an additional method for accessing TMD PDFs.
 - SIDIS Process with TM of hadrons measured.

TMD PDFs

N/q	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 h_{1T}^{\perp}$

TMD DiFFs

q/h ₁ h ₂	U	
U	D_1	
L	G_1^{\perp}	
Т	H_1^{\perp} H_1^{\triangleleft}	

SYSTEMATICS OF DIHADRON FRAGMENTATION FUNCTIONS

Two-Hadron Kinematics

A. Bianconi et al: PRD 62, 034008 (2000).

◆ Total and Relative TM of hadron pair.

$$P = P_1 + P_2$$
 $z = z_1 + z_2$

$$z = z_1 + z_2$$

$$R = \frac{1}{2}(P_1 - P_2) \quad \xi = \frac{z_1}{z} = 1 - \frac{z_2}{z}$$

→ Two Coordinate systems:

⊥: modelling hadronization

• T: field-theoretical definition of DiFFs

→ Lorentz Boost:

$$\boldsymbol{P}_{1T} = \boldsymbol{P}_{1\perp} + z_1 \boldsymbol{k}_T$$

$$\boldsymbol{P}_{2T} = \boldsymbol{P}_{2\perp} + z_2 \boldsymbol{k}_T$$

$$m{k}_T = -rac{m{P}_\perp}{z}$$

Relative TM in two systems

$$oldsymbol{R}_{\perp}=rac{1}{2}(oldsymbol{P}_{1\perp}-oldsymbol{P}_{2\perp})$$

$$\boldsymbol{R}_T = \frac{z_2 \boldsymbol{P}_{1\perp} - z_1 \boldsymbol{P}_{2\perp}}{z}$$

Field-Theoretical Definitions

• The quark-quark correlator.

$$\Delta_{ij}(k; P_1, P_2) = \sum_{X} \int d^4 \zeta e^{ik \cdot \zeta} \langle 0 | \psi_i(\zeta) | P_1 P_2, X \rangle \langle P_1 P_2, X | \bar{\psi}_j(0) | 0 \rangle$$

• The definitions of DiFFs from the correlator.

Quark Polarization

$$\Delta^{[\gamma^{-}]} = D_1(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$

Unpolarised

$$\Delta^{\gamma^-\gamma_5]} = \frac{\epsilon_T^{ij}R_{Ti}k_{Tj}}{M_h^2}G_1^\perp(z,\xi,\boldsymbol{k}_T^2,\boldsymbol{R}_T^2,\boldsymbol{k}_T\cdot\boldsymbol{R}_T) \qquad \text{Longitudinal}$$

Transverse

$$\Delta^{[i\sigma^{i-}\gamma_5]} = \frac{\epsilon_T^{ij} R_{Tj}}{M_h} H_1^{\triangleleft}(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$
$$+ \frac{\epsilon_T^{ij} k_{Tj}}{M_h} H_1^{\perp}(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$

Field-Theoretical Definitions

The quark-quark correlator.

$$\Delta_{ij}(k; P_1, P_2) = \sum_{X} \int d^4 \zeta e^{ik \cdot \zeta} \langle 0 | \psi_i(\zeta) | P_1 P_2, X \rangle \langle P_1 P_2, X | \bar{\psi}_j(0) | 0 \rangle$$

• The definitions of DiFFs from the correlator.

Quark Polarization

$$\Delta^{[\gamma^{-}]} = D_1(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$

Unpolarised

$$\Delta^{\gamma^-\gamma_5]} = \frac{\epsilon_T^{ij}R_{Ti}k_{Tj}}{M_h^2}G_1^\perp(z,\xi,\pmb{k}_T^2,\pmb{R}_T^2,\pmb{k}_T\cdot\pmb{R}_T) \qquad \text{Longitudinal}$$

$$\Delta^{[i\sigma^{i-}\gamma_5]} = \frac{\epsilon_T^{ij}R_{Tj}}{M_h} H_1^{\triangleleft}(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$
$$+ \frac{\epsilon_T^{ij}k_{Tj}}{M_h} H_1^{\perp}(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$

Transverse

Fourier Moments of DiFFs

• Expanded dependence on $\varphi_{RK} \equiv \varphi_R - \varphi_k$ in cos series

$$D_1(z, \xi, \mathbf{k}_T^2, \mathbf{R}_T^2, \cos(\varphi_{KR})) = \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{\cos(n \cdot \varphi_{KR})}{1 + \delta_{0,n}} D_1^{[n]}(z, \xi, |\mathbf{k}_T|, |\mathbf{R}_T|),$$

$$F^{[n]} = \int d\varphi_{KR} \cos(n\varphi_{KR}) F\left(\cos(\varphi_{KR})\right)$$

Integrated DiFFs and Fourier moments

$$\begin{split} D_{1}^{a}(z, M_{h}^{2}) &= z^{2} \int d^{2}\mathbf{k}_{T} \int d\xi \ D_{1}^{a,[0]}(z, \xi, \mathbf{k}_{T}^{2}, \mathbf{R}_{T}^{2}) \\ G_{1}^{\perp a,[n]}(z, M_{h}^{2}) &= z^{2} \int d^{2}\mathbf{k}_{T} \int d\xi \left(\frac{\mathbf{k}_{T}^{2}}{2M_{h}^{2}}\right) \frac{|\mathbf{R}_{T}|}{M_{h}} \ G_{1}^{\perp a,[n]}(z, \xi, \mathbf{k}_{T}^{2}, \mathbf{R}_{T}^{2}). \\ H_{1}^{\triangleleft,[n]}(z, M_{h}^{2}) &= z^{2} \int d^{2}\mathbf{k}_{T} \int d\xi \frac{|\mathbf{R}_{T}|}{M_{h}} H_{1}^{\triangleleft,[n]}(z, \xi, |\mathbf{k}_{T}|, |\mathbf{R}_{T}|) \\ H_{1}^{\perp,[n]}(z, M_{h}^{2}) &= z^{2} \int d^{2}\mathbf{k}_{T} \int d\xi \frac{|\mathbf{k}_{T}|}{M_{h}} H_{1}^{\perp,[n]}(z, \xi, |\mathbf{k}_{T}|, |\mathbf{R}_{T}|) \end{split}$$

ACCESS TO TRANSVERSITY PDF From DiFF

M. Radici, et al: PRD 65, 074031 (2002).

- In two hadron production from polarized target the cross section factorizes collinearly - no TMD!
- Allows clean access to transversity.
- Unpolarized and Interference
 Dihadron FFs are needed!

$$\frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \sin(\phi_R + \phi_S) \frac{\sum_q e_q^2 h_1^q(x) / x H_1^{\triangleleft q}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) / x D_1^q(z, M_h^2)}$$

ullet Empirical Model for D_1^q has been fitted to PYTHIA simulations.

A. Bacchetta and M. Radici, PRD 74, 114007 (2006).

Experiments:
BELLE,
HERMES,
COMPASS.

Moments of DiFFs in SIDIS

A. Bacchetta, M. Radici: PRD 69, 074026 (2004).

• Here transversely polarised DiFFs are admixture of cos Fourier moments of both unintegrated DiFFs:

$$H_{1,SIDIS}^{\triangleleft}(z, M_H^2) = \left[H_1^{\triangleleft[0]} + H_1^{\perp[1]} \right]$$

$$H_{1,SIDIS}^{\perp}(z, M_H^2) = \left[H_1^{\perp[0]} + H_1^{\triangleleft[1]}\right]$$

• Generated by $\cos(\varphi_{RK})$ dependences of unintegrated DiFFs:

$$\varphi_{RK} \equiv \varphi_R - \varphi_k$$

$$d\sigma_{UT} \sim \sin(\varphi_R + \varphi_S) \mathcal{C} \left[h_1^{\perp} H^{\triangleleft}(\cos(\varphi_{RK})) \right]$$
$$+ \sin(\varphi_k + \varphi_S) \mathcal{C} \left[h_1^{\perp} H^{\perp}(\cos(\varphi_{RK})) \right] + \dots$$

Back-to-back two hadron pairs in ete-

D. Boer et al: PRD 67, 094003 (2003).

• Can access both helicity and transverse pol. dependent DiFFs:

$$A^{\cos(\varphi_R + \varphi_{\bar{R}})} \sim \frac{H_1^{\triangleleft}(z, M_h^2) \bar{H}_1^{\triangleleft}(\bar{z}, M_{\bar{h}}^2)}{D_1(z, M_h^2) \bar{D}_1(\bar{z}, M_{\bar{h}}^2)}$$

$$A^{\cos(2(\varphi_R - \varphi_{\bar{R}}))} \sim \frac{G_1^{\perp}(z, M_h^2) \bar{G}_1^{\perp}(\bar{z}, M_{\bar{h}}^2)}{D_1(z, M_h^2) \bar{D}_1(\bar{z}, M_{\bar{h}}^2)}$$

lepton frame

Moments of DiFFs in e⁺e⁻

D. Boer et al: PRD 67, 094003 (2003).

• Entering the integrated cross-section expressions.

 $\cos(\varphi_R - \varphi_k)$ moment

$$G_1^{\perp}(z, M_h^2) = \int d\xi \int d\varphi_R \int d^2 \boldsymbol{k}_T (\boldsymbol{k}_T \cdot \boldsymbol{R}_T) G_1^{\perp}(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$

• Differ from SIDIS! Might affect combined analysis.

$$H_{1,e^+e^-}^{\triangleleft}(z,M_h^2) = \int d\xi \int d\varphi_R \int d^2\mathbf{k}_T |\mathbf{R}_T| H_1^{\triangleleft}(z_h,\xi,k_T^2,R_T^2,\mathbf{k}_T\cdot\mathbf{R}_T)$$

$$H_{1,e^+e^-}^{\triangleleft}(z,M_h^2) = H_1^{\triangleleft,[0]}$$

$$H_{1,e^{+}e^{-}}^{\perp}(z,M_{h}^{2}) = \int d\xi \int d\varphi_{R} \int d^{2}\mathbf{k}_{T} |\mathbf{k}_{T}| H_{1}^{\perp}(z_{h},\xi,k_{T}^{2},R_{T}^{2},\mathbf{k}_{T}\cdot\mathbf{R}_{T})$$

$$H_{1,e^+e^-}^{\perp}(z,M_h^2) = H_1^{\perp,[0]}$$

Helicity DiFFs in SIDIS

▶ SIDIS extraction in COMPASS

$$d\sigma_{UL} \sim -A(y)\mathcal{G}\left[\frac{k_T R_T \sin(\varphi_k - \varphi_R)}{M_h^2} g_{1L}^a G_1^{\perp a}\right]$$

$$+B(y)\mathcal{G}\left[\frac{p_T k_T \sin(\varphi_p + \varphi_k)}{M M_h} h_{1L}^{\perp a} H_1^{\perp a}\right]$$

$$+B(y)\mathcal{G}\left[\frac{p_T R_T \sin(\varphi_p + \varphi_R)}{M M_h} h_{1L}^{\perp a} H_1^{\triangleleft a}\right]$$

$$\mathcal{G}[wf^qD^q] \equiv \int d^2\boldsymbol{p}_T \int d^2\boldsymbol{k}_T \delta^2 \left(\boldsymbol{k}_T - \boldsymbol{p}_T + \frac{\boldsymbol{P}_{h\perp}}{z}\right)$$
$$\times w(\boldsymbol{p}_T, \boldsymbol{k}_T, \boldsymbol{R}_T) f^q(x, \boldsymbol{p}_T^2) D^q(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \boldsymbol{k}_T \cdot \boldsymbol{R}_T)$$

 $lacktriangledown A^{\sin(n(\varphi_h-\varphi_R))}$ are <u>convolutions</u> of g_{1L} and G_1^{\perp} !

Back-to-back two hadron pairs in ete-

D. Boer et al: PRD 67, 094003 (2003).

• Can access both helicity and transverse pol. dependent DiFFs:

$$A^{\cos(\varphi_R + \varphi_{\bar{R}})} \sim \frac{H_1^{\triangleleft}(z, M_h^2) \bar{H}_1^{\triangleleft}(\bar{z}, M_{\bar{h}}^2)}{D_1(z, M_h^2) \bar{D}_1(\bar{z}, M_{\bar{h}}^2)}$$

$$A^{\cos(2(\varphi_R - \varphi_{\bar{R}}))} \sim \frac{G_1^{\perp}(z, M_h^2) \bar{G}_1^{\perp}(\bar{z}, M_{\bar{h}}^2)}{D_1(z, M_h^2) \bar{D}_1(\bar{z}, M_{\bar{h}}^2)}$$

BELLE results.

Back-to-back two hadron pairs in e⁺e⁻

D. Boer et al: PRD 67, 094003 (2003).

• Can access both helicity and transverse pol. dependent DiFFs:

$$A^{\cos(\varphi_R + \varphi_{\bar{R}})} \sim \frac{H_1^{\triangleleft}(z, M_h^2) \bar{H}_1^{\triangleleft}(\bar{z}, M_{\bar{h}}^2)}{D_1(z, M_h^2) \bar{D}_1(\bar{z}, M_{\bar{h}}^2)}$$

$$A^{\cos(2(\varphi_R - \varphi_{\bar{R}}))} \sim \frac{G_1^{\perp}(z, M_h^2) \bar{G}_1^{\perp}(\bar{z}, M_{\bar{h}}^2)}{D_1(z, M_h^2) \bar{D}_1(\bar{z}, M_{\bar{h}}^2)}$$

BELLE results.

Re-derived ete Cross Section

H.M., Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

An error in kinematics was found:

published today!

• The new fully differential cross-section expression:

$$\frac{d\sigma\left(e^{+}e^{-} \to (h_{1}h_{2})(\bar{h}_{1}\bar{h}_{2})X\right)}{d^{2}\boldsymbol{q}_{T}dzd\xi d\varphi_{R}dM_{h}^{2}d\bar{z}d\bar{\xi}d\varphi_{\bar{R}}d\bar{M}_{h}^{2}dy} = \frac{3\alpha^{2}}{\pi Q^{2}}z^{2}\bar{z}^{2}\sum_{a,\bar{a}}e_{a}^{2}\left\{A(y)\mathcal{F}\left[D_{1}^{a}\bar{D}_{1}^{\bar{a}}\right]\right. \\
+ B(y)\mathcal{F}\left[\frac{|\boldsymbol{k}_{T}|}{M_{h}}\frac{|\bar{\boldsymbol{k}}_{T}|}{\bar{M}_{h}}\cos(\varphi_{k}+\varphi_{\bar{k}})H_{1}^{\perp a}\bar{H}_{1}^{\perp \bar{a}}\right] + B(y)\mathcal{F}\left[\frac{|\boldsymbol{R}_{T}|}{M_{h}}\frac{|\bar{\boldsymbol{R}}_{T}|}{\bar{M}_{h}}\cos(\varphi_{R}+\varphi_{\bar{R}})H_{1}^{\triangleleft a}\bar{H}_{1}^{\triangleleft \bar{a}}\right] \\
+ B(y)\mathcal{F}\left[\frac{|\boldsymbol{k}_{T}|}{M_{h}}\frac{|\bar{\boldsymbol{k}}_{T}|}{\bar{M}_{h}}\cos(\varphi_{k}+\varphi_{\bar{R}})H_{1}^{\perp a}\bar{H}_{1}^{\triangleleft \bar{a}}\right] + B(y)\mathcal{F}\left[\frac{|\boldsymbol{R}_{T}|}{M_{h}}\frac{|\bar{\boldsymbol{k}}_{T}|}{\bar{M}_{h}}\cos(\varphi_{R}+\varphi_{\bar{k}})H_{1}^{\triangleleft a}\bar{H}_{1}^{\perp \bar{a}}\right] \\
- A(y)\mathcal{F}\left[\frac{|\boldsymbol{R}_{T}||\boldsymbol{k}_{T}|}{M_{t}^{2}}\frac{|\bar{\boldsymbol{R}}_{T}||\bar{\boldsymbol{k}}_{T}|}{\bar{M}_{t}^{2}}\sin(\varphi_{k}-\varphi_{R})\sin(\varphi_{\bar{k}}-\varphi_{\bar{R}})G_{1}^{\perp a}\bar{G}_{1}^{\perp \bar{a}}\right]\right\}.$$

Re-derived ete Cross Section

H.M., Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

An error in kinematics was found:

published today!

• The new fully differential cross-section expression:

$$\frac{d\sigma\left(e^{+}e^{-} \to (h_{1}h_{2})(\bar{h}_{1}\bar{h}_{2})X\right)}{d^{2}\boldsymbol{q}_{T}dzd\xi d\varphi_{R}dM_{h}^{2}d\bar{z}d\bar{\xi}d\varphi_{\bar{R}}d\bar{M}_{h}^{2}dy} = \frac{3\alpha^{2}}{\pi Q^{2}}z^{2}\bar{z}^{2}\sum_{a,\bar{a}}e_{a}^{2}\left\{A(y)\mathcal{F}\left[D_{1}^{a}\bar{D}_{1}^{\bar{a}}\right]\right\}$$

$$\mathcal{F}[wD^aar{D}^{ar{a}}] = \int d^2\mathbf{k}_T d^2ar{\mathbf{k}}_T \ \delta^2(\mathbf{k}_T + ar{\mathbf{k}}_T - \mathbf{q}_T)w(\mathbf{k}_T, ar{\mathbf{k}}_T, \mathbf{R}_T, ar{\mathbf{R}}_T) \ D^a \ D^{ar{a}}.$$

$$-A(y)\mathcal{F}\left[\frac{|\boldsymbol{R}_T|\,|\boldsymbol{k}_T|}{M_h^2}\frac{|\bar{\boldsymbol{R}}_T|\,|\bar{\boldsymbol{k}}_T|}{\bar{M}_h^2}\sin(\varphi_k-\varphi_R)\sin(\varphi_{\bar{k}}-\varphi_{\bar{R}})G_1^{\perp a}\bar{G}_1^{\perp \bar{a}}\right]\right\}.$$

IFFs in e⁺e⁻ and SIDIS.

H.M., Bacchetta, Boer, Courtoy, Kotzinian, Radici, Thomas: Phys. Rev. D 97, 074019 (2018).

 The asymmetry now involves exactly the same integrated IFF as in SIDIS!

$$A^{\cos(\varphi_R + \varphi_{\bar{R}})} = \frac{1}{2} \frac{B(y)}{A(y)} \frac{\sum_{a,\bar{a}} e_a^2 H_1^{\triangleleft a}(z, M_h^2) \bar{H}_1^{\triangleleft \bar{a}}(\bar{z}, \bar{M}_h^2)}{\sum_{a,\bar{a}} e_a^2 D_1^a(z, M_h^2) \bar{D}_1^{\bar{a}}(\bar{z}, \bar{M}_h^2)}$$

$$D_1(z, M_h^2) \equiv z^2 \int d^2 \mathbf{k}_T \int d\xi \, D_1^{[0]}(z, \xi, |\mathbf{k}_T|, |\mathbf{R}_T|)$$

$$H_{1,e^+e^-}^{\triangleleft}(z,M_h^2) = H_1^{\triangleleft,[0]} + H_1^{\perp,[1]} \equiv H_{1,SIDIS}^{\triangleleft}(z,M_h^2)$$

• All the previous extractions of the transversity are valid!

Helicity-dependent DiFF in e⁺e⁻

H.M., Kotzinian, Thomas: arXiv:1712.06384.

• The relevant terms involving G_1^{\perp} :

$$d\sigma_L \sim \mathcal{F}\left[\frac{(\boldsymbol{R}_T \times \boldsymbol{k}_T)_3}{M_h^2} \frac{(\bar{\boldsymbol{R}}_T \times \bar{\boldsymbol{k}}_T)_3}{\bar{M}_h^2} G_1^{\perp a} (\boldsymbol{R}_T \cdot \boldsymbol{k}_T) \bar{G}_1^{\perp \bar{a}} (\bar{\boldsymbol{R}}_T \cdot \bar{\boldsymbol{k}}_T)\right]$$

• Note: any azimuthal moment involving only $\varphi_R, \ \varphi_{ar{R}}$ is zero.

Break-up the convolution:
$$\int d^2 {\bm q}_T \delta^2 ({\bm k}_T + \bar{{\bm k}}_T - {\bm q}_T) < \begin{cases} \text{decouple } {\bm k}_T \text{ on both sides} \end{cases}$$
 Using: $\varphi_k \to \varphi_k' + \varphi_R$,
$$\int d^2 {\bm k}_T \sin(\varphi_k) \cos(n\varphi_k) = 0$$

$$\langle f(\varphi_R, \varphi_{\bar{R}}) \rangle_L = 0$$

- The old asymmetry by Boer et. al. exactly vanishes!
- Explains the BELLE results.

$$A^{\Rightarrow} = \frac{\langle \cos(2(\varphi_R - \varphi_{\bar{R}})) \rangle}{\langle 1 \rangle} = 0!$$

New way to access G_1^{\perp} DiFF in e^+e^-

H.M., Kotzinian, Thomas: arXiv:1712.06384.

• The relevant terms involving G_1^{\perp} :

$$d\sigma_L \sim \mathcal{F} \left[\frac{(\boldsymbol{R}_T \times \boldsymbol{k}_T)_3}{M_h^2} \frac{(\bar{\boldsymbol{R}}_T \times \bar{\boldsymbol{k}}_T)_3}{\bar{M}_h^2} G_1^{\perp a} (\boldsymbol{R}_T \cdot \boldsymbol{k}_T) \bar{G}_1^{\perp \bar{a}} (\bar{\boldsymbol{R}}_T \cdot \bar{\boldsymbol{k}}_T) \right]$$

• Need a q_T-weighted asymmetry to get non-zero result

$$\left\langle \frac{q_T^2 \left(3\sin(\varphi_q - \varphi_R) \sin(\varphi_q - \varphi_{\bar{R}}) + \cos(\varphi_q - \varphi_R) \cos(\varphi_q - \varphi_{\bar{R}}) \right)}{M_h \bar{M}_h} \right\rangle$$

$$= \frac{12\alpha^2 A(y)}{\pi Q^2} \sum_{a,\bar{a}} e_a^2 \left(G_1^{\perp a,[0]} - G_1^{\perp a,[2]} \right) \left(\bar{G}_1^{\perp \bar{a},[0]} - G_1^{\perp \bar{a},[2]} \right),$$

ullet A new asymmetry to access $\,G_1^{\perp a}\equiv G_1^{\perp a,[0]}-G_1^{\perp a,[2]}\,$

$$A_{e^{+}e^{-}}^{\Rightarrow}(z,\bar{z},M_{h}^{2},\bar{M}_{h}^{2}) = 4 \frac{\sum_{a,\bar{a}} G_{1}^{\perp a}(z,M_{h}^{2}) G_{1}^{\perp \bar{a}}(\bar{z},\bar{M}_{h}^{2})}{\sum_{a,\bar{a}} D_{1}^{a}(z,M_{h}^{2}) D_{1}^{\bar{a}}(\bar{z},\bar{M}_{h}^{2})}$$

New way to access G_1^{\perp} DiFF in e^+e^-

H.M., Kotzinian, Thomas: arXiv:1712.06384.

• The relevant terms involving G_1^{\perp} :

$$d\sigma_L \sim \mathcal{F} \left[\frac{(\boldsymbol{R}_T \times \boldsymbol{k}_T)_3}{M_h^2} \frac{(\bar{\boldsymbol{R}}_T \times \bar{\boldsymbol{k}}_T)_3}{\bar{M}_h^2} G_1^{\perp a} (\boldsymbol{R}_T \cdot \boldsymbol{k}_T) \bar{G}_1^{\perp \bar{a}} (\bar{\boldsymbol{R}}_T \cdot \bar{\boldsymbol{k}}_T) \right]$$

• Need a q_T-weighted asymmetry to get non-zero result

additional $\sin(\varphi_k - \varphi_R)$

$$\left\langle \frac{q_T^2 \left(3\sin(\varphi_q - \varphi_R)\sin(\varphi_q - \varphi_{\bar{R}}) + \cos(\varphi_q - \varphi_R)\cos(\varphi_q - \varphi_{\bar{R}})\right)}{M_h \bar{M}_h} \right\rangle$$

$$= \frac{12\alpha^2 A(y)}{2} \sum_{e^2 \left(G_+^{\perp a, [0]} - G_+^{\perp a, [2]}\right) \left(\bar{G}_+^{\perp \bar{a}, [0]} - G_+^{\perp \bar{a}, [2]}\right)}{(\bar{G}_+^{\perp \bar{a}, [0]} - G_+^{\perp \bar{a}, [2]})}$$

$$= \frac{12\alpha^2 A(y)}{\pi Q^2} \sum_{a,\bar{a}} e_a^2 \left(G_1^{\perp a,[0]} - G_1^{\perp a,[2]} \right) \left(\bar{G}_1^{\perp \bar{a},[0]} - G_1^{\perp \bar{a},[2]} \right),$$

ullet A new asymmetry to access $G_1^{\perp a}\equiv G_1^{\perp a,[0]}-G_1^{\perp a,[2]}$

$$A_{e^{+}e^{-}}^{\Rightarrow}(z,\bar{z},M_{h}^{2},\bar{M}_{h}^{2}) = 4 \frac{\sum_{a,\bar{a}} G_{1}^{\perp a}(z,M_{h}^{2}) G_{1}^{\perp \bar{a}}(\bar{z},\bar{M}_{h}^{2})}{\sum_{a,\bar{a}} D_{1}^{a}(z,M_{h}^{2}) D_{1}^{\bar{a}}(\bar{z},\bar{M}_{h}^{2})}$$

New way to access G_1^{\perp} DiFF in SIDIS

H.M., Kotzinian, Thomas: arXiv:1712.06384.

ullet The relevant terms involving G_1^\perp :

• Weighted moment accesses same G_1^{\perp} as in e^+e^- .

$$\left\langle \frac{P_{h\perp}\sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{UL} \sim S_L \sum_a e_a^2 \ g_{1L}^a(x) \ z \ G_1^{\perp a}(z, M_h^2)$$

$$A_{SIDIS}^{\Rightarrow}(x,z,M_h^2) = S_L \frac{\sum_a g_{1L}^a(x) \ z \ G_1^{\perp a}(z,M_h^2)}{\sum_a f_1^a(x) \ D_1^a(z,M_h^2)}.$$

New way to access G_1^{\perp} DiFF in SIDIS: II

ullet The relevant terms involving G_1^\perp :

Consider a polarized beam.

$$d\sigma_{LU} \sim \lambda_e \mathcal{G}\left[\frac{k_T R_T \sin(\varphi_k - \varphi_R)}{M_h^2} f_1^a G_1^{\perp a}\right]$$

• Weighted moment accesses same G_1^{\perp} as in e^+e^- .

$$\left\langle \frac{P_{h\perp}\sin(\varphi_h - \varphi_R)}{M_h} \right\rangle_{LU} \sim \lambda_e \sum_a e_a^2 f_1^a(x) z G_1^{\perp a}(z, M_h^2)$$

$$A_{SIDIS}^{\hookrightarrow}(x,z,M_h^2) \sim \lambda_e \frac{C'(y)}{A'(y)} \frac{\sum_a f_1^a(x) \ z \ G_1^{\perp a}(z,M_h^2)}{\sum_a f_1^a(x) \ D_1^a(z,M_h^2)}.$$

CONCLUSIONS

- *DiFFs provide information on the polarization of the fragmenting quark.
- * Two problems appeared recently:
 - Inconsistency of IFF definitions in SIDIS and e⁺e⁻ asymmetries.
 - No signal for the helicity-dependent DiFF from BELLE.
- * Re-derived cross section for e⁺e⁻ resolved both issues.
- * New asymmetries to measure G_1^{\perp} in SIDIS and e^+e^- .

PART II

Dihadron Correlations In Polarized Quark Hadronization:

The Quark-jet Framework

Phys. Rev. D96 074010, (2017); Phys. Rev. D97, 014019 (2018).

Current Challenges

- 1) Phenomenological Extractions of DiFFs.
 - Unpolarised DiFFs from PYTHIA
 - ▶ Still Large Uncertainties.
 - ▶ Simplistic Approximations.
 - ▶ Limited kinematic region.

2) Full Event Generators:

- ▶ <u>No</u> Mainstream MC generator <u>includes spin</u> in Full Hadronization <u>yet</u>: PYTHIA, HERWIG, SHERPA...
- MC generators are needed to support mapping of the 3D structure of nucleon at JLab12, BELLE II, EIC.

The Quark-jet Framework

THE QUARK JET MODEL

Field, Feynman: Nucl.Phys.B136:1,1978.

Assumptions:

- Number Density interpretation
- No re-absorption
- ▶ ∞ hadron emissions

$$D_q^h(z) = \hat{d}_q^h(z) + \int_z^1 \hat{d}_q^Q(y) dy \cdot D_Q^h(\frac{z}{y}) \frac{1}{y}$$

$$\hat{d}_q^h(z) = \hat{d}_q^{Q'}(1-z)|_{h=\bar{Q'}q}$$

THE QUARK JET MODEL

Field, Feynman: Nucl.Phys.B136:1,1978.

Assumptions:

- Number Density interpretation
- No re-absorption
- ▶ ∞ hadron emissions

Probability of finding hadron h with mom. frac. [z, z+dz] in a jet of quark q

The probability scales with mom. fraction

$$D_{q}^{h}(z)dz = \hat{d}_{q}^{h}(z)dz + \int_{z}^{1} \hat{d}_{q}^{Q}(y)dy \cdot D_{Q}^{h}(\frac{z}{y}) \frac{dz}{y}$$

Prob. of emitting at step 1

Prob. of mom. [y, y+dy] is transferred to jet at step 1.

INCLUDING THE TRANSVERSE MOMENTUM

H.M., Bentz, Cloet, Thomas, PRD.85:014021, 2012

▶ Conserve transverse momenta at each link.

$$\mathbf{P}_{\perp} = \mathbf{p}_{\perp} + z\mathbf{k}_{\perp}$$

$$\mathbf{k}_{\perp} = \mathbf{P}_{\perp} + \mathbf{k}_{\perp}'$$

▶ Calculate the Number Density

$$D_{q}^{h}(z,P_{\perp}^{2})\Delta z \ \pi \Delta P_{\perp}^{2} = \frac{\sum_{N_{Sims}} N_{q}^{h}(z,z+\Delta z,P_{\perp}^{2},P_{\perp}^{2}+\Delta P_{\perp}^{2})}{N_{Sims}}$$

25

POLARIZATION IN QUARK-JET FRAMEWORK

H.M., Bentz, Thomas, PRD.86:034025, (2012). H.M., Kotzinian, Thomas, PLB731 208-216 (2014).

Extend Quark-jet Model to include Spin.

- Input Elementary Collins Function: Model or Parametrization
- Calc. Spin of the remnant quark: S'

Previously: constant values for spin flip probability: \mathcal{P}_{SF}

lacktriangle Use fit form to extract unpol. and Collins FFs from $D_{h/q^{\uparrow}}$.

$$F(c_0, c_1) \equiv c_0 - c_1 \sin(\varphi_C)$$

$$D_{h/q^{\uparrow}}(z, p_{\perp}^2, \varphi) = D^{h/q}(z, p_{\perp}^2) - H^{\perp h/q}(z, p_{\perp}^2) \frac{p_{\perp} s_T}{z m_h} \sin(\varphi_C)$$

SPIN TRANSFER

Bentz, Kotzinian, H.M., Ninomiya, Thomas, Yazaki: Phys.Rev. D94 034004 (2016).

♦NJL-jet MKIII:

ullet The probability for the process q o Q, initial spin ${f s}$ to ${f S}$

$$F^{q \to Q}(z, \mathbf{p}_{\perp}; \mathbf{s}, \mathbf{S}) = \alpha_{\mathbf{s}} + \boldsymbol{\beta}_{\mathbf{s}} \cdot \mathbf{S}$$

Intermediate quarks in quark-jet are unobserved!

Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii: QUANTUM ELECTRODYNAMICS (1982).

$$F^{q o Q}(z, \mathbf{p}_{\perp}; \mathbf{s}, \mathbf{S}) \sim \text{Tr}[\rho^{\mathbf{S}'} \rho^{\mathbf{S}}] \sim 1 + \mathbf{S}' \cdot \mathbf{S}$$

$$\mathbf{S}' = \frac{\boldsymbol{\beta}_{\mathbf{s}}}{\alpha_{\mathbf{s}}}$$

- lacktriangle Remnant quark's ${f S}'$ uniquely determined by $z,{f p}_{\perp}$ and ${f s}$!
- ▶ Process probability is the same as transition to unpolarized state.

$$F^{q \to Q}(z, \mathbf{p}_{\perp}; \mathbf{s}, \mathbf{0}) = \alpha_s$$

REMNANT QUARK'S POLARISATION

♦ We can express the spin of the remnant quark $S' = \frac{\beta_s}{\alpha_s}$ in terms of quark-to-quark TMD FFs.

$$\alpha_{q} \equiv D(z, \boldsymbol{p}_{\perp}^{2}) + (\boldsymbol{p}_{\perp} \times \boldsymbol{s}_{T}) \cdot \hat{\boldsymbol{z}} \frac{1}{z\mathcal{M}} H^{\perp}(z, \boldsymbol{p}_{\perp}^{2})$$

$$\beta_{q\parallel} \equiv s_{L} G_{L}(z, \boldsymbol{p}_{\perp}^{2}) - (\boldsymbol{p}_{\perp} \cdot \boldsymbol{s}_{T}) \frac{1}{z\mathcal{M}} H_{L}^{\perp}(z, \boldsymbol{p}_{\perp}^{2})$$

$$\beta_{q\perp} \equiv \boldsymbol{p}_{\perp}^{\prime} \frac{1}{z\mathcal{M}} D_{T}^{\perp}(z, \boldsymbol{p}_{\perp}^{2}) - \boldsymbol{p}_{\perp} \frac{1}{z\mathcal{M}} s_{L} G_{T}(z, \boldsymbol{p}_{\perp}^{2})$$

$$+ \boldsymbol{s}_{T} H_{T}(z, \boldsymbol{p}_{\perp}^{2}) + \boldsymbol{p}_{\perp}(\boldsymbol{p}_{\perp} \cdot \boldsymbol{s}_{T}) \frac{1}{z^{2}\mathcal{M}^{2}} H_{T}^{\perp}(z, \boldsymbol{p}_{\perp}^{2})$$

$F^{q o Q}(z,oldsymbol{p}_{\perp};oldsymbol{s},oldsymbol{S})$					
	Q/q	U	L	T	
	U	D_1		H_1^{\perp}	
	L		G_{1L}	H_{1L}^{\perp}	
	Т	D_{1T}^{\perp}	G_{1T}	$H_{1T}H_{1T}^{\perp}$	

MC SIMULATION OF FULL HADRONIZATION

H.M., Kotzinian, Thomas: Phys. Rev. D95 04021, (2017)

♦ We can consider many hadron emissions.

lacktriangle We can sample the $h,z,p_{\perp}^2, \varphi_h$ using

$$f^{q\to h}(z,p_{\perp}^2,\varphi_h;\mathbf{S}_T)$$

◆ Determine the momenta in the initial frame and calculate

$$\Delta N = \langle N_q^{h_1 h_2}(z, z + \Delta z, \varphi, \varphi + \Delta \varphi, \ldots) \rangle$$

- lacktriangle Calculate the remnant quark's spin: ${f S}' = \frac{{f \beta}_{\bf S}}{\alpha_{\bf S}}$
- ♦ We only need the "elementary" splittings.

$$f^{q o h}$$

$$f^{q o Q}$$

ELEMENTARY SPLITTINGS

H.M., Thomas, Bentz: PRD. 83:07400; PRD.83:114010, 2011.

Quark-quark correlator:

$$\Delta_{ij}(z, p_{\perp}) = \frac{1}{2N_c z} \sum_{X} \int \frac{d\xi^+ d^2 \boldsymbol{\xi}_{\perp}}{(2\pi)^3} e^{ip \cdot \boldsymbol{\xi}} \times \langle 0 | \mathcal{U}_{(\infty, \boldsymbol{\xi})} \psi_i(\boldsymbol{\xi}) | h, X \rangle_{\text{out out}} \langle h, X | \bar{\psi}_j(0) \mathcal{U}_{(0, \infty)} | 0 \rangle \bigg|_{\boldsymbol{\xi}^- = 0}$$

lacktriangle One-quark truncation of the wavefunction: q o Qh

$$d_q^h(z, p_\perp^2) = \frac{1}{2} \text{Tr}[\Delta_0(z, p_\perp^2)\gamma^+]$$

Use Nambu--Jona-Lasinio (NJL) Effective quark model:

$$\mathcal{L}_{NJL} = \overline{\psi}_q (i\partial \!\!\!/ - m_q) \psi_q + G(\overline{\psi}_q \Gamma \psi_q)^2$$

TWO HADRON CORRELATIONS: DIHADRON FRAGMENTATION FUNCTIONS

Number Densities

• The full number density:

$$F(z, \xi, \boldsymbol{k}_{T}, \boldsymbol{R}_{T}; \boldsymbol{s}) = D_{1}(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T})$$

$$+ s_{L} \frac{(\boldsymbol{R}_{T} \times \boldsymbol{k}_{T}) \cdot \hat{\boldsymbol{z}}}{M_{h}^{2}} G_{1}^{\perp}(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T})$$

$$+ \frac{(\boldsymbol{s}_{T} \times \boldsymbol{R}_{T}) \cdot \hat{\boldsymbol{z}}}{M_{h}} H_{1}^{\triangleleft}(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T})$$

$$+ \frac{(\boldsymbol{s}_{T} \times \boldsymbol{k}_{T}) \cdot \hat{\boldsymbol{z}}}{M_{h}} H_{1}^{\perp}(z, \xi, \boldsymbol{k}_{T}^{2}, \boldsymbol{R}_{T}^{2}, \boldsymbol{k}_{T} \cdot \boldsymbol{R}_{T})$$

• The differential number of hadron pairs:

$$dN_q^{h_1h_2} = F_q^{h_1h_2}(z, \xi, \mathbf{k}_T, \mathbf{R}_T; s) dz d\xi d^2\mathbf{k}_T d^2\mathbf{R}_T$$

UNPOLARIZED DIHADRON FRAGMENTATIONS

H.M., Thomas, Bentz: PRD.88:094022, (2013)

The probability density for observing two hadrons:

$$P_1 = (z_1 k^-, P_1^+, \mathbf{P}_{1,\perp}), \ P_1^2 = M_{h1}^2$$

 $P_2 = (z_2 k^-, P_2^+, \mathbf{P}_{2,\perp}), \ P_2^2 = M_{h2}^2$

• The corresponding number density:

$$\frac{D_q^{h_1 h_2}(z, M_h^2) \Delta z \Delta M_h^2 = \langle N_q^{h_1 h_2}(z, z + \Delta z; M_h^2, M_h^2 + \Delta M_h^2) \rangle}{z = z_1 + z_2 \quad M_h^2 = (P_1 + P_2)^2}$$

Kinematic Constraint.

$$\left(z_1 z_2 M_h^2 - (z_1 + z_2)(z_2 M_{h1}^2 + z_1 M_{h2}^2) \ge 0\right)$$

In MC simulations record all the pairs in every decay chain.

Effect of VMs on Unpol. DiFFs

Effect of VMs on Unpol. DiFFs

Longitudinal Polarisation in DiHadron FFs

DIFFS FROM THE NUMBER DENSITY

H.M., Kotzinian, Thomas: Phys. Rev. D96 074010, (2017)

- ◆ Can only calculate number density form MC simulations.
- **♦** Extract DiFFs from specific angular modulations.

$$F(z, \xi, \boldsymbol{k}_T, \boldsymbol{R}_T; s_L) = D_1(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \cos(\varphi_{RK}))$$
$$-s_L \frac{R_T k_T \sin(\varphi_{RK})}{M_b^2} G_1^{\perp}(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \cos(\varphi_{RK}))$$

♦ Unpolarized DiFF: straight forward integration of number density.

$$D_1(z, M_h^2) = \int d\xi \int d\varphi_R \int d^2 \mathbf{k}_T \ F(z, \xi, \mathbf{k}_T, \mathbf{R}_T; s_L)$$

lacktriangle Need $\cot(\varphi_{RK})$ to extract helicity dependent DiFF!

$$\tilde{G}_{1}^{\perp,[n]}(z,M_{h}^{2}) = \int d\xi \int d^{2}\mathbf{k}_{T} \frac{R_{T}k_{T}}{M_{h}^{2}} G_{1}^{\perp,[n]}(z,\xi,\mathbf{k}_{T}^{2},\mathbf{R}_{T}^{2})$$

$$\tilde{G}_{1}^{\perp,[n]}(z,M_{h}^{2}) = -\frac{1}{s_{L}} \int d\xi \int d^{2}\boldsymbol{k}_{T} \int d\varphi_{R} \frac{\cos(n \varphi_{RK})}{\sin(\varphi_{RK})} F(z,\xi,\boldsymbol{k}_{T},\boldsymbol{R}_{T})$$

$$\tilde{G}_{1}^{\perp} \equiv \tilde{G}_{1}^{\perp,[1]} = -\frac{1}{s_{L}} \int d\xi \int d^{2}\boldsymbol{k}_{T} \int d\varphi_{R} \cot(\varphi_{RK}) F(z,\xi,\boldsymbol{k}_{T},\boldsymbol{R}_{T})$$

DIFFS FROM THE NUMBER DENSITY

H.M., Kotzinian, Thomas: Phys. Rev. D96 074010, (2017)

- ◆ Can only calculate number density form MC simulations.
- **♦** Extract DiFFs from specific angular modulations.

$$F(z, \xi, \boldsymbol{k}_T, \boldsymbol{R}_T; s_L) = D_1(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \cos(\varphi_{RK}))$$
$$-s_L \frac{R_T k_T \sin(\varphi_{RK})}{M_b^2} G_1^{\perp}(z, \xi, \boldsymbol{k}_T^2, \boldsymbol{R}_T^2, \cos(\varphi_{RK}))$$

♦ Unpolarized DiFF: straight forward integration of number density.

$$D_1(z, M_h^2) = \int d\xi \int d\varphi_R \int d^2 \mathbf{k}_T \ F(z, \xi, \mathbf{k}_T, \mathbf{R}_T; s_L)$$

lacktriangle Need $\cot(\varphi_{RK})$ to extract helicity dependent DiFF!

$$\tilde{G}_{1}^{\perp,[n]}(z,M_{h}^{2}) = \int d\xi \int d^{2}\mathbf{k}_{T} \frac{R_{T}k_{T}}{M_{h}^{2}} G_{1}^{\perp,[n]}(z,\xi,\mathbf{k}_{T}^{2},\mathbf{R}_{T}^{2})$$

$$\tilde{G}_{1}^{\perp,[n]}(z,M_{h}^{2}) = -\frac{1}{s_{L}} \int d\xi \int d^{2}\boldsymbol{k}_{T} \int d\varphi_{R} \frac{\cos(n \varphi_{RK})}{\sin(\varphi_{RK})} F(z,\xi,\boldsymbol{k}_{T},\boldsymbol{R}_{T})$$

Note: here we use the definition by Boer et. al.

$$\tilde{G}_{1}^{\perp} \equiv \tilde{G}_{1}^{\perp,[1]} = -\frac{1}{s_{L}} \int d\xi \int d^{2}\mathbf{k}_{T} \int d\varphi_{R} \cot(\varphi_{RK}) F(z,\xi,\mathbf{k}_{T},\mathbf{R}_{T})$$

The Total Number of Pion Pairs

♦ Validate MC by analytically calculating the total number of pion pairs produced for given N_L .

$$N_L - n_0$$
 n_0 $(\pi^+, \pi^-, \pi^+, ..., \pi^0, \pi^0, \pi^0).$

♦ Extraction from DiFFs.

$$\mathcal{N}_{MC}^{(\pi^{+}\pi^{-})}(N_{L}) = \int_{0}^{1} dz \ D_{1,[N_{L}]}^{u \to \pi^{+}\pi^{-}}(z)$$

✓ MC simulations and Integral Expressions agree very well!

 \sqrt{z} cuts allow fast convergence with N_L .

N_L	$\mathcal{N}^{(\pi^+\pi^-)}$	$\mathcal{N}_N^{(\pi^+\pi^-)}$	$\mathcal{N}_{MC}^{(\pi^+\pi^-)}$	$\left \mathcal{N}_{MC,z_{min}}^{(\pi^+\pi^-)} \right $
2	$\frac{4}{9}$	0.44444	0.4444	0.350175
3	$\frac{28}{27}$	1.03704	1.03694	0.683999
4	$\frac{152}{81}$	1.87654	1.87641	0.959588
$G_{\mathbf{t}}$	$\frac{712}{243}$	2.93004	2.92992	1.11531
6	$\frac{3068}{729}$	4.2085	4.20882	1.18162
7	$\frac{12484}{2187}$	5.70828	5.70867	1.20282
8	$\frac{48752}{6561}$	7.43057	7.43047	1.20809

LONGITUDINAL POLARISATION

lacktriangle DiFF for longitudinally polarized quark: $s_L \; (m{k}_T imes m{R}_T) \cdot \hat{z}$

$$\tilde{G}_1^{\perp}(z) = -\frac{1}{s_L} \int d\xi \int d^2 \mathbf{R}_T \int d^2 \mathbf{k}_T \cot(\varphi_{RK}) F(z, \xi, \mathbf{k}_T, \mathbf{R}_T; s_L).$$

♦ The extraction method works: the angular dependence for $N_L=2$.

(given large enough statistics!)

$$F_E(\varphi_{RK}) = \frac{F(\varphi_{RK}) + F(2\pi - \varphi_{RK})}{2} \qquad 0.05$$

$$F_O(arphi_{RK}) = rac{F(arphi_{RK}) - F(2\pi - arphi_{RK})}{2}$$
 -0.05

VALIDATION: 2 PRODUCED HADRONS

◆ Validate MC simulations by comparing to explicit Integral Expressions (IE). Only pions produced in the first two steps!

$$D_1^{(2)}(z) = \hat{D}^{q \to q_1} \otimes \hat{D}^{q_1 \to h}$$

Spin rotation

Collins effect at 2-nd emission

Collins effect generates helicity dep. two-hadron correlation!

Results for G_1^{\perp}

lacktriangle Results for helicity DiFFs, several moments, various pairs. Cuts: $z_{1,2} \geq 0.1$

- lacktriangle Non-zero signal for various channels, sign change for $\pi^+\pi^+$ pairs
- $\bigstar z_{1,2} \geq 0.1$ cut enhances the analysing power at high-z for larger N_L!

Transverse Polarisation in DiHadron FFs

TRANSVERSELY POL. DIFFS FROM NUMBER DENSITY

H.M., Kotzinian, Thomas, Phys. Rev. D 97, 014019 (2018).

♦ Slightly more complicated procedure:

$$F(\varphi_R, \varphi_k; \mathbf{s}_T) = D_1(\cos(\varphi_{RK}))$$

$$+ a_R \sin(\varphi_R - \varphi_s) H_1^{\triangleleft}(\cos(\varphi_{RK}))$$

$$+ a_K \sin(\varphi_k - \varphi_s) H_1^{\perp}(\cos(\varphi_{RK}))$$

♦ n-th moment of DiFFs:

$$H_1^{\triangleleft,[n]} = \frac{2}{s_T} \left\langle \cos(\varphi_k - \varphi_s) \frac{\cos(n \cdot \varphi_{RK})}{\sin(\varphi_{RK})} F \right\rangle$$

$$H_1^{\perp,[n]} = -\frac{2}{s_T} \left\langle \cos(\varphi_R - \varphi_s) \frac{\cos(n \cdot \varphi_{RK})}{\sin(\varphi_{RK})} F \right\rangle$$

♦ SIDIS DiFFs:

$$H_1^{\triangleleft,SIDIS}(z) = \frac{2}{s_T} \langle \sin(\varphi_R - \varphi_s)F \rangle$$

$$H_1^{\perp,SIDIS}(z) = \frac{2}{s_T} \langle \sin(\varphi_k - \varphi_s)F \rangle$$

VALIDATION: 2 PRODUCED HADRONS

◆ Validate MC simulations by comparing to explicit Integral Expressions (IE). Only pions produced in the first two steps!

 $H_1^{\triangleleft(2)} = \hat{H}^{\perp(q \to q_1)} \otimes \hat{D}^{(q_1 \to h)} + \hat{H}_T^{(q \to q_1)} \otimes \hat{H}^{\perp(q_1 \to h)} + \hat{H}_T^{\perp(q \to q_1)} \otimes \hat{H}^{\perp(q_1 \to h)}$

Recoil TM Modulation

Collins effect at 2-nd emission

✓ Collins effect generates S₇ dep. DiFF correlations as well!

Analysing Power for Transverse Spin

♦ Comparing the analysing powers for all polarized DiFFs.

- **♦** Alternate signs for the two DiFFs.
- **♦** Significant differences between SIDIS and 0-th moments!
- **♦** Signals for all possible hadron pairs.

Feasibility of new measurements of G_1^{\perp}

◆ The analysing powers of DiFFs from quark-jet framework.

• G_1^{\perp} naturally smaller than H_1^{\triangleleft} , but should be measurable!

- **♦** Reanalyze BELLE and COMPASS data.
- ◆ Measure it at BELLE II and JLab 12GeV.

CONCLUSIONS II

- Hadronization Models are needed to calculate polarised TMD FFs and DiFFs, and study various correlations between them.
- *Polarised hadronisation in MC generators: support for future experiments to map the 3D structure of nucleon (COMPASS, JLab I 2, BELLE II, EIC).
- The quark-jet framework describes hadronization of a quark with arbitrary polarization via spin density matrix formalism.
- * All 3 DiHadron spin correlations from single-hadron effects in quark-jet!
- Naturally small, but measurable signal for helicity-dependent DiFFs.
- ❖ <u>Measurements</u> in e⁺e⁻ (BELLE) and <u>SIDIS</u> (JLab, COMPASS) would test the universality of the helicity-dependent DiFFs.

Thanks!

BACKUP SLIDES

Different Hadronization Mechanisms.

LUND Model

Quark-Jet

- ightharpoonup Fragmentation of $qar{q}$ pair: breakup of the string.
- ◆ Independent breaking of the string.
- **♦** Quark TM indep. of hadron type.

$$u \to u + s\bar{s}, \quad s \to s + s\bar{s}$$

QFT definition of FFs.

 \star Fragmentation of q, similar to

- **→** Time-ordered hadron emissions.
- $\bullet q \to Qh$ depends on h (spin, mass).

$$u \to K^+ + s, \quad s \to \phi + s$$

 $u \to K^{*+} + s$

+ No correlation in TM: h₁ and h₂.

◆ Recoil TM of h₁ affects h₂

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

Different Hadronization Mechanisms.

LUND Model

Quark-Jet

- **+**Fragmentation of $q\bar{q}$ pair: breakup of the string.
- ◆ Independent breaking of the string.
- ◆ Quark TM indep. of hadron type.

- *Fragmentation of q, similar to QFT definition of FFs.
- **♦** Time-ordered hadron emissions.
- $\bullet q \to Qh$ depends on h (spin, mass).

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

Different Hadronization Mechanisms.

LUND Model

Quark-Jet

- ightharpoonup Fragmentation of $qar{q}$ pair: breakup of the string.
- ◆ Independent breaking of the string.
- **♦** Quark TM indep. of hadron type.

$$u \to u + s\bar{s}, \quad s \to s + s\bar{s}$$

QFT definition of FFs.

 \star Fragmentation of q, similar to

- **→** Time-ordered hadron emissions.
- $\bullet q \to Qh$ depends on h (spin, mass).

$$u \to K^+ + s, \quad s \to \phi + s$$

 $u \to K^{*+} + s$

+ No correlation in TM: h₁ and h₂.

◆ Recoil TM of h₁ affects h₂

Can we find a signature in polarized FFs? Perhaps Dihadron FFs?

TMD FFs and Collins Fragmentation Function

Unpolarized TMD FF: number density for quark q to produce unpolarized hadron h carrying LC fraction z and $TM P_{\perp}$.

Collins Effect: Azimuthal Modulation of Transversely Polarized Quark' FF. Fragmenting quark's transverse spin couples with produced hadron's TM!

Collins

▶ Collin FF is Chiral-ODD: Should to be coupled with another chiral-odd PDF/FF in observables.

TMD FFs for Spin-0 and Spin-1/2 Hadrons

* The transverse momentum (TM) of the hadron can couple with both its own spin and the spin of the quark!

- **♦ TMD Polarized Fragmentation Functions at LO.**
 - Donly two for unpolarised final state hadrons.
 - ▶ 8 for spin 1/2 final state (including quark). Similar to TMD PDFs.

Field-Theoretical Definitions

• The quark-quark correlator.

$$\Delta^{[\Gamma]}(z, \vec{p}_T) \equiv \frac{1}{4} \int \frac{dp^+}{(2\pi)^4} Tr[\Delta\Gamma]|_{p^- = zk^-}$$

$$= \frac{1}{4z} \sum_{X} \int \frac{d\xi^+ d^2 \vec{\xi}_T}{2(2\pi)^3} e^{i(p^- \xi^+/z - \vec{\xi}_T \cdot \vec{p}_T)} \langle 0 | \psi(\xi^+, 0, \vec{\xi}_T) | p, S_h, X \rangle \langle p, S_h, X | \bar{\psi}(0) \Gamma | 0 \rangle$$

• The definitions of FFs from the quark correlator

$$\begin{split} \Delta^{[\gamma^{+}]} &= D(z, p_{\perp}^{2}) - \frac{1}{M} \epsilon^{ij} k_{Ti} S_{Tj} D_{T}^{\perp}(z, p_{\perp}^{2}) \\ \Delta^{[\gamma^{+}\gamma_{5}]} &= S_{L} G_{L}(z, p_{\perp}^{2}) + \frac{\mathbf{k}_{T} \cdot S_{T}}{M} G_{T}(z, p_{\perp}^{2}) \\ \Delta^{[i\sigma^{i+}\gamma_{5}]} &= S_{T}^{i} H_{T}(z, p_{\perp}^{2}) + \frac{S_{L}}{M} k_{T}^{i} H_{L}^{\perp}(z, p_{\perp}^{2}) \\ &+ \frac{k_{T}^{i} (\mathbf{k}_{T} \cdot S_{T})}{M^{2}} H_{T}^{\perp}(z, p_{\perp}^{2}) - \frac{\epsilon^{ij} k_{Tj}}{M} H^{\perp}(z, p_{\perp}^{2}) \end{split}$$

Positivity and Polarisation of Quark

Bacchetta et al, PRL 85, 712 (2000).

- **♦** The probability density is Positive Definite: constraints on FFs.
- **♦** Leading-order T-Even functions FULLY Saturate these bounds!
- lacktriangledown For non-vanishing H^\perp and D_T^\perp , need to calculate T-Even FFs at next order!
- ◆ Average value of remnant quark's spin.

$$\langle \boldsymbol{S}_T \rangle_Q = \boldsymbol{s}_T \frac{\int dz \left[h_T^{(q \to Q)}(z) + \frac{1}{2z^2 M_Q^2} h_T^{\perp [1](q \to Q)}(z) \right]}{\int dz \ d^{(q \to Q)}(z)}$$

- lacktriangle In spectator model, at leading order: $h_T(z) = -d(z)$
- lacktriangle Non-zero h_T^\perp means $\langle S_T
 angle_Q
 eq -s_T$ (full flip of the spin)!

SPECTATOR MODELS

E.G. - Bacchetta et al, PLB 659:234, 2008

◆ Use Field-theoretical definition of FFs from a Correlator.

$$\Delta(z, k_T) = \frac{1}{2z} \int dk^+ \, \Delta(k, P_h) = \frac{1}{2z} \sum_{X} \int \frac{d\xi^+ d^2 \xi_T}{(2\pi)^3} e^{ik \cdot \xi} \langle 0 | \mathcal{U}_{(+\infty, \xi)}^{n_+} \psi(\xi) | h, X \rangle \langle h, X | \bar{\psi}(0) \mathcal{U}_{(0, +\infty)}^{n_+} | 0 \rangle \Big|_{\xi^- = 0}$$

$$D_1(z, z^2 \vec{k}_T^2) = \text{Tr}[\Delta(z, \vec{k}_T) \gamma^-].$$

$$\frac{\epsilon_T^{ij} k_{Tj}}{M_h} H_1^{\perp}(z, k_T^2) = \frac{1}{2} \operatorname{Tr} \left[\Delta(z, k_T) i \sigma^{i} \gamma_5 \right]$$

- \spadesuit Approximate the remnant X as a "spectator" (quark).
- **◆** Calculate the FFs at leading-order in favourite quark model.

$$D_1(z,p_\perp^2)$$

$$H_1^{\perp}(z,p_{\perp}^2)$$

Model Calculations of $q \rightarrow Q$ Splittings

E.G. - Meissner et al, PLB 690, 296 (2010).

♦ We can use the same "spectator" type calculations as for pion.

T-even

$$q \to h$$

$$q \to Q$$

♦ Positivity Constraints on TMD FFs: Bacchetta et al, P.R.L. 85, 712 (2000).

$$(H_L^{\perp[1]})^2 + (D_T^{\perp[1]})^2 \le \frac{p_\perp^2}{4z^2M^2}(D + G_L)(D - G_L) \le \frac{p_\perp^2}{4z^2M^2}D^2$$
$$(G_T^{[1]})^2 + (H^{\perp[1]})^2 \le \frac{p_\perp^2}{4z^2M^2}(D + G_L)(D - G_L) \le \frac{p_\perp^2}{4z^2M^2}D^2$$

◆ T-odd parts from previous models <u>violate positivity</u>!

$$(\hat{G}_{T}^{[1]})^{2} = (\hat{H}_{L}^{\perp[1]})^{2} = \frac{p_{\perp}^{2}}{4z^{2}M^{2}}(\hat{D} + \hat{G}_{L})(\hat{D} - \hat{G}_{L}) \leq \frac{p_{\perp}^{2}}{4z^{2}M^{2}}\hat{D}^{2}$$

$$\hat{H}^{\perp}(z, p_{\perp}^{2}) = 0, \quad \hat{D}_{T}^{\perp}(z, p_{\perp}^{2}) = 0.$$

Model Calculations of $q \rightarrow Q$ Splittings

♦ Simple Model that is positive-definite:

$$\hat{d}(z, p_{\perp}^2) = 1.1 \hat{d}_{tree}(z, p_{\perp}^2),$$

♦ Use Collins-ansatz for T-odd

J. C. Collins, NPB 396, 161 (1993)

$$\frac{p_{\perp}}{zM} \frac{\hat{h}^{\perp (q \to h)}(z, p_{\perp}^2)}{\hat{d}^{(q \to h)}(z, p_{\perp}^2)} = 0.4 \frac{2 p_{\perp} M_Q}{p_{\perp}^2 + M_Q^2}$$

$$d_T^{\perp} = -h^{\perp}$$

Ensures the inequalities

$$(H_L^{\perp[1]})^2 + (D_T^{\perp[1]})^2 \le \frac{p_\perp^2}{4z^2M^2}(D + G_L)(D - G_L) \le \frac{p_\perp^2}{4z^2M^2}D^2$$

$$(G_T^{[1]})^2 + (H^{\perp[1]})^2 \le \frac{p_\perp^2}{4z^2M^2}(D + G_L)(D - G_L) \le \frac{p_\perp^2}{4z^2M^2}D^2$$

* Also: Evolution - mimicking ansatz

$$\hat{d}'(z, p_{\perp}^2) = (1 - z)^4 \hat{d}(z, p_{\perp}^2)$$

Results for Collins Effect

HM et al, Phys. Rev. D95 04021, (2017)

Results for Collins Effect

HM et al, Phys. Rev. D95 04021, (2017)

- **♦ Opposite sign and similar size** in mid-z range for charged pions. (Similar to empirical extractions).
- ◆ Dependence on model inputs: can be tuned to data.

Results for helicity dependant DiFFs

lacktriangle Results for helicity DiFFs, N_L dependence, various pairs. Cuts: $z_{1,2} \geq 0.1$

- ♦ Non-zero signal for various channels, sign change for $\pi^+\pi^+$ pairs!
- $lacktriangle z_{1,2} \geq 0.1$ cut enhances the analysing power at high-z for larger N_L!

Analysing powers for DiFFs in e⁺e⁻

- ◆ The analysing powers of DiFFs from quark-jet framework.
- G_1^{\perp} naturally smaller than H_1^{\triangleleft} , but should be measurable!

INCLUSION OF VECTOR MESONS AND (STRONG) DECAYS

- A naive assumption:VMs should have modest contribution due to relatively small production probability $P(\pi^+)/P(\rho^+) \approx 1.7$
- But: Combinatorial factors enhance VM contribution significantly!
- Let's consider only two hadron emission

Direct:
$$u \to d + \pi^+ \to u + \pi^- + \pi^+$$

VM: $u \to d + \pi^+ \to u + \rho^- + \pi^+$

$$u \to u + \rho^0 \to u + \rho^0 + \rho^0 \to \pi^+ \pi^-$$

$$u \to u + \rho^0 \to u + \rho^0 \to \pi^+ \pi^-$$

$$P_{Dir}(\pi^{+}\pi^{-})/P_{VM}(\pi^{+}\pi^{-}) \approx \frac{1}{4}$$

2-AND 3-BODY DECAYS

The M_h^2 spectrum of pseudoscalars is strongly affected by VM decays.

- We include only the 2-body decays ρ, K^* .
- Both 2- and 3-body decays of ω, ϕ .

Achasov et al. (SND), PRD 68, 052006, (2003).

PYTHIA RESULTS FOR $u \to \pi^-\pi^+$

PYTHIA SIMULATIONS

- Setup hard process with back to back q \bar{q} along z axis.
- Only Hadronize. Allow the same resonance decays as NJL-jet.
- Assign hadrons with positive p_z to q fragmentation.

$$E_q = 10 \text{ GeV}$$

Single Hadron

Dihadron

Recent BELLE Results

♦ Invariant mass dependence of unroll DiFFs: arXiv:1706.08348

- ♦ Note: $D(z, M_h)dM_h = 2M_h \ D(z, M_h^2)dM_h$
- ◆ Large z favours large M_h!
- ♦ Non-resonant channels have no M_h structure, but are amplified!

Longitudinal Spin

lacktriangle FF for longitudinally polarized quark: $({f R} imes {f T}) \cdot {f s}_L$

$$D_{q}^{h_1 h_2}(\varphi_{R-T}) = D_{q}^{h_1 h_2} [\cos(\varphi_{R-T})] + s_L \sin(\varphi_{R-T}) \mathcal{G}[\cos(\varphi_{R-T})]$$
$$\varphi_{R-T} \equiv \varphi_R - \varphi_T$$

lacktriangle Proof of linear dependence on s_L: 9 values of (s_L, \mathbf{s}_T) for $N_L = 6$.

Results for unpolarized DiFF

◆ Results for unpolarized DiFFs, N_L dependence, various pairs:

Saturations of FFs with h Rank

♦ FFs vs Rank of produced hadron.

✓ Hadrons of Rank > 4 are negligible for FFs at z > 0.1

NAMBU--JONA-LASINIO MODEL

Yoichiro Nambu and Giovanni Jona-Lasinio:

"Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I"

Phys.Rev. 122, 345 (1961)

Effective Quark model of QCD

• Effective Quark Lagrangian

$$\mathcal{L}_{NJL} = \overline{\psi}_q (i\partial \!\!\!/ - m_q) \psi_q + G(\overline{\psi}_q \Gamma \psi_q)^2$$

- •Low energy chiral effective theory of QCD.
- Covariant, has the same flavor symmetries as QCD.

NAMBU--JONA-LASINIO MODEL

 Dynamically Generated Quark Mass from GAP Eqn.

$$\frac{-1}{k} = \frac{-1}{k} + \frac{k}{k}$$

•Pion mass and quark-pion coupling from •Pion decay constant t-matrix pole.

Fixing Model Parameters

•Use Lepage-Brodsky Invariant Mass cut-off regularisation scheme.

$$M_{12} \le \Lambda_{12} = \sqrt{\Lambda_3^2 + M_1^2} + \sqrt{\Lambda_3^2 + M_2^2}$$

• Choose a $M_{u(d)}$ and use physical f_π , m_π , m_K to fix model parameters Λ_3 , G, M_s and calculate g_{hqQ} .

DEPENDENCE ON NUMBER OF EMITTED HADRONS

Restrict the number of emitted hadrons, N_{Links} in MC.

- ▶ We reproduce the splitting function and the full solution perfectly.
- ▶ The low z region is saturated with just a few emissions.

SOLUTIONS OF THE INTEGRAL EQUATIONS

H.M., Thomas, Bentz, PRD. 83:074003, 2011

♦ Input elementary probabilities from NJL:

♦ Solutions of the integral equations:

SOLUTIONS OF THE INTEGRAL EQUATIONS

H.M., Thomas, Bentz, PRD. 83:074003, 2011

♦ Input elementary probabilities from NJL:

♦ Solutions of the integral equations:

Lorentz Transforms of TM

Diehl: NPB 596, 33 (2001)(2015)

▶ Boosts from 0 TM frame that preserve "-" component.

1	$oxedsymbol{k}_{\perp}^2 \over 2(k^-)^2$	$\frac{k_1}{k^-}$	$\frac{k_2}{k^-}$	\
0	1	0	0	
0	$\frac{k_1}{k^-}$	1	0	
0	$\frac{k_2}{k}$	0	1	

	q	h
\mathcal{L}'	$(k'^+, k'^-, \mathbf{k}'_\perp = 0)$	$(p^+, p^-, \boldsymbol{p}_\perp)$
\mathcal{L}	$(k^+, k^- = k'^-, \mathbf{k}_\perp)$	$(P^+, P^- = p^-, \mathbf{P}_{\perp} = \mathbf{p}_{\perp} + z\mathbf{k}_{\perp})$

$$z \equiv \frac{p^-}{k^-} = \frac{p'^-}{k'^-}$$

$$\left(\mathbf{P}_{\perp} = \mathbf{p}_{\perp} + z\mathbf{k}_{\perp}\right)$$

In case of two (or more) hadrons: same story!

$$\left(oldsymbol{P}_{1\perp}=oldsymbol{p}_{1\perp}+z_1oldsymbol{k}_{\perp} \qquad oldsymbol{P}_{2\perp}=oldsymbol{p}_{2\perp}+z_2oldsymbol{k}_{\perp}
ight)$$

AVERAGE Transverse Momenta vs z

FRAGMENTATION

$$\langle P_{\perp}^2 \rangle_{unf} > \langle P_{\perp}^2 \rangle_f$$

♦Indications from HERMES

data: A. Signori, et al: JHEP 1311, 194 (2013)

✓ Multiple hadron emissions: broaden the TM dependence at low z!

TMD FRAGMENTATION FUNCTIONS

 π

K

COMPARISON WITH GAUSSIAN ANSATZ

• Average TM:
$$\langle P_\perp^2 \rangle \equiv \frac{\int d^2 \mathbf{P}_\perp \ P_\perp^2 D(z, P_\perp^2)}{\int d^2 \mathbf{P}_\perp \ D(z, P_\perp^2)}$$

• Gaussian ansatz assumes: $D(z,P_\perp^2)=D(z)\frac{e^{-P_\perp^2/\langle P_\perp^2\rangle}}{\pi\langle P_\perp^2\rangle}$