Measurement of transverse spin transfer of $\Lambda$ and $\bar{\Lambda}$ hyperons in $p+p$ collisions at STAR

Qinghua Xu (Shandong University) for the STAR Collaboration

DIS2018, Kobe
April 16-20, 2018

## Transverse spin structure of nucleon

- Transversity- least known pdf among 3 leading twist pdfs.

$$
\delta q\left(x, Q^{2}\right)=q^{\dagger}\left(x, Q^{2}\right)-q^{\downarrow}\left(x, Q^{2}\right)
$$




- Transversity involves helicity flip, thus no access in inclusive DIS process.
- Possible experimental measurements on $\delta q(x)$ :
- Via Collins function (SIDIS, $p+p$ ), di-hadron production (SIDIS and $p+p$ ) Several Global fits available: Anselmino et al'13, Kang et al'15, M. Radici et al'18
- Transversely polarized Drell-Yan process
- Transverse spin transfer to hyperons (DIS, p+p) - this talk


## What is special with $\Lambda$ ?

- $\Lambda$ polarization can be measured in experiment via weak decay:
$\wedge->p \pi-(\mathrm{Br} 64 \%), \wedge->n \pi^{0}(\mathrm{Br} 36 \%)$,
-T.D.Lee, C.N.Yang(1957)

- $\Lambda$ 's contain a strange constitute quark, whose spin is expected to carry most of the $\Lambda$ spin: $\left\langle\Lambda^{\uparrow}\right\rangle=(u d)_{00} s^{\uparrow}$

$$
\Lambda \text { spin } \sim s \text { quark's spin }
$$

## Transverse spin transfer of hyperons and $\delta \mathbf{q}(\mathbf{x})$

- Transverse spin transfer of hyperons provide access to transversity and transversely pol. frag. function:

$$
D_{T T} \equiv \frac{d \sigma^{\left(p^{\uparrow} p \rightarrow H^{\wedge} X\right)}-d \sigma^{\left(p^{\uparrow} p \rightarrow H^{\downarrow} X\right)}}{d \sigma^{\left(p^{\wedge} p \rightarrow H^{\wedge} X\right)}+d \sigma^{\left(p^{\uparrow} p \rightarrow H^{\downarrow} X\right)}}=\frac{d \Delta_{T} \sigma}{d \sigma}
$$



$$
d \Delta_{T} \sigma^{(p p \rightarrow H X)} \propto \sum_{a b c d} \int d x_{a} d x_{b} d z \delta f_{a}\left(x_{a}\right) f_{b}\left(x_{b}\right) \Delta_{T} D_{c}^{H}(z) d \Delta_{T} \widehat{\sigma}^{(a b \rightarrow c d)}
$$

transversity distribution
Transversely polarized fragmentation function

- D. de Florian, J. Soffer, M. Stratmann, W. Vogelsang, PLB439, 176 (1998).
- Q. Xu, Z. T. Liang, PRD70, 034015 (2004).
- Q. Xu, Z. T. Liang, E. Sichtermann, PRD73, 077503 (2006).
* Similarly, longitudinal spin transfer $D_{L L}$ is connected to helicity pdf \& frag. -1st measurements of $D_{\mathrm{LL}}$ at RHIC STAR, PRD80, 111102(2009)


## Direction of transverse polarization

- Transverse polarization direction - azimuthal angle determination Helicity density matrix of spin $1 / 2$ particle (transversely polarized) :

$$
\rho_{i n}^{a}=\frac{\mathbf{1}}{\mathbf{2}}\left(\begin{array}{cc}
\mathbf{1} & \boldsymbol{P}_{a r} e^{-i \phi} \\
\boldsymbol{P}_{a T} e^{i \phi} & \mathbf{1}
\end{array}\right) \quad \begin{aligned}
& P_{a T:} \text { transverse polarization } \\
& \phi: \text { azimuthal angle of pol. vector }
\end{aligned}
$$

- The direction of transverse polarization is rotated along the normal of scattering plane in partonic scattering:

J.Collins, S.Heppelmann, G.Ladinsky, NPB420 (1994)565


## How to measure transverse spin transfer?

- Possible measurements on transverse spin transfer:
- $\mathrm{D}_{\mathrm{TT}}$ : final state polarization along the pol. of outgoing hard quark (considering the rotation in scattering plane)--- jet correlation
- $\mathrm{D}_{\mathrm{NN}}$ : spin transfer w.r.t. production plane
- precision reduced ~ one half (beam pol. projected to N .)
- production plane close to hard scattering plane at high $\mathrm{p}_{\mathrm{T}}$
- in principle $D_{T T}=D_{N N}$



E704, PRL78, 4003(1997)

## RHIC- a polarized proton+proton collider


$\checkmark$ Data sample: transversely polarized $\mathrm{p}+\mathrm{p}$ collisions at 200 GeV taken with STAR detector in 2012, $\sim 19 \mathrm{pb}^{-1}$.
$\checkmark$ RHIC Beam polarization: Blue beam: 64\%, Yellow beam: 58\%.

## STAR - Solenoid Tracker At RHIC

## Magnet

- 0.5 T Solenoid

Triggering \& Luminosity Monitor

- Beam-Beam Counters
- $3.4<|\eta|<5.0$
- Zero Degree Calorimeters
- Vertex Position Detector Central Tracking
- Large-volume TPC
- $|\eta|<1.3$

Calorimetry

- Barrel EMC (Pb/Scintilator)
- $|\boldsymbol{\eta}|<1.0$
- Endcap EMC (Pb/Scintillator) East
- $1.0<\eta<2.0$
- Forward Meson Spectrometer

$-2.5<\eta<4.0$


## Lambda hyperon reconstruction at STAR

- $\Lambda$ and $\bar{\Lambda}$ are reconstructed via decay channels to (anti-)proton and pion:

- Residual backgrounds are subtracted with $\mathrm{D}_{\mathrm{T} T}$ extraction:

$$
\begin{gathered}
D_{T T}=\frac{D_{T T}^{r a w}-r D_{T T}^{b k g}}{1-r} \\
\delta D_{T T}=\frac{\sqrt{\left(\delta D_{T T}^{r a w}\right)^{2}+\left(r \delta D_{T T}^{b k g}\right)^{2}}}{1-r}
\end{gathered}
$$

-r: the residual background fraction, estimated with side-band method, <10\%

## Jet Correlation with hyperons

- Anti-Kt algorithm is used in jet reconstruction; $\Delta \mathrm{R}$ is calculated to make correlation between (anti-)Lambda candidate and jet.
- Require $\eta_{j e t} \sim(-0.7,0.9), p_{T}>5.0 \mathrm{GeV} / \mathrm{c}$. If $\Delta R<0.6$ for a hyperon, corresponding jet axis is used as outgoing quark direction to get the quark's transverse polarization direction.

$\Delta R$



## Extraction of transverse spin transfer $D_{\Pi}$

- Momentum distribution of $\Lambda$ weak decay in its rest frame:
$d N / d \cos \theta^{*} \sim A\left(\cos \theta^{*}\right)\left(1+\alpha P_{\Lambda} \cos \theta^{*}\right)$
$\alpha$ : decay parameter, 0.642 for $\Lambda$
$\cos \theta^{*} \propto \vec{P}_{\Lambda} \cdot \vec{p}_{p}^{*}$
$\vec{P}_{\Lambda}: \Lambda$ polarization vector
$\vec{p}_{p}^{*}$ : momentum of proton in $\Lambda$ rest frame
- $\mathrm{D}_{\mathrm{TT}}$ can be extracted from $\Lambda$ counts with opposite beam polarization within a small interval of $\cos \theta^{*}$ :

$$
D_{T T}=\frac{1}{\alpha \cdot P_{\text {beam }}<\cos \theta^{*}>} \cdot \frac{N^{\uparrow}-R N^{\downarrow}}{N^{\uparrow}+R N^{\downarrow}}
$$

$N^{\uparrow}: \Lambda(\bar{\Lambda})$ counts with positive beam polarization
$N^{\downarrow}: \Lambda(\bar{\Lambda})$ counts with negative beam polarization
$P_{\text {beam }}$ : polarization of beam
$<\cos \theta^{*}>$ : mean in each $\cos \theta^{*}$ bin

- Acceptance of reverse beam polarization is expected to be the same in each $\cos \theta^{*}$ bin, thus cancelled
- $\quad R$ : relative luminosity, obtained with non-hyperon events.


## Extraction of transverse spin transfer $D_{\Pi}$

- Lambda counts versus $\cos \theta^{*}$ for opposite beam spin:
$D_{T T}=\frac{1}{\alpha \cdot P_{\text {beam }}<\cos \theta^{*}>} \cdot \frac{N^{\uparrow}-R N^{\downarrow}}{N^{\uparrow}+R N^{\downarrow}}$


- Extract $\mathrm{D}_{\mathrm{TT}}$ in each $\cos \theta^{*}$ bin, then average over whole $\cos \theta^{*}$ range.
- Background subtraction.
- The method passed the null check with $\mathrm{K}_{\mathrm{s}}{ }^{0}->\Pi^{+} \pi^{-}$



## Transverse spin transfer $D_{\Pi I}$ results at STAR

- Results of transverse spin transfer $D_{T T}$ in $\mathrm{p}+\mathrm{p}$ collision at 200 GeV :

$\checkmark 1^{\text {st }}$ transverse spin transfer measurement in $p+p$ collisions at RHIC.
$\checkmark$ Most precise measurement on (anti-)Lambda polarization in p+p collision at RHIC, which reach $p_{T} \sim 6.7 \mathrm{GeV} / \mathrm{c}$ with statistical uncertainty of 0.04 .
$\checkmark D_{T T}$ of Lambda and anti-Lambda are consistent with each other and consistent with zero at current precision.


## Reducing systematic/statistical uncertainty

- List of systematic uncertainty to current $\mathrm{D}_{\mathrm{TT}}$ results:
$\checkmark 3.4 \%$ scale uncertainty from RHIC beam polarization measurement.
$\checkmark 2 \%$ from decay parameter ( $0.642 \pm 0.013$ ).
$\checkmark 0.012$ from relative luminosity measurement -> dominant source
$\checkmark$ Residual background fraction estimation (<0.003).
$\checkmark$ Pile up effect, estimated to be $<0.005$.
$\checkmark$ Trigger bias estimated from MC simulation (<0.008).
- Reduce the systematic uncertainty with cross-ratio method:

$$
D_{\mathrm{TT}}=\frac{1}{\alpha P_{\text {beam }}\left\langle\cos \theta^{*}\right\rangle} \frac{\sqrt{N^{\uparrow}\left(\cos \theta^{*}\right) N^{\downarrow}\left(-\cos \theta^{*}\right)}-\sqrt{N^{\downarrow}\left(\cos \theta^{*}\right) N^{\uparrow}\left(-\cos \theta^{*}\right)}}{\sqrt{N^{\uparrow}\left(\cos \theta^{*}\right) N^{\downarrow}\left(-\cos \theta^{*}\right)}+\sqrt{N^{\downarrow}\left(\cos \theta^{*}\right) N^{\uparrow}\left(-\cos \theta^{*}\right)}}
$$

$\checkmark$ Both acceptance and luminosity dependences are canceled mostly.
$\checkmark$ Consistent $D_{T T}$ results, with systematic uncertainty significantly reduced.
$\checkmark$ Underway, results to be released soon.

- Statistical uncertainty will be improved with 2015 STAR data ( $\sim 50 \mathrm{pb}^{-1}$ )


## Forward $\Lambda$ physics with STAR forward upgrade

- STAR forward detector upgrade enables forward $\Lambda$ reconstruction:
- with forward tracking system and forward calorimeter system in $2021^{+}$


[^0]
## Forward $\Lambda$ physics with STAR forward upgrade

- STAR forward detector upgrade enables forward $\Lambda$ reconstruction:
- with forward tracking system and forward calorimeter system in $2021^{+}$
$\checkmark$ Induced polarization in unpolarized $p+p$
$\checkmark$ Spin transfer in both longitudinal and transverse polarized pp : $\mathrm{D}_{\mathrm{LL}}$ \& $\mathrm{D}_{\mathrm{TT}}$
- Simulation of $\Lambda$ reconstruction with FCS + FTS in $p+p$ at STAR:



PHYSICAL REVIEW D 80, 111102(R) (2009)


## Summary and Outlook

- First measurement of $\Lambda / \bar{\Lambda}$ transverse spin transfer $\left(\mathrm{D}_{\mathrm{TT}}\right)$ in p+p collisions at RHIC, sensitive to transversity and transversely polarized fragmentation function.
- The largest $\Lambda / \bar{\Lambda}$ sample so far in $p+p$ collision at RHIC and the $D_{T T}$ precision is $\sim 0.04$ at $\left\langle p_{T}\right\rangle \sim 6.7 \mathrm{GeV}$ and $\langle\eta\rangle \sim 0.5$.
- $D_{T T}$ of $\Lambda / \bar{\Lambda}$ are consistent with each other at current precision.
- STAR p+p data taken in 2015 with transverse polarization is two times larger, and better $D_{T T}$ precision is expected.
- STAR forward detector upgrade enables rich forward $\Lambda$ physics, by reconstructing $\Lambda$ 's with forward tracking system and forward calorimeter system in $2021^{+}$at STAR.


[^0]:    * FTS: Forward Tracking System; FCS: Forward Calorimeter System

