Measurement of transverse spin transfer of Λ and $\overline{\Lambda}$ hyperons in p+p collisions at STAR

Qinghua Xu (Shandong University) for the STAR Collaboration

DIS2018, Kobe

April 16-20, 2018

Transverse spin structure of nucleon

- Transversity involves helicity flip, thus no access in inclusive DIS process.
- Possible experimental measurements on $\delta q(x)$:
 - Via Collins function (SIDIS, p+p), di-hadron production (SIDIS and p+p)
 Several Global fits available: Anselmino et al'13, Kang et al'15, M. Radici et al'18
 - Transversely polarized Drell-Yan process
 - Transverse spin transfer to hyperons (DIS, p+p) this talk

What is special with $\Lambda \mbox{\textbf{?}}$

Λ polarization can be measured in experiment via weak decay:
 Λ->pπ⁻(Br64%), Λ->nπ⁰(Br36%),
 -T.D.Lee, C.N.Yang(1957)

• A's contain a strange constitute quark, whose spin is expected to carry most of the Λ spin: $|\Lambda^{\uparrow}\rangle = (ud)_{00}s^{\uparrow}$

$$\Lambda$$
 spin ~ *s* quark's spin

Transverse spin transfer of hyperons and $\delta q(x)$

√s=500 GeV

 $p_T > 13 \text{ GeV}$

 D_{NN}^{Λ}

0.2

 Transverse spin transfer of hyperons provide access to transversity and transversely pol. frag. function:

- D. de Florian, J. Soffer, M. Stratmann, W. Vogelsang, PLB439, 176 (1998).
- Q. Xu , Z. T. Liang, PRD70, 034015 (2004).
- Q. Xu, Z. T. Liang, E. Sichtermann, PRD73, 077503 (2006).
- * Similarly, longitudinal spin transfer D_{LL} is connected to helicity pdf & frag. -1st measurements of D_{LL} at RHIC STAR, PRD80, 111102(2009)

cen. 2

Direction of transverse polarization

 Transverse polarization direction - azimuthal angle determination Helicity density matrix of spin ½ particle (transversely polarized) :

$$\rho_{in}^{a} = \frac{1}{2} \begin{pmatrix} 1 & P_{aT}e^{-i\phi} \\ P_{aT}e^{i\phi} & 1 \end{pmatrix}$$

 P_{aT} : transverse polarization ϕ : azimuthal angle of pol. vector

• The direction of transverse polarization is rotated along the normal of scattering plane in partonic scattering:

J.Collins, S.Heppelmann, G.Ladinsky, NPB420 (1994)565

How to measure transverse spin transfer ?

- Possible measurements on transverse spin transfer:
 - D_{TT}: final state polarization along the pol. of outgoing hard quark (considering the rotation in scattering plane)--- jet correlation
 - ◆ D_{NN}: spin transfer w.r.t. production plane
 - precision reduced ~ one half (beam pol. projected to N.)
 - production plane close to hard scattering plane at high $\ensuremath{p_{\text{T}}}$
 - in principle $\mathsf{D}_{\mathsf{TT}}\text{=}\mathsf{D}_{\mathsf{NN}}$

RHIC- a polarized proton+proton collider

✓ Data sample: transversely polarized p+p collisions at 200GeV taken with STAR detector in 2012, ~19pb⁻¹.

✓ RHIC Beam polarization: Blue beam: 64%, Yellow beam: 58%.

STAR - Solenoid Tracker At RHIC

Magnet

• 0.5 T Solenoid

Triggering & Luminosity Monitor

- Beam-Beam Counters
 - 3.4 < |η| < 5.0
- Zero Degree Calorimeters
- Vertex Position Detector

Central Tracking

- Large-volume TPC
 - |η| < 1.3

Calorimetry

- Barrel EMC (Pb/Scintilator)
 - |η| < 1.0
- Endcap EMC (Pb/Scintillator) East
 - 1.0 < η < 2.0
- Forward Meson Spectrometer
 - $2.5 < \eta < 4.0$

Lambda hyperon reconstruction at STAR

• Λ and $\overline{\Lambda}$ are reconstructed via decay channels to (anti-)proton and pion:

• Residual backgrounds are subtracted with D_{TT} extraction:

$$D_{TT} = \frac{D_{TT}^{raw} - rD_{TT}^{bkg}}{1 - r}$$
$$\delta D_{TT} = \frac{\sqrt{(\delta D_{TT}^{raw})^2 + (r\delta D_{TT}^{bkg})^2}}{1 - r}$$

- r: the residual background fraction, estimated with side-band method, <10%

Jet Correlation with hyperons

- Anti-Kt algorithm is used in jet reconstruction; ⊿R is calculated to make correlation between (anti-)Lambda candidate and jet.
- Require η_{jet} ~ (-0.7, 0.9), p_T > 5.0 GeV/c. If ΔR < 0.6 for a hyperon, corresponding jet axis is used as outgoing quark direction to get the quark's transverse polarization direction.

Extraction of transverse spin transfer D_{Π}

• Momentum distribution of Λ weak decay in its rest frame:

 $\frac{dN}{d\cos\theta^*} \sim A(\cos\theta^*)(1+\alpha P_{\Lambda}\cos\theta^*) \qquad \cos\theta^* \propto \vec{P}_{\Lambda} \cdot \vec{p}_p^*$ $\alpha: \text{ decay parameter, 0.642 for } \Lambda \qquad \qquad \vec{P}_{\Lambda}: \Lambda \text{ polarization vector}$ $\vec{p}_p^*: \text{ momentum of proton in } \Lambda \text{ rest frame}$

• D_{TT} can be extracted from Λ counts with opposite beam polarization within a small interval of $\cos\theta^*$:

$$D_{TT} = \frac{1}{\alpha \cdot P_{beam}} < \cos\theta^* > \frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}}$$

 N^{\uparrow} : $\Lambda(\overline{\Lambda})$ counts with positive beam polarization N^{\downarrow} : $\Lambda(\overline{\Lambda})$ counts with negative beam polarization P_{beam} : polarization of beam $<\cos\theta^*>$: mean in each $\cos\theta^*$ bin

- Acceptance of reverse beam polarization is expected to be the same in each $\cos\theta^*$ bin, thus cancelled
- *R*: relative luminosity, obtained with non-hyperon events.

Extraction of transverse spin transfer D_{Π}

 Lambda counts versus cosθ* for opposite beam spin:

 $D_{TT} = \frac{1}{\alpha \cdot P_{beam} < \cos\theta^* >} \cdot \frac{N^{\uparrow} - RN^{\downarrow}}{N^{\uparrow} + RN^{\downarrow}}$

- Extract D_{TT} in each cosθ* bin, then average over whole cosθ* range.
- Background subtraction.
- The method passed the null check with K_s⁰ ->π⁺ π⁻

Transverse spin transfer D_{Π} results at STAR

• Results of transverse spin transfer D_{TT} in p+p collision at 200 GeV:

- ✓ 1st transverse spin transfer measurement in p+p collisions at RHIC.
- ✓ Most precise measurement on (anti-)Lambda polarization in p+p collision at RHIC, which reach p_{τ} ~6.7 GeV/c with statistical uncertainty of 0.04.
- ✓ D_{TT} of Lambda and anti-Lambda are consistent with each other and consistent with zero at current precision.

Reducing systematic/statistical uncertainty

- List of systematic uncertainty to current D_{TT} results:
 - ✓ 3.4% scale uncertainty from RHIC beam polarization measurement.
 - ✓ 2% from decay parameter (0.642 ± 0.013).
 - ✓ 0.012 from relative luminosity measurement -> dominant source
 - ✓ Residual background fraction estimation (<0.003).
 - ✓ Pile up effect, estimated to be <0.005.
 - $\checkmark\,$ Trigger bias estimated from MC simulation (<0.008).
- Reduce the systematic uncertainty with cross-ratio method:

$$D_{\rm TT} = \frac{1}{\alpha P_{beam} \langle \cos \theta^* \rangle} \frac{\sqrt{N^{\uparrow}(\cos \theta^*) N^{\downarrow}(-\cos \theta^*)} - \sqrt{N^{\downarrow}(\cos \theta^*) N^{\uparrow}(-\cos \theta^*)}}{\sqrt{N^{\uparrow}(\cos \theta^*) N^{\downarrow}(-\cos \theta^*)} + \sqrt{N^{\downarrow}(\cos \theta^*) N^{\uparrow}(-\cos \theta^*)}}$$

- ✓ Both acceptance and luminosity dependences are canceled mostly.
- ✓ Consistent D_{TT} results, with systematic uncertainty significantly reduced.
- $\checkmark\,$ Underway, results to be released soon.
- Statistical uncertainty will be improved with 2015 STAR data (~50 pb⁻¹)

Forward Λ physics with STAR forward upgrade

• STAR forward detector upgrade enables forward Λ reconstruction: - with forward tracking system and forward calorimeter system in 2021⁺

* FTS: Forward Tracking System; FCS: Forward Calorimeter System

Forward Λ physics with STAR forward upgrade

- STAR forward detector upgrade enables forward Λ reconstruction:
 with forward tracking system and forward calorimeter system in 2021⁺
 - ✓ Induced polarization in unpolarized p+p
 - ✓ Spin transfer in both longitudinal and transverse polarized pp : D_{LL} & D_{TT}
- Simulation of ∧ reconstruction with FCS+FTS in p+p at STAR:

16

Summary and Outlook

- First measurement of $\Lambda/\overline{\Lambda}$ transverse spin transfer (D_{TT}) in p+p collisions at RHIC, sensitive to transversity and transversely polarized fragmentation function.
- The largest $\Lambda/\overline{\Lambda}$ sample so far in p+p collision at RHIC and the D_{TT} precision is ~0.04 at < p_T > ~6.7 GeV and < η >~0.5.
- D_{TT} of $\Lambda / \overline{\Lambda}$ are consistent with each other at current precision.
- STAR p+p data taken in 2015 with transverse polarization is two times larger, and better D_{TT} precision is expected.
- STAR forward detector upgrade enables rich forward Λ physics, by reconstructing Λ's with forward tracking system and forward calorimeter system in 2021⁺ at STAR.