Study of K⁰_s pair production in single-tag two-photon collisions at Belle

Sadaharu Uehara (KEK) Belle Collaboration

DIS2018, PI, Kobe Apr. 16-20, 2018

Two-photon Physics at e⁺e⁻ collider

 $\gamma^{(*)}\gamma^{(*)} \rightarrow \text{hadron(s)}$ (Exclusive final state):

Useful to Test of QCD

Measurement of resonance production and its properties Spectroscopy and new-resonance search

Physics motivations of Single-tag measurements, $\gamma * \gamma$:

- Q² dependence of transition form factor (TFF) of resonances
 - \rightarrow Test of QCD, models of meson/exotics, Hadron tomography by GDAs
- Reference of Light-by-Light hadronic contribution for $g-2|_{\mu}$

Measurement of single-tag processes and Form factor

Reaction : $e^+e^- \rightarrow e(e)$ hadrons: (e) not detected going extremely forward $\gamma * \gamma$ cross section $\sigma(W, Q^2)$ is derived using Equivalent Photon Approximation (luminosity function). $W - \gamma * \gamma$ c.m. energy, $Q^2 = -q_1^2$ virtuality In identical neutral meson pair production (C-even), the Bremsstrahlung diagram (C-odd) is not mixed.

Transition form factor (TFF) of a resonance: F(Q²)

Proportional to the helicity amplitude of the resonance production

$$\Sigma_{\lambda} |F(Q^{2})_{\lambda}|^{2} \propto \sigma (\gamma * \gamma \rightarrow \text{Resonance})$$

$$\gamma * \bigwedge_{Q^{2}} \overset{Q^{2}}{\text{Resonance with helicity } \lambda;}_{\text{along the } \gamma * \text{ direction}}$$

$$\gamma \times \overset{Q^{2}}{\text{Real } (q_{2}^{2}=0)}$$

$$S Uehara KEK DIS2018 Apr 2018 = 3$$

KEKB Accelerator and Belle Detector

- Asymmetric e⁻ e⁺ collider 8 GeV e⁻ (HER) x 3.5 GeV e⁺ (LER)
 √s= around 10.58 GeV ⇔ Υ(4S)
 Beam crossing angle: 22mrad
- World-highest Luminosity $L_{max}=2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

 \int Ldt ~ 1040 fb⁻¹ (Completed in Jun.2010)

High momentum/energy resolutions CDC+Solenoid, Csl Vertex measurement – Si strips Particle identification TOF, Aerogel, CDC-dE/dx, RPC for K_L/muon S.Uehara, KEK, DIS2018, Apr.2018

How about in the K⁰_SK⁰_S process?

Experimental analysis of Single-tag K⁰_SK⁰_S

Masuda et al. (Belle), PRD 97, 052003 (2018)

 $e^+e^- \rightarrow e$ (e) $K^0_{\ S} K^0_{\ S}$, $K^0_{\ S} \rightarrow \pi^+ \pi^-$

759 fb⁻¹

Topology: 1 electron(or positron) and 4 charged pions

Event Selection Criteria:

- **for tracks** 5 **tracks** satisfy p_t>0.1 GeV/c, >=2 of them satisfy p_t>0.4 GeV/c, **1 of them** satisfies **e-identification** and p>1.0 GeV/c
- for K_{s}^{0} s Charged π/K separation Reconstructed $K_{s}^{0} K_{s}^{0}$ masses (two-dimensional cut) : 492.6 < ave[M(K_{s}^{0})s] < 502.6 MeV/c² and diff[M(K_{s}^{0})s] < 10MeV/c² K_{s}^{0} decay vertex: 0.3 < v_{r} <8 cm

(a finite decay flight length in the $r\phi$ plane)

Kinematical cuts (Energy/momentum conservation and transverse-momentum balance)

$$E_{\text{ratio}} = \frac{E_{K^0 \underset{S}{K^0}}^{*\text{measured}}}{E_{K^0 \underset{S}{K^0}}^{*\text{expected}}} \text{ and } |\Sigma \text{ } \text{ } p_t^*| \text{ satisfy } \sqrt{\left(\frac{E_{\text{ratio}}-1}{0.04}\right)^2 + \left(\frac{|\Sigma \text{ } \text{ } p_t^*|}{0.1 \text{ GeV/c}}\right)^2} \le 1$$

Reconstructed mass, angles and Energy of the Signal candidates

8

Background processes

Rejection of non-exclusive background, $K_{S}^{0}K_{S}^{0}X$ using $|\Sigma p_{t}^{*}|$ vs. E_{ratio}

Systematic uncertainty

TABLE V: Sources of systematic uncertainties. The values are indicated for specific W ranges. DCS stands for the differential cross section.

Source	Uncertainty $(\%)$
Tracking	2
Electron-ID	1
Pion-ID (for four pions)	2
K_S^0 reconstruction (for two K_S^0 's)	3
Kinematic selection	4
Geometrical acceptance	1
Trigger efficiency	1 - 3
Background effect for the efficiency	2
Angular dependence of DCS	6-22
Background subtraction	3-7
No unfolding applied	1
Radiative correction	3
Luminosity function	4
Integrated luminosity	1.4
Total	13 - 24

Total: 13% - 24%

W dependence and $\gamma * \gamma$ cross section at Q² bins

S.Uehara, KEK, DIS2018, Apr.2018

χ_{cJ} charmonia

Assume that in total 7 events (3 events) peaking near the χ_{c0} (χ_{c2}) mass are purely from the charmonium (backgrounds are estimated <1 event in total)

$$\frac{d\sigma_{ee}}{dQ^2} = 4\pi^2 \left(1 + \frac{Q^2}{M_R^2} \right) \underbrace{(2J+1)}_{M_R^2} \underbrace{2d^2 L_{\gamma*\gamma}}_{dWdQ^2} \Gamma_{\gamma*\gamma}(Q^2) \mathcal{B}(K_S^0 K_S^0) \right) : \text{Definition of } \Gamma_{\gamma*\gamma}$$

Solid curve: SBG with the charmonium-mass scale \leftarrow much favored Dashed curve: With the ρ -mass scale (VDM like)

)______S.Uehara,

Partial Wave Analysis for TFF of $f'_2(1525)$

Applied for W<1.8 GeV. We take into account partial waves up to J=2. J=1 does not couple with $K_{S}^{0}K_{S}^{0} (\rightarrow J^{P} = 0^{+} \text{ and } 2^{+})$ PRD 97, 052003 (2018)

$$t_{0} = |SY_{0}^{0} + D_{0}Y_{2}^{0}|^{2} + |D_{2}Y_{2}^{2}|^{2} + 2\epsilon_{0}|D_{1}Y_{2}^{1}|^{2},$$

$$t_{1} = 2\epsilon_{1}\Re \left[(D_{2}^{*}|Y_{2}^{2}| - S^{*}Y_{0}^{0} - D_{0}^{*}Y_{2}^{0})D_{1}|Y_{2}^{1}| \right],$$

$$t_{2} = -2\epsilon_{0}\Re \left[D_{2}^{*}|Y_{2}^{2}|(SY_{0}^{0} + D_{0}Y_{2}^{0}) \right].$$

TFF of f'_2 for helicity $i = \lambda$ $\sqrt{r_{ifp}} F_{f2p} (i = 0, 1, 2)$ $r_{0fp} + r_{1fp} + r_{2fp} = 1$

S, D_0 , etc. --- Partial-wave amplitudes $\varepsilon_0, \varepsilon_1$ --- Spin-dependent flux factor ratios for the virtual photon Y_i^m --- Spherical harmonics

Formalism of PWA and parametrizations

Problems: Low statistics

Only 3 out of S, D_0 , D_1 and D_2 are independent Non-unique solution (multiple solutions for resonances)

Parametrization of the amplitudes with modelled W and Q² dependences \rightarrow

$$S = A_{BW}e^{i\phi_{BW}} + B_{S}e^{i\phi_{BS}},$$

$$D_{i} = \sqrt{r_{ifa}(Q^{2})}(A_{f_{2}(1270)} - A_{a_{2}(1320)})e^{i\phi_{faDi}} + \sqrt{r_{ifp}(Q^{2})}A_{f_{2}'(1525)}e^{i\phi_{fpDi}} + B_{Di}e^{i\phi_{BDi}},$$

$$A_{BW}(W) = \sqrt{\frac{8\pi m_S}{W}} \frac{f_S}{m_S^2 - W^2 - im_S g_S}$$

× $\frac{1}{(Q^2/m_0^2 + 1)^{p_S}}$, Nominal fit
Bs = 0

$$B_{S} = \frac{\beta a_{S} (W_{0}/W)^{b_{S}}}{(Q^{2}/m_{0}^{2}+1)^{c_{S}}},$$

$$B_{D0} = \frac{\beta^{5} a_{D0} (W_{0}/W)^{b_{D0}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D0}}},$$

$$B_{D1} = \frac{\beta^{5} Q^{2} a_{D1} (W_{0}/W)^{b_{D1}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D1}}},$$

$$B_{D2} = \frac{\beta^{5} a_{D2} (W_{0}/W)^{b_{D2}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D2}}},$$

$$\beta = \sqrt{1 - 4m_{K_{S}^{0}}^{2}/W^{2}} \text{ is the } K_{S}^{0} \text{ velocity}$$

$$r_{0fp}: r_{1fp}: r_{2fp} = k_0 Q^2: k_1 \sqrt{Q^2}: 1$$

-Destructive interference between $f_2(1270)$ and $a_2(1320)$ $-r_i(Q^2)$ and TFF for $f_2(1270)$ and $a_2(1320)$ are the same; use the values obtained in single-tag $\pi^0\pi^0$

Determine each component and the relative phase by a fit

Fit results in W dependence at Q² bins

Show indications of:

- Non-zero D_0 and D_1 components in the f_2 ' (1525).
- $f_2(1270)/a_2(1320)$ not visible
- An enhancement near the threshold (0.995 GeV).

Angular dependence and the PWA fit

Due to a lack of statistics, we use Q²-integrated angular differential cross section derived with the following convention (MC generated isotropically)

The fit is applied to the two-dimensional angular-dependence data.

Forward enhancement is from the helicity-0 component.

f′₂(1525) TFF Result

Shorter error bars ; statistical Longer error bars ; statistical and systematic Shaded areas; overall systematic

- Schuler, Berends, van Glick (SBG) Nucl. Phys. B 523, 423, (1998).

helicity-0 and -2 -- agree well with SBG. helicity-1 -- slightly smaller, but not inconsistent.

Note: the Q² dependence of each helicity fraction is assumed as follows

$$r_{0fp}: r_{1fp}: r_{2fp} = k_0 Q^2: k_1 \sqrt{Q^2}: 1$$

Fractions k_0 and k_1 are floated.

S.Uehara, KEK, DIS2018, Apr.2018

The Threshold Enhancement

() () ()

S.Uehara, KEK, DIS2018, Apr.2018

Summary

- Cross section for $\gamma * \gamma \rightarrow K^0_s K^0_s$ has been measured for $2M(K^0_s) < W < 2.6 \text{ GeV}$, $3 \text{ GeV}^2 < Q^2 < 30 \text{ GeV}^2$
- Q² dependence of $\Gamma_{\gamma*\gamma}$ of χ_{c0} and χ_{c2} has been measured. Preferable to the charmonium mass scale.
- Q² dependence of $f_2'(1525)$ -TFF has been measured.
- Signature of an enhancement near the $K_{S}^{0}K_{S}^{0}$ mass threshold is observed.

The measured Q² dependences are not inconsistent to theoretical predictions.

Backup

History of integrated luminosity at Belle

Formalism of PWA

$$|F(Q^2)| = \sqrt{\frac{\sigma_R^{\lambda}(Q^2)}{\sigma_R^{\lambda}(0)(1 + \frac{Q^2}{M^2})}}$$

$$\frac{d\sigma(\gamma^*\gamma \to \pi^0\pi^0)}{d\Omega} = \sum_{n=0}^2 t_n \cos(n\varphi^*),$$

$$t_0 = |M_{++}|^2 + |M_{+-}|^2 + 2\epsilon_0 |M_{0+}|^2,$$

$$t_1 = 2\epsilon_1 \Re \left((M_{+-}^* - M_{++}^*)M_{0+} \right),$$

$$t_2 = -2\epsilon_0 \Re (M_{+-}^* M_{++}),$$

$$\begin{array}{c} n=0 \\ + |M_{+-}|^2 + 2\epsilon_0 |M_{0+}|^2, \\ M_{+-}^* - M_{++}^*)M_{0+} \end{pmatrix}, \\ M_{++} = S \\ S = B_S(M_{++}) \\ S = B_S(M_$$

TFF is defined for each resonance R produced with each helicity λ

> To obtain the resonance amplitudes: Perform PWA, parameterizing W dependence of the resonance and continuum components of each helicity amplitude, e.g.,

 $S + D_0$,
$$\begin{split} \mathsf{S} &= B_{S}(W) + A_{f0}(W) \\ D_{0} &= 4\pi \left[B_{D0}(W) + A_{f2}(W) \sqrt{r_{20}} \right] Y_{2}^{0} \end{split}$$
etc.

> Determine each component as well as the relative phase by a fit

++ etc. --- Helicity state of the incident photons

- S, D_0 etc. -- Partial-wave amplitude in $\pi^0 \pi^0$ scattering
- *B*, *A*_f -- Background and *f*-resonance components.
- ϵ_0, ϵ_1 --- A spin-dependent flux factor ratio for the virtual-photons

 $\gamma * \gamma \to \pi^0 \pi^0 : f_0$ (980) and f_2 (1270) TFF's

The curves are PWA fit constructed by parameterized $f_0(980)$ and $f_2(1270)$) etc. (see the paper)

() () ()

 $|\cos \theta^*|$ dependence for $Q^2 = 9 \text{ GeV}^2$ and different W bins Significant contributions from hel.=0 and 1 in contrast to the no-tag (Q²=0) case

Two-photon decay width of $f_0(980)$ and $a_0(980)$

0000

S.Uehara, KEK, DIS2018, Apr.2018

 $f_0(1710)$ formation in $K^0_S K^0_S$

 $f_0(1710) \rightarrow K_S^0 K_S^0$ is confirmed in two-photon process.

KEK, DIS2018, Apr.2018

24

 $f_2(2200)$ - $f_0(2500)$ is the best solution (in all the J= 0, 2, 4 combinations)

- There can be an only wide state around 2240 MeV.
- Narrow appearances in previous measurements may be due to an interference effect and/or statistical fluctuation.
- A high-mass state at 2.5 GeV may be the heaviest light-quark scalar meson so far found.

K⁰_sK⁰_s Experimental data

Fit results

TABLE VI: Fitted parameters of cross sections and the number of solutions obtained under the conditions noted below. In each category, only solutions assuming $k_0 \neq 0 \cap k_1 \neq 0$ are shown. Only the single solution that gives the minimum χ^2 in category 3 is shown, while two viable solutions in categories 1 and 2 are shown.

Parameter	Cate	gory 1	Categ	gory 2	Category 3
Conditions	$A_{BW} \neq 0$	$\bigcap B_S = 0$	$A_{BW} = 0$	$\bigcap B_S \neq 0$	$A_{BW} = B_S = 0$
Number of solutions		2		2	3
	Solution 1a	Solution 1b	Solution 2a	Solution 2b	
$\chi^2_{ m P}/ndf$	152.4/150	159.8/150	154.9/151	156.1/151	293.9/155
$k_0 \; ({ m GeV}^{-2})$	$0.30\substack{+0.31\\-0.14}$	$0.31\substack{+0.34\\-0.15}$	$0.31^{+0.34}_{-0.15}$	$0.29^{+0.31}_{-0.14}$	$0.33^{+0.31}_{-0.14}$
$k_1 \; (\text{GeV}^{-1})$	$0.27\substack{+0.30\\-0.14}$	$0.27\substack{+0.44\\-0.15}$	$0.29\substack{+0.33\\-0.15}$	$0.24\substack{+0.29\\-0.13}$	$0.23\substack{+0.25\\-0.12}$
$F_{f2p}(0.0);(imes 10^{-2})$			100 ± 7		
$F_{f2p}(4.0); (\times 10^{-2})$	$24.1^{+2.6}_{-2.5}$	$24.4^{+2.7}_{-2.6}$	$24.3^{+2.6}_{-2.5}$	$24.4^{+2.6}_{-2.5}$	$27.1^{+2.7}_{-2.6}$
$F_{f2p}(6.0); (\times 10^{-2})$	$13.4^{+2.6}_{-2.5}$	$13.9^{+2.5}_{-2.4}$	$14.3^{+2.5}_{-2.3}$	$14.4^{+2.5}_{-2.3}$	$15.5^{+2.5}_{-2.4}$
$F_{f2p}(8.5); (\times 10^{-2})$	$11.2^{+2.3}_{-2.2}$	$11.3^{+2.3}_{-2.2}$	$11.5^{+2.3}_{-2.2}$	$11.6^{+2.3}_{-2.1}$	$12.4^{+2.3}_{-2.2}$
$F_{f2p}(12.5); (\times 10^{-2})$	$6.3^{+2.1}_{-1.9}$	$6.3^{+2.1}_{-1.9}$	$6.3^{+2.1}_{-1.9}$	$6.3^{+2.1}_{-1.9}$	$7.0^{+2.1}_{-1.9}$
$F_{f2p}(22.5); (\times 10^{-2})$	$4.6^{+1.9}_{-1.7}$	$4.6^{+1.9}_{-1.7}$	$4.6^{+1.9}_{-1.7}$	$4.7^{+1.9}_{-1.7}$	$5.1^{+2.0}_{-1.8}$
ϕ_{fpD1} (°);	33^{+28}_{-81}	177^{+27}_{-27}	112^{+23}_{-35}	108^{+24}_{-37}	47^{+24}_{-33}
ϕ_{fpD2} (°);	199^{+34}_{-75}	218^{+27}_{-29}	209^{+30}_{-35}	213^{+28}_{-33}	218^{+23}_{-27}
ϕ_{faD1} (°);	137^{+27}_{-34}	328^{+34}_{-39}	18^{+28}_{-30}	340^{+33}_{-33}	234^{+22}_{-24}
ϕ_{faD2} (°);	166^{+30}_{-32}	180^{+29}_{-29}	162^{+29}_{-32}	182^{+27}_{-28}	0 (fixed)
$f_S \ (\sqrt{\text{nb}} \ \text{GeV}^2); (\times 10^{-2})$	$1.3^{+1.1}_{-0.6}$	$0.9^{+0.8}_{-0.4}$	0 (fi	xed)	0 (fixed)
g_S (GeV)	$0.10\substack{+0.05\\-0.04}$	$0.06\substack{+0.05\\-0.05}$	0 (fi	xed)	0 (fixed)
p_S	$0.06\substack{+0.25\\-0.24}$	$0.01\substack{+0.26\\-0.25}$	0 (fi	xed)	0 (fixed)
ϕ_{BW} (°);	297^{+21}_{-21}	150^{+35}_{-24}	0 (fi	xed)	0 (fixed)
$a_{S} (\sqrt{\text{nb}}); (\times 10^{-3})$	0 (fi	xed)	$4.3^{+12.5}_{-5.9}$	$2.2^{+5.7}_{-3.0}$	0 (fixed)
b_S	0 (fi	xed)	$19.6^{+4.6}_{-4.1}$	$21.9^{+6.0}_{-4.0}$	0 (fixed)
c_S	0 (fi	xed)	$0.00^{+0.23}_{-0.06}$	$0.00\substack{+0.21\\-0.05}$	0 (fixed)
ϕ_{BS} (°);	0 (fi	xed)	99^{+19}_{-21}	311^{+20}_{-18}	0 (fixed)

The six processes; in total ~20 peaks

W>~2.5 GeV: (Netgative) Power law works + (χ_c charmonia)

The tensor-meson triplet, $f_2(1270)$, $a_2(1320)$, $f_2'(1525)$

W-dependences at high energies

Cross sections and their ratios

Process	п	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$K^0_S K^0_S$	$11.0 \pm 0.4 \pm 0.4$	2.4 - 4.0 [†]	< 0.8		10	
$\pi^+\pi^-$	$7.9 \pm 0.4 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
K^+K^-	$7.3 \pm 0.3 \pm 1.5$	3.0 - 4.1	< 0.6	6	6	
$\pi^0\pi^0$	$8.0 \pm 0.5 \pm 0.4$	3.1 - 4.1 [†]	< 0.8		10	
$\eta \pi^0$	$10.5 \pm 1.2 \pm 0.5$	3.1 - 4.1	< 0.8		10	
$\eta\eta$	$7.8\pm0.6\pm0.4$	2.4 - 3.3	< 0.8		10	
Process	σ_0 ratio	W(GeV)	$ \cos \theta^* $	BL	BC	DKV
$K^+K^-/\pi^+\pi^-$	$0.89 \pm 0.04 \pm 0.15$	3.0 - 4.1	< 0.6	2.3	1.06	
$K_S K_S / K^+ K^-$	~ 0.10 to ~ 0.03	2.4 - 4.0	< 0.6		0.005	2/25
$\pi^{0}\pi^{0}/\pi^{+}\pi^{-}$	$0.32 \pm 0.03 \pm 0.06$	3.1 - 4.1	< 0.6		0.04-0.07	0.5
$\eta \pi^0 / \pi^0 \pi^0$	$0.48 \pm 0.05 \pm 0.04$	3.1 - 4.0	< 0.8	$0.24R_f(0.46R_f)^{\ddagger}$		
$\eta\eta/\pi^0\pi^0$	$0.37 \pm 0.02 \pm 0.03$	2.4 - 3.3	< 0.8	$(0.36R_f^2(0.62R_f^2)^{\ddagger})$		

† Exclude χ_{cJ} region, 3.3 - 3.6 GeV.

‡ Assuming η is a member of SU(3) octet (superposition of octet and singlet with mixing angle of $\theta_p = -18^\circ$). R_f is a ratio of decay constants, $f_{\eta}^2/f_{\pi^0}^2$.

- *n* ranges 7 to 11. Close or not far from QCD prediction of 6 and 10.
- Cross section ratios tend to be constant above 3 GeV.

Summarized by H.Nakazawa Hadron2013

Angular dependence

 $\gamma\gamma o \pi^0\pi^0$

 $d\sigma/d|\cos\theta^*| \propto \sin^{-4}\theta^*$ is predicted by $q\overline{q}$ -meson model and perturbative QCD

- Fit to $\sin^{-4}\theta^* + b\cos\theta^*$
- b becomes constant above 3.2 GeV.

mode	$\alpha \sin \sin^{-\alpha} \theta^*$	GeV	$ \cos \theta^* $	
K _S K _S	3 – 8	2.6 - 3.3	< 0.8	
$\pi^+\pi^-$	Good agreement with 4	3.0 - 4.1	< 0.6	
K^+K^-	Good agreement with 4	3.0 - 4.1	< 0.6	
$\pi^0\pi^0$	Better agreement with $\sin^{-4} \theta^* + b \cos \theta^*$ Approaches $\sin^{-4} \theta^*$ above 3.1 GeV	2.4 - 4.1 [†]	< 0.8	
$\eta \pi^0$	Good agreement with 4 above 2.7 GeV	3.1 - 4.1	< 0.8	
ηη	Poor agreement with 4 Close to 6 above 3 GeV	2.4 - 3.3	< 0.9	Summarized by H.Nakazawa Hadron2013
	Exclude $\dagger \chi_{cJ}$ region, 3.3 - 3.6 G	eV		, DIS2018, Apr.2018

Scalars in the 1.2 – 1.6 GeV region

- Hadron experiments report a wide $f_0(1370)$ and a narrow $f_0(1500)$.
- Some of previous two-photon measurements provide a hint of $f_0(1100-1400) \rightarrow \pi\pi$ under the huge peak of $f_2(1270)$
- Belle's $\pi^0 \pi^0$ measurement reports $f_0(1470)$. May be visible in the line shape.
 - → favorable to the narrow $f_0(1500)$, but also consistent with $f_0(1370)$.

f ₀ (1370) ^[j]	$I^G(J^{PC}) = 0$	+(0++)
Mass $m = 1200$ to Full width $\Gamma = 20$	o 1500 MeV 0 to 500 MeV	
f0(1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
ππ	seen	672
f ₀ (1500) ^[n]	$I^{G}(J^{PC}) = 0^{4}$	+(0 + +)
Mass $m = 1505 \pm$ Full width $\Gamma = 109$	6 MeV (S = 1.3) $9 \pm 7 \text{ MeV}$	
Mass $m = 1505 \pm$ Full width $\Gamma = 109$ $f_0(1500)$ DECAY MODES	6 MeV (S = 1.3) $9 \pm 7 \text{ MeV}$ Fraction (Γ_i/Γ)	p Scale factor (MeV/c)

 $f_2(1270)$ - $a_2(1320)$ interference in KK

π^0 Transition Form Factor (TFF)

PRD 86, 092007 (2012)

x

1-x

 π^0

- Coupling of neutral pion with two photons Good test for QCD at high Q²
- Single-tag π⁰ production in two-photon process with a large-Q² and a small-Q² photon

Theoretically calculated from pion distribution amplitude and decay constant $\sum_{r=0}^{1} \sqrt{2} f_{\pi} \int T_{r} (r, Q^{2}, r) f_{r} (r, Q^{2}, r) f_$

$$F(Q^{2}) = \frac{\sqrt{2}J_{\pi}}{3} \int T_{H}(x,Q^{2},\mu)\phi_{\pi}(x,\mu)dx$$

BaBar has reported a significant deviation from the expectation.

Measurement:

γ*****

 $\begin{aligned} |F(Q^2)|^2 &= |F(Q^2,0)|^2 = (d\sigma/dQ^2)/(2A(Q^2)) & A(Q^2) \text{ is calculated by QED} \\ |F(0,0)|^2 &= 64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^2m_R^3\} \end{aligned}$

Detects e (tag side) and π^0 Q² = 2EE'(1 - cos θ) from energy and polar angle of the tagged electron S.Uehara, KEK, DIS2018, Apr.2018

Comparisons with Previous Measurements and Fits

seen in Belle result. $\sim 2.3\sigma$ difference between Belle and

BaBar in 9 – 20 GeV²

Fit A (suggested by BaBar) $Q^{2}|F(Q^{2})| = A (Q^{2}/10GeV^{2})^{\beta}$ BaBar: $A = 0.182 \pm 0.002 (\pm 0.004) \text{ GeV}$ $\beta = 0.25 \pm 0.02$

BaBar, PRD 80, 052002 (2009)

Belle: —

 $A = 0.169 \pm 0.006 \text{ GeV}$ β = 0.18 ± 0.05 χ^2 /ndf = 6.90/13 ~1.5 σ difference from BaBar

Fit B (with an asymptotic parameter) $Q^{2}|F(Q^{2})| = BQ^{2}/(Q^{2}+C)$ Belle: $B = 0.209 \pm 0.016 \text{ GeV}$ $C = 2.2 \pm 0.8 \text{ GeV}^2$ χ^2 /ndf = 7.07/13 B is consistent with the QCD value (0.185GeV)