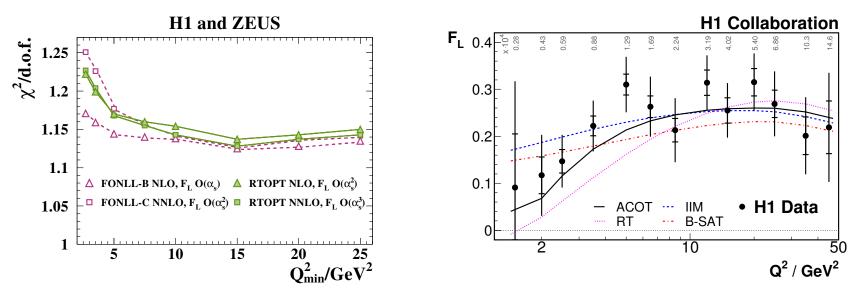
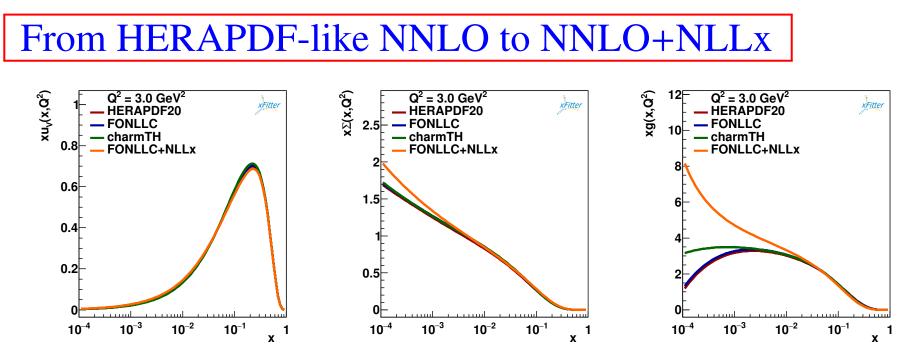
Impact of low-x resummation on QCD analysis of HERA data

S. Glazov (DESY), DIS-2018, Kobe 19/04/2018

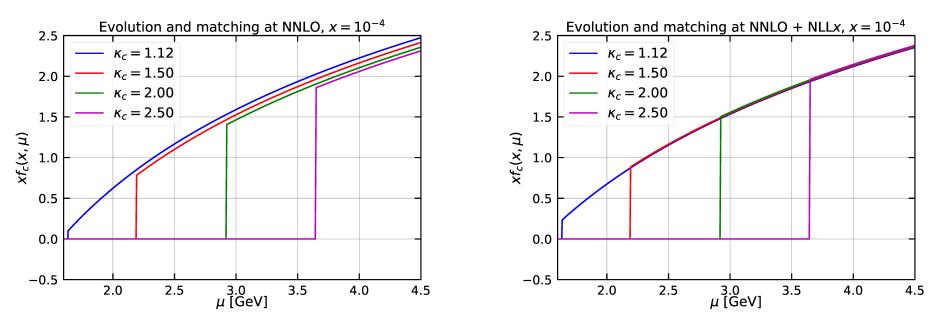

1

xFitter project

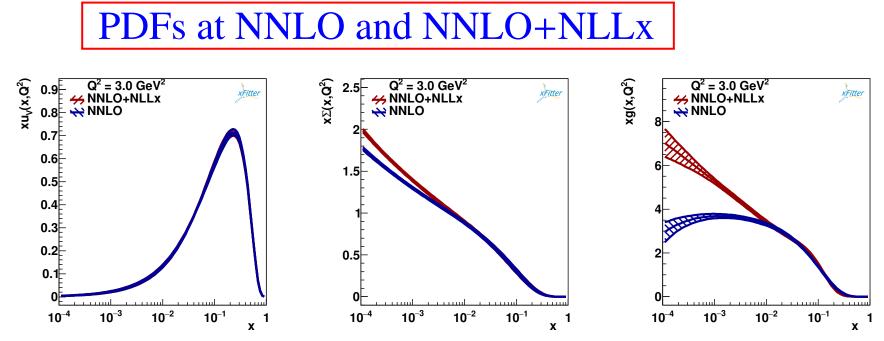

- **xFitter** is an open source QCD analysis tool.
- Last release, 2.0.0 "Frozen Frog", used in many analyses by experimental and phenomenological groups.
- **xFitter** provides interface to many data samples, with complex correlation model, fast χ^2 computation, fast evolution using QCDNUM, build-in computation of DIS cross sections and interfaces to APPLGRID and FastNLO, and other features such as different PDF parameterisations and regularisation methods.
- **xFitter** has interfaces to a number of external packages, for this talk the most important are evolution package APFEL (CPC 185, 1647 (2014)) and ln 1/x resummation package HELL (EPJ C76(11), 597 (2016), JHEP 12, 117 (2017).) which is interfaced via APFEL.

 \rightarrow see talk of Fred Olness for more details on the xFitter project. This talk is focused on the studies described in 1802.00064.

Low *x* analysis motivations

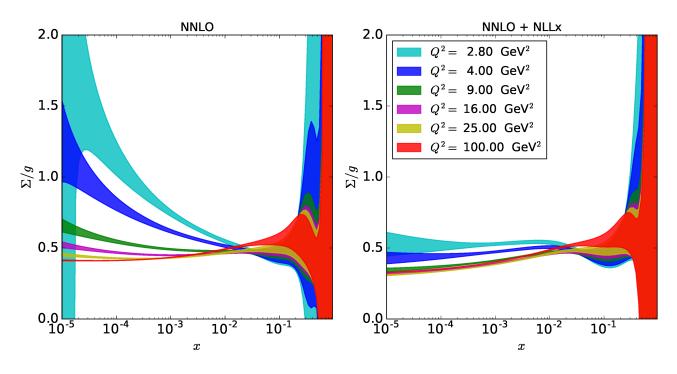


- Several indications that NNLO DGLAP fits have difficulty with to describe low Q^2 HERA data, NLO being better vs NNLO, depending on order of F_L (EPJC75 (2015) 12, 580).
- Alternative models, such as dipole, provide good description of the data (EPJC71(2011) 1579).
- Recent study from NNPDF collaboration, showing that $\ln 1/x$ resummation improves NNLO fits arXiv:1710.05935.



- Start with HERAPDF20-like settings, using RT scheme. Input data: HERA2.0 inclusive and combined charm.
- \rightarrow Move to FONLL-C: no change in PDFs.
- → Raise the charm matching point from $\mu_C = m_C = 1.43$ GeV to $\mu_C = 1.12m_C = 1.6$ GeV (needed for HELL). Notable change in the gluon distribution.
- → Include $\ln 1/x$ resummation: large change in the gluon, χ^2 drops by 73 units (for 1131 degrees of freedom).

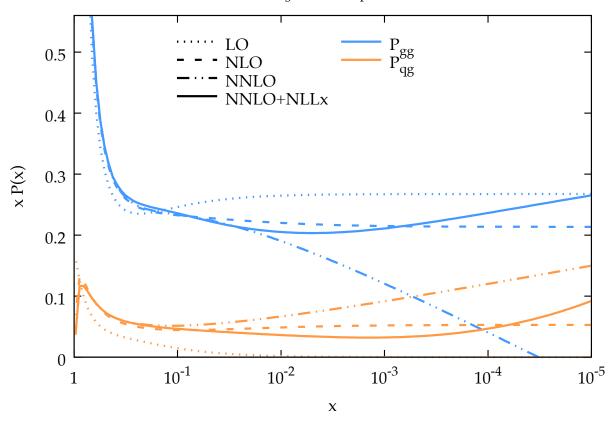
Matching at NNLO vs NNLO+NLLx


- Vary charm matching point μ_c between $1.12m_c$ and $2.5m_c$, study low $x = 10^{-4}$.
- For NNLO, steps observed at the matching point; to compensate for smaller charm PDF the gluon distribution is increased.
- Much smoother behavior when $\ln 1/x$ resummation is included. (see also talk by Fred Olness on the heavy flavor matching point studies)

- Optimize settings for the NNLO and NNLO+NLLx fits: charm/bottom-quark mass scan, parametersiation scan.
- Evaluate experimental uncertainties.
- Valence shape is unchanged by including $\ln 1/x$ resummation, singlet is affected slightly while gluon is affected the most.

 \rightarrow The rise of the gluon and the singlet towards low *x* seems to have the same power after resummation is included.

Ratio Σ/g

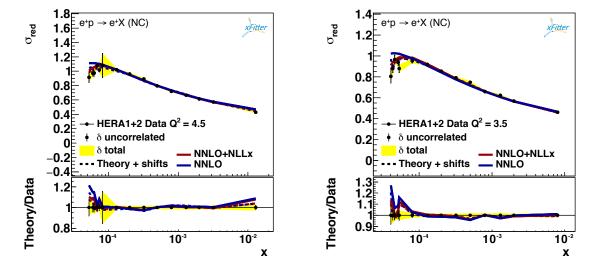


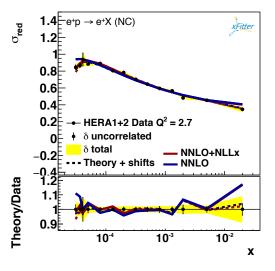
- Quantify the power of the rise of xg and $x\Sigma$ by examining evolution of their ratio.
- Large evolution at NNLO, with the ratio exceeding unity at low scales.
- Ratio is ≤ 0.5 when $\ln 1/x$ resummation is included.

 \rightarrow more inline with "dynamic" picture of PDFs in which the sea is generated from the gluon perturbativaly like in GRV fits.

 $\alpha_{\rm s} = 0.28, \ {\rm n_f} = 4$

Spitting functions P_{gg} and P_{qg} show un-physical behavior at NNLO: $P_{qg} > P_{gg}$ at $x \sim 10^{-3}$ for $Q \sim 2$ GeV. This leads to the fast rise of the singlet vs gluon at low scales. Resummed splitting functions show behavior inline with the expectations.

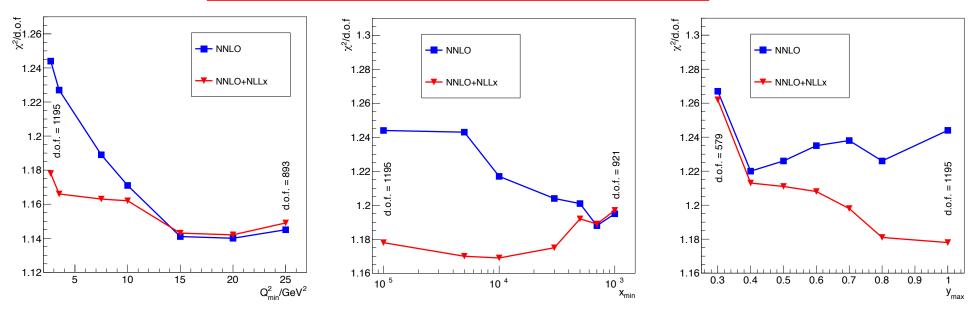

Data vs theory


NNLO fit	NNLO+NLL <i>x</i> fit	
1446/1178	1373/1178	
446 /377	413/377	
70/70	65/70	
48/47	49/47	
102	77	
15	11	
20	-3	
-2	-1	
	1446/1178 446/377 70/70 48/47 102 15 20	$\begin{array}{cccccccc} 1446/1178 & 1373/1178 \\ 446/377 & 413/377 \\ 70/70 & 65/70 \\ 48/47 & 49/47 \\ 102 & 77 \\ 15 & 11 \\ 20 & -3 \end{array}$

 $\chi^{2} = \sum_{i} \frac{\left[D_{i} - T_{i}\left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)\right]^{2}}{\delta_{i,\text{unc}}^{2} T_{i}^{2} + \delta_{i,\text{stat}}^{2} D_{i} T_{i}} + \sum_{j} b_{j}^{2} + \sum_{i} \ln \frac{\delta_{i,\text{unc}}^{2} T_{i}^{2} + \delta_{i,\text{stat}}^{2} D_{i} T_{i}}{\delta_{i,\text{unc}}^{2} D_{i}^{2} + \delta_{i,\text{stat}}^{2} D_{i}^{2}},$

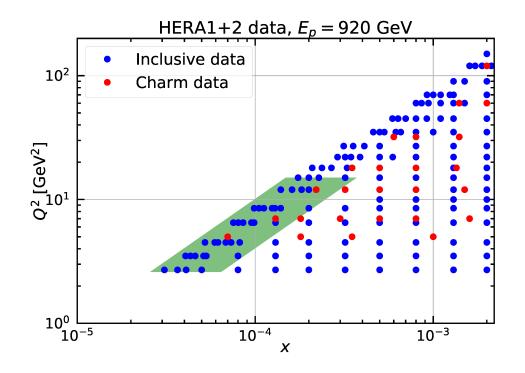
 \rightarrow largest improvements in the χ^2 are observed for the precise $E_p = 920$ GeV set as well as for correlated systematic uncertainties and log-penalty term.

Data vs Theory

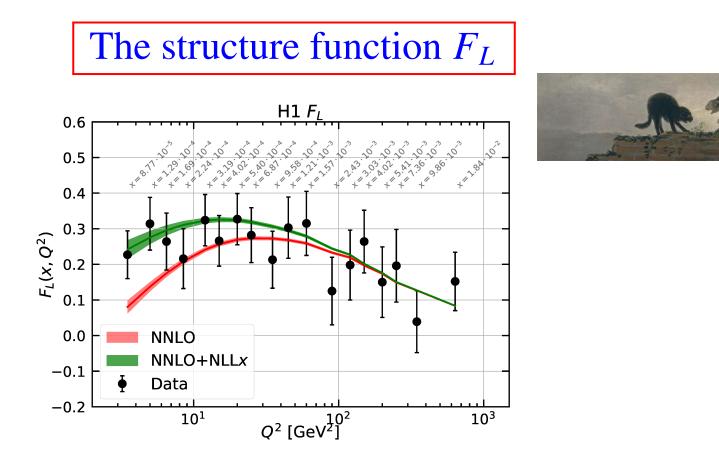

At low Q^2 ,

$$\sigma_{\rm red} = F_2 - \frac{y^2}{1 + (1 - y)^2} F_L.$$

where inelasticity $y = \frac{Q^2}{Sx}$.


- Turn-over of the cross section at low *x* corresponds to large *y* and increased influence of F_L .
- The turn-over is better described when $\ln 1/x$ resummation is included.
- Even $Q^2 = 2.7 \text{ GeV}^2$ bin looks acceptable, however χ^2 for this bin remains poor for both fits.

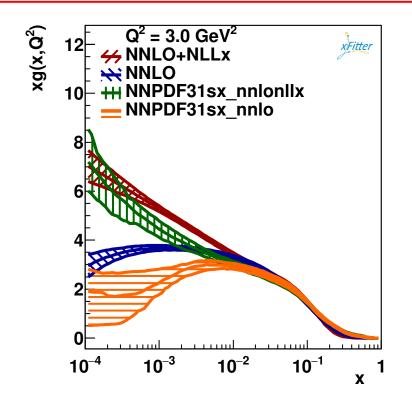
Isolating the impact of NLLx



- Repeat fits with various kinematic cuts on the data.
- Include $Q^2 = 2.7 \text{ GeV}^2$ bin in this study.
- Scan in Q_{\min}^2 , x_{\min} and additionally in y_{\max} .
- Improvements when $\ln 1/x$ resummation is included for low Q^2 , low x and high y.
- Quality of the description by both NNLO and NNLO+NLLx fits becomes similar when these regions are excluded.

Region of maximal impact

- 1D scans define the regions where ln 1/x resummation has largest impact: Q² < 15 GeV, x < 5 · 10⁻⁴, and y > 0.4 (assuming E_p = 920 GeV).
- This defines the "green region" in x, Q^2 kinematic plane.
- When this region is excluded, the difference in χ^2 between NNLO and NNLO+NLLx fits is only 15 units compared to 73 units when it is included.


- The fit with $\ln 1/x$ resummation included gives better description of the SF F_L measured by H1 (EPJ C74, (2014) 2814).
- However, given uncertainties, more important is the accurate measurement at high *y* using large $E_p = 920$ GeV sample ("indirect F_L ").

Summary

- NNLO fits with and without $\ln 1/x$ resummation are performed to the HERA data.
- Significant improvement in the χ^2 is observed when $\ln 1/x$ resummation is included, concentrated in the region at low *x*, low Q^2 and high *y* where the contribution of the structure function F_L is sizable.
- NNLO+NLLx fits have increased gluon distribution at low x and low Q². The rise of the singlet and gluon distribution towards low x becomes similar, in contrast to suppressed gluon for pure NNLO fits, suggesting more simple relation between them.

Comparison to NNPDF3.1sx PDF sets

- Similar trend that NNLO+NLLx gluon is larger at low *x* vs NNLO.
- Many differences in the fits to compare them directly: fitted vs perturbative charm, charm threshold, methods for uncertainty estimate.