

The CMS-TOTEM
 Precision Proton Spectrometer and first physics results

Enrico Robutti (INFN Genova) on behalf of the CMS and TOTEM Collaborations

CT-PPS is a joint CMS-TOTEM project
CERN-LHCC-2014-021
Detectors located in TOTEM horizontal roman pots (+ new dedicated ones) along the LHC beam line, at $\pm \sim 200 \mathrm{~m}$ from the CMS interaction point

- two tracking stations and one timing station per side

Detects intact protons emerging from the IP and driven by LHC magnets in proximity of the proton beam \Rightarrow detectors approaching the beam at $\sim 1 \mathrm{~mm}$

Designed to operate continuously at standard LHC running conditions

The CT-PPS physics program

Main target of the CT-PPS physics program is the study of Central Exclusive Production (CEP) processes, where both protons remain intact and get detected in the roman pots.

Electroweak physics (" $\gamma \gamma$ collider")

- dilepton/diboson production: $\gamma \gamma \rightarrow \mathrm{W}^{+} \mathrm{W}^{-}, \ell^{+} \ell^{-} \Rightarrow$ search for anomalous quartic gauge couplings (AQGC)
- search for SM-forbidden couplings: $\mathrm{YYYY}, \mathrm{ZZ} \mathrm{Z}$,

QCD ("gg collider")

- pQCD tests of exclusive production
- characterisation of gluon jets (small quark component)

Search for New Physics

- CEP of new resonances
- search for invisible decays

Event signature

Events of interest characterised by distinct signature:

- two leading protons reconstructed on opposite sides of the IP;

- large rapidity gap between central system and leading protons (colour-singlet exchange);
- possibility to "close" the event by matching central system and leading protons kinematics

Proton kinematics

Proton kinematics defined by:

- four-momentum transfer squared, $t \equiv\left(p_{f}-p_{i}\right)^{2}$;
- fractional momentum loss, $\xi \equiv\left(\left|p_{i}\right|-\left|p_{i}\right|\right) /\left|p_{i}\right|$

Proton acceptance in the detectors depends on the machine optics parameters:
measured at RP
$\left.\begin{array}{c}\quad \text { values at II } \\ D_{x} \\ D_{x}^{\prime} \\ D_{y}^{\prime} \\ D_{y}^{\prime}\end{array}\right)\left(\begin{array}{c}x^{*} \\ \theta_{x}^{*} \\ y^{*} \\ \theta_{y}^{*} \\ \xi\end{array}\right)$

Leading terms for "standard" LHC optics:

- $x \approx D_{x}(\xi) \xi$
- $y \approx L_{y}(\xi) \theta_{y}$
"waist" in proton impact point distribution

Proton acceptance

Mass and rapidity of the central system related to the protons ξ :

- $M^{2} x=s \xi_{1} \varepsilon_{2} ;$
- $y=1 / 2 \ln \left(\xi_{1} / \xi_{2}\right)$
\Rightarrow powerful matching requirement
Proton acceptance depends on the machine optics (mainly D_{x}) and on minimum attainable distance of detectors from beam

In 2016, maximum acceptance ($\sim 30 \%$) for $M_{x} \approx 750 \mathrm{GeV}$

Procedure developed and used extensively by TOTEM
CERN-TOTEM-NOTE-2017-001

Dedicated alignment fills (low luminosity)

- once per beam optics setting

1. detector approach to the edge of the scraped beam;
2. local alignment with overlapping verticalhorizontal detectors (minimise residuals)
3. alignment with respect to the beam from hit occupancy distributions

Physics fills

- each fill
- match x distribution with distribution from alignment fill

CMS+TOTEM 2016, $\sqrt{s}=13 \mathrm{TeV}$

Data taking in 2016 and 2017

Start of CT-PPS data taking advanced to 2016:

- TOTEM silicon strip detectors used for tracking;
- diamond detectors (developed for TOTEM) in timing stations
$\sim 15 \mathrm{fb}^{-1}$ of data recorded with tracking roman pots inserted

2017: towards design detector configuration

- tracking: per each side, one station with silicon strips, one station with 3D silicon pixels;
- timing: per each side, one mixed diamond - silicon (UFSD) station
$\sim 40 \mathrm{fb}^{-1}$ of data recorded with roman pots inserted

Tracking detectors

Silicon strips

- 10 planes per station of "edgeless" silicon strip detectors (5 ' u ' +5 ' v ')
- pitch: $66 \mu \mathrm{~m}$; track resolution: $\sim 12 \mu \mathrm{~m}$
- designed for low-luminosity running (TOTEM)

Silicon pixels

- 6 planes per station of "slim-edge" silicon pixel detectors with 3D technology (tilted by $\sim 18^{\circ}$)
- pixel size: $100 \mu \mathrm{~m} \times 150 \mu \mathrm{~m}$; track resolution ~20 $\mu \mathrm{m}$
- designed for high-luminosity running \Rightarrow multi-track capability

TOF measurement to reduce background from pileup (uncorrelated proton tracks)

- Ideally, desired resolution $\sigma_{t} \approx 20 \mathrm{ps} \Rightarrow \sigma_{z} \approx 4 \mathrm{~mm}$

Diamond sensors

- 3 planes (4 in 2016) of CVD diamond sensors
- macro-pixels of varying size
- single-plane resolution: ~80 ps
- radiation hard

Ultra-Fast Silicon Detectors

- 1 plane (in 2016) of UFSD, based on LGAD technology
- macro-pixels of varying size
- single-plane resolution in test beam: ~30 ps
- R\&D to improve radiation hardness

Common readout electronics

Central dilepton production

Search for a centrally produced pair of oppositely charged leptons with forward proton tag

- photon-photon fusion process, never observed before
- test of theoretically clean exclusive cross section
- benchmark for similar searches of centrally produced high mass objects (e.g. $\mathrm{W}+\mathrm{W}-$)

Signal

- central exclusive production: small cross section for CT-PPS central mass range ($m\left(\ell^{+} \ell^{-}\right) \geqslant 400 \mathrm{GeV}$)
- single dissociation (SD): broader ξ range

Background

(in coincidence with unrelated proton from pileup or beam background)

- double dissociation (DD)
- inclusive Drell-Yan processes:

$$
\mathrm{pp} \rightarrow \mathrm{Y}^{*} \mathrm{Z}^{*} \rightarrow \ell^{+} \ell^{-}+\mathrm{X}
$$

Analysis performed on $9.4 \mathrm{fb}^{-1}$ of data at 13 TeV collected in 2016 (only tracking)

Event selection

Dilepton selection:

- Trigger: two muons (electrons) with $p_{\mathrm{T}}>38$ (33) GeV
- Dilepton vertex consistent with primary interaction
- "Good" leptons with $p_{T}>50 \mathrm{GeV}$ and opposite charge
- Combined selection on distance of closest track to vertex and acoplanarity $a=1-\left|\Delta \phi\left(\ell^{+} \ell^{-}\right)\right| / \pi$
- $m\left(\ell^{+} \ell^{-}\right)>110 \mathrm{GeV}$

Matching of central and proton kinematics:

- at least one proton track
- ξ from central system: $\xi\left(\ell^{+} \ell^{-}\right)=\frac{1}{\sqrt{s}}\left[p_{\mathrm{T}}\left(\ell^{+}\right) e^{ \pm \eta\left(\ell^{+}\right)}+p_{\mathrm{T}}\left(\ell^{-}\right) e^{ \pm \eta\left(\ell^{-}\right)}\right]$ (exact for exclusive, mostly within resolution for single dissociation events)
- signal region defined by $\xi\left(\ell^{+} \ell^{-}\right)-\xi(\mathrm{p})$ match within 2σ

Background estimate

Background mostly due to Drell-Yan or double dissociation events with unrelated proton track from pileup or beam background

- mostly data-driven estimate

	Contribution	After preselection	After kinematic match
Muons	Drell-Yan	11.36 ± 0.18	1.38 ± 0.06
	DD	1.17 ± 0.02	0.108 ± 0.005
	Total	12.52 ± 0.18	1.49 ± 0.07
	Observed	17	12
	Drell-Yan	12.33 ± 0.19	2.30 ± 0.09
	DD	0.56 ± 0.01	0.067 ± 0.003
	Total	12.89 ± 0.18	2.36 ± 0.09
	Observed	23	8

$\Rightarrow 5.1 \sigma$ excess over background

- no events with matching protons in both arms

First observation of proton-tagged $\gamma \vee$ collisions at the electroweak scale
arXiv:1803.04496 [hep-ex]

Kinematics of signal events

Tracking

All stations equipped with 3D silicon pixel detectors (2 per side)

- Silicon strips still equipping TOTEM vertical pots, for TOTEM low luminosity physic program and for alignment
- Planned upgrade with internal movement system, to better distribute radiation damage

Timing

Stations equipped with diamond and double-diamond detector layers (1 station per side)

- larger signal expected \Rightarrow faster rise time

LHC "dynamic" beam settings

Will have to deal with luminosity levelling through multi-step β^{*} and crossing angle tuning

Summary and plans

CT-PPS has demonstrated the feasibility of studying forward proton-tagged events at high luminosity

First observation of central (semi)exclusive production of high mass lepton pairs

Several analyses currently ongoing or starting on 2016+2017 data

- central production of $\gamma \gamma, W W, Z Z, \gamma Z, t \bar{t}$

Total data sample of $\sim 100 \mathrm{fb}^{-1}$ expected for Run 2 (2016-2018)

Currently considering prospects to extend data taking in Run 3

- goal: ~300 fb-1

