

XXVI International Workshop on Deep Inelastic Scattering and Related Subjects

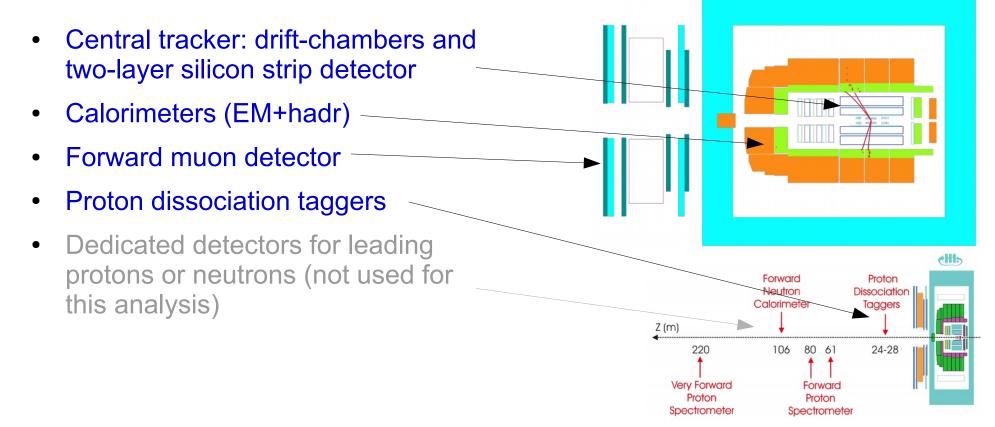
16-20 April 2018 Kobe, Japan

Stefan Schmitt, DESY for the H1 collaboration

- HERA and the H1 experiment
- Photoproduction of exclusive final states at HERA
- Selection of exclusive $2\pi^+2\pi^-$ events
- Measured cross sections
- Comparison to other experiments
- Interpretation of the invariant mass distribution

Preliminary result H1prelim-18-011 http://www-h1.desy.de/publications/H1preliminary.short_list.html

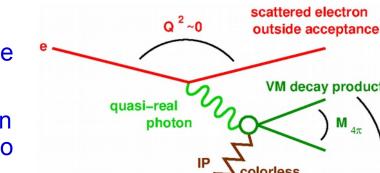
The HERA collider

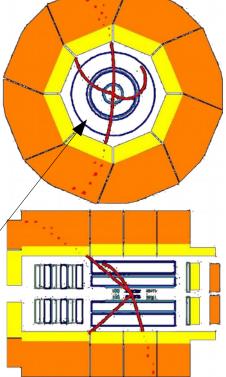

- World's only ep collider 1992-2007
- E_p=920 GeV, E_e=27.6 GeV; √s=320 GeV
- Small datasets with reduced beam energy 460 x 27.6 : √s=225 GeV 575 x 27.6 : √s=252 GeV
- Integrated Luminosity:
 ~0.5 fb⁻¹ per experiment
 ~10 pb⁻¹ per exp. at √s=225 GeV
- e⁺p and e⁻p data

Two collider experiments: H1 and ZEUS

> Multi-purpose detectors Angular coverage with EM+had calorimeters to low angles Tracking in the central region

The H1 experiment


DIS conference, April 2018

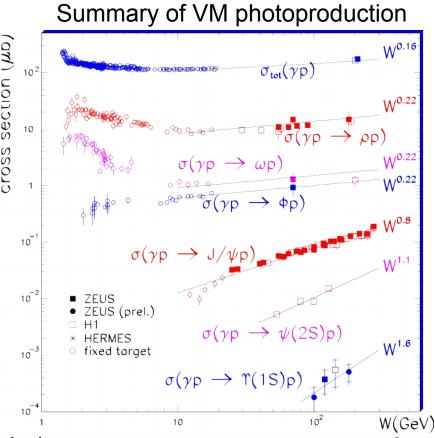

Variables: W_{vp} , t, $M_{4\pi}$

S.Schmitt, $2\pi+2\pi-$ photoproduction

5

- Vector-meson (VM= $\rho, \omega, \phi, J/\psi, \Upsilon, ...$) quantum numbers identical to photon \rightarrow VM dominance
- Diffractive scattering: proton • stays intact or dissociates to low-mass system (M_v<1.6 GeV)
- Photo-production: electron • outside detector acceptance $Q^2 < 2 \text{ GeV}^2$
- VM decay products quasi-real photon M $W_{\gamma p}$ colorless exchange scattered proton or low-mass system Y outside acceptance Example: $\psi' \rightarrow \mu^+ \mu^- \pi^+ \pi^$ in H1 detector

Diffractive vector meson production at HERA



- Data at W>20 all are from HERA
- HERA VM production data are well described $\frac{3}{5}$ by Regge-type power law $\sigma \sim W^{2\epsilon}$
- For soft elastic reactions, exponent is expected to be related to soft pomeron intercept

 $\epsilon \sim 2(\alpha_{IP}(t)-1)=2\times(0.08+\alpha'\cdot t)$

 Only the ground states of the low-mass vector mesons have been measured ρ(770),ω(782),φ(1020)

The $\rho(1450)$ and $\rho(1700)$

Review article from PDG: one resonance $\rho(1600)$ before 1988, now two resonances $\rho(1450)$ and $\rho(1700)$

77. The $\rho(1450)$ and the $\rho(1700)$

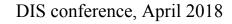
Updated November 2015 by S. Eidelman (Novosibirsk), C. Hanhart (Juelich) and G. Venanzoni (Frascati).

In our 1988 edition, we replaced the $\rho(1600)$ entry with two new ones, the $\rho(1450)$ and the $\rho(1700)$, because there was emerging evidence that the 1600-MeV region actually contains two ρ -like resonances. Erkal [1] had pointed out this possibility with a theoretical analysis on the consistency of 2π and 4π electromagnetic form factors and the $\pi\pi$ scattering length. Donnachie [2], with a full analysis of data on the 2π and 4π final states in e^+e^- annihilation and photoproduction reactions, had also argued that in order

This analysis: measure exclusive diffractive photoproduction of four charged pions (in the mass region corresponding to these resonances)

Mass, width, decay of $\rho(1450)$ and $\rho(1700)$

ρ(1450) [r]


 $I^{G}(J^{PC}) = 1^{+}(1^{--})$

Mass $m = 1465 \pm 25$ MeV ^[/] Full width $\Gamma = 400 \pm 60$ MeV ^[/]

ρ(1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
ππ	seen	720
4π	seen	669
e ⁺ e ⁻	seen	732
ηρ	seen	311
$a_2(1320)\pi$	not seen	54
KK	not seen	541
$K\overline{K}^{*}(892) + c.c.$	possibly seen	229
$\eta \gamma$	seen	630
$f_0(500)\gamma$		
ρ(1700) [r]	$I^{G}(J^{PC}) = 1^{+}(1^{-1})^{-1}$)

Mass $m = 1720 \pm 20 \text{ MeV} [I] \quad (\eta \rho^0 \text{ and } \pi^+ \pi^- \text{ modes})$ Full width $\Gamma = 250 \pm 100 \text{ MeV} [I] \quad (\eta \rho^0 \text{ and } \pi^+ \pi^- \text{ modes})$

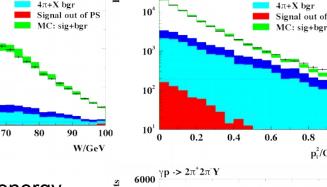
ρ(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	large	803
ρππ	dominant	653
$\rho^0 \pi^+ \pi^-$	large	651
$\rho^{\pm}\pi^{\mp}\pi^{0}$	large	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
$\pi(1300)\pi$	seen	349

S.Schmitt, $2\pi+2\pi-$ photoproduction

Events

4000

2000

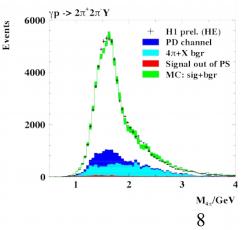

- Two data samples High energy $\sqrt{s}=319 \text{ GeV}$, $=7.6 \text{ pb}^{-1}$ Low energy $\sqrt{s}=225 \text{ GeV}$, $=1.7 \text{ pb}^{-1}$
- Events with four tracks (net charge zero)
- Veto electrons and other energy deposits not associated with tracks
- Veto on signals in the forward muon and proton dissociation tagger

Phase-space definition: $Q^2 < 2 \text{ GeV}^2$ $|t| < 1 \text{ GeV}^2$, $M_y < 1.6 \text{ GeV}$ High energy: 45 < W/GeV < 100Low energy: 35 < W/GeV < 75

Control plots for high-energy sample: W, p_{T} , $M_{4\pi}$

60

Background of order 15%. Contribution from events with M_v<1.6 GeV: ~10%



Event

H1 prel. (HE)

PD channel

 $\gamma p \rightarrow 2\pi^{+}2\pi^{-}$

H1 prel. (HE)

PD channel

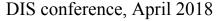
Signal out of PS

0.8

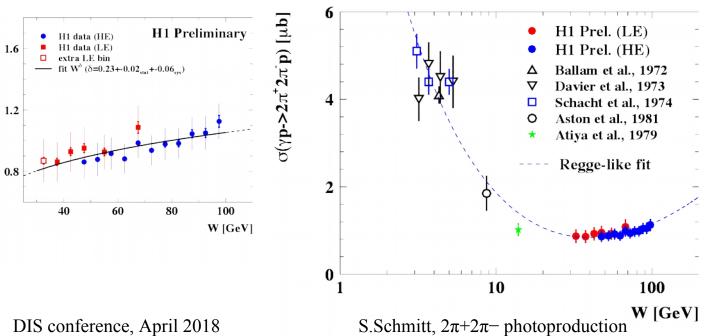
 p_t^2/GeV^2

4π+X bgr

- For calculating cross section, correct for acceptance
- Acceptance is approximately uniform in t and W but varies with $M_{_{4\pi}}$
- Result for W=75 GeV:


Phase-space definition: $Q^2 < 2 \text{ GeV}^2$ $|t| < 1 \text{ GeV}^2$, $M_Y < 1.6 \text{ GeV}$ High energy: 45 < W/GeV < 100Low energy: 35 < W/GeV < 75

$$\sigma_{\gamma p \to (2\pi^+ 2\pi^-)Y} = (1.07 \pm 0.01_{\text{stat}} \pm 0.14_{\text{sys}}) \mu b$$


Compare to photoproduction of $\rho(770)$ H1: Nucl.Phys.B463 (1996) 3 [hep-ex/9601004] and ZEUS: Eur.Phys.J. C2 (1998) 247 [hep-ex/9712020]

H1:
$$\sigma_{\gamma p \to \rho^{0}(770)p} = (9.1 \pm 0.9_{\text{stat}} \pm 2.5_{\text{sys}}) \mu \text{ b at W} = 55 \text{ GeV}$$

ZEUS: $\sigma_{\gamma p \to \rho^{0}(770)p} = (11.2 \pm 0.1_{\text{stat}} + 1.1_{-1.2}) \mu \text{ b at W} = 71.7 \text{ GeV}$

DIS conference, April 2018

 $\sigma(\gamma p \rightarrow 2\pi^+ 2\pi p) [\mu b]$

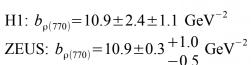
Cross sections as a function of W

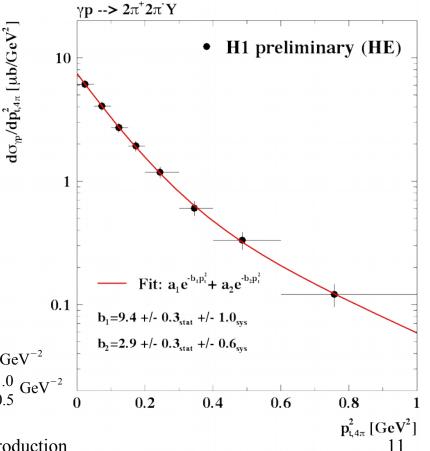
- Cross section as a function of energy
- Here, the proton-dissociative contributions • are subtracted (to compare to other data)

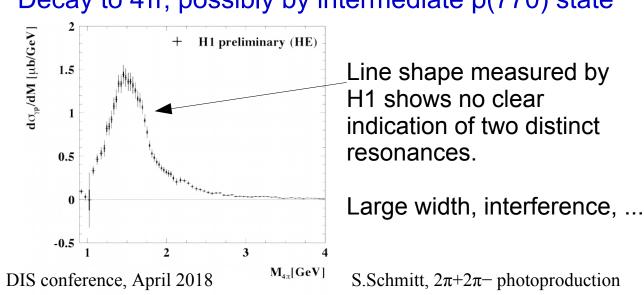
 $Q^2 < 2 \text{ GeV}^2$ $|t| < 1 \text{ GeV}^2$, $M_y = m_p$ High energy: 45 < W/GeV < 100Low energy: 35 < W/GeV < 75

> The H1 data are more precise than older measurements and explore the high energy regime

World data are well described by a Regge-like fit (Reggeon and soft Pomeron contributions)

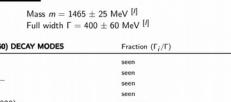



Cross section in t


- Dependence on t: exponential drop-off, typical for VM production
- Described by sum of two exponentials
- Process has contributions from elastic and proton-dissociative processes (with different t-slope)
- Also: contributions from resonant and non-resonant reactions (with possibly different t-slope)

Compare to photoproduction of $\rho(770)$ H1: Nucl.Phys.B463 (1996) 3 [hep-ex/9601004] and ZEUS: Eur.Phys.J. C2 (1998) 247 [hep-ex/9712020]

S.Schmitt, $2\pi + 2\pi$ – photoproduction



- Before 1988, there was one broad $\rho(1600)$ in PDG
- Decay to 4π , possibly by intermediate $\rho(770)$ state

- Mass distribution and known resonances
 - Following the PDG, the mass distribution is expected to originate from two resonances $\rho(1450) \& \rho(1700)$
- p(1450) DECAY MODES p (MeV/c)Fraction (Γ_i/Γ) $\pi \pi$ seen 4π seen e+ eseen seen $a_2(1320)\pi$ KK $K\overline{K}^{*}(892) + c.c.$ $I^{G}(J^{PC}) = 1^{+}(1^{-})$ ρ(1700) [r]

Mass $m = 1720 \pm 20$ MeV ^[I] ($\eta \rho^0$ and $\pi^+ \pi^-$ modes) Full width $\Gamma = 250 \pm 100 \text{ MeV} [I]$ ($n\rho^0$ and $\pi^+\pi^-$ modes)

ρ(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	large	803
ρππ	dominant	653
$\rho^{0}\pi^{+}\pi^{-}$ $\rho^{\pm}\pi^{\mp}\pi^{0}$	large	651
$\rho^{\pm}\pi^{\mp}\pi^{0}$	large	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	447
$\pi(1300)\pi$	seen	349

ρ(1450) [r]

 $I^{G}(J^{PC}) = 1^{+}(1^{-})$

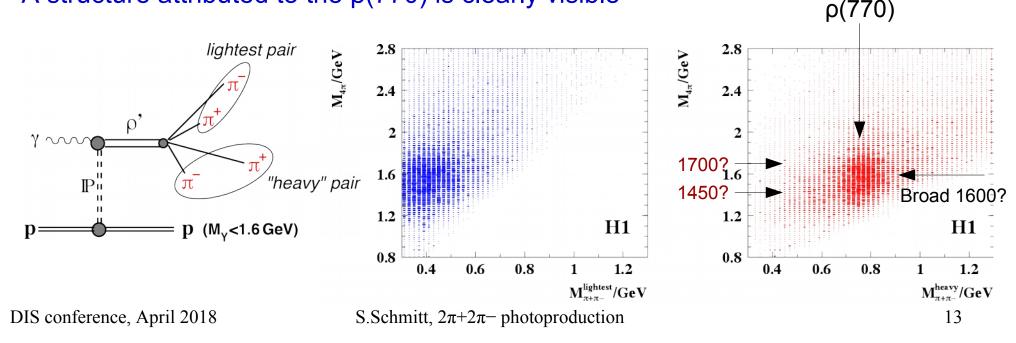
720

669

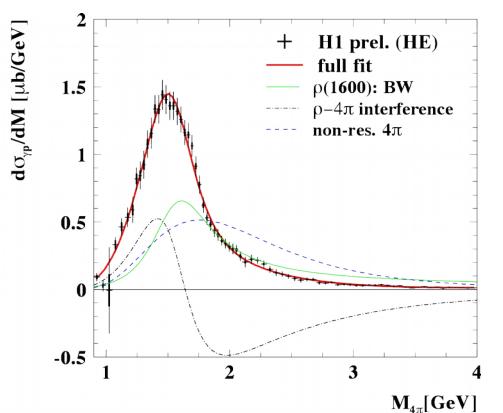
732

311

54


541

229


- Investigate correlations of $M_{_{4\pi}}$ with invariant mass of oppositely charged pion pairs
- Caveat: these figures are not corrected for acceptance effects
- A structure attributed to the $\rho(770)$ is clearly visible

Simple fit including non-resonant

- background, Breit-Wigner and complex phase
- Describes data reasonably well • \rightarrow the $\rho(1600)$ assumption from PDG before 1988 would work for the H1 data ...
- Fits with more than one resonance: • ongoing work

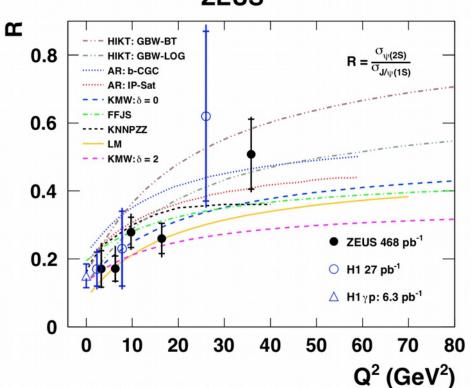
A simple resonance fit

Summary / Outlook

- Photoproduction of exclusive 2π⁺2π⁻ final states is measured in ep collisions by the H1 experiment
- Cross section for $2\pi^+2\pi^-$ is about 1/10 of $\rho(770)$ [all $\rho(770)$ decays counted]
- The W and t dependences are similar to previous ρ(770) measurements
- Invariant mass distributions of π⁺π⁻ pairs indicate the presence of an intermediate rho(770) state in the decay

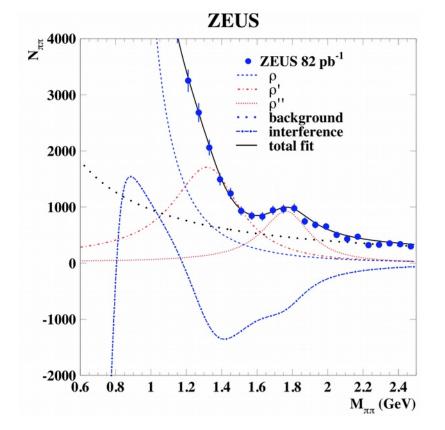
- The mass distribution is compatible with a single broad p(1600) resonance structure
- More sophisticated mass fits are being worked on, to test compatibility with $\rho(1450)$ and $\rho(1700)$
- An analysis of exclusive 2π⁺2π⁻ final states in DIS has started, which possibly can add more insights

Backup


DIS conference, April 2018

Q² dependence

- Q² dependence is probing the VM wave function
- Example: measurement of ratio ψ'/ J/ψ wrt Q²
- Cross section rises with Q² similar effect could be present for ρ'



ZEUS

ρ' in DIS to $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

- ZEUS measurement of the lineshape in DIS (Q²>2 GeV²)
- Here, $\rho(1700)$ peak is clearly separate from $\rho(1450)$

EPJ C 72 (2012) 1869 [arXiv:1111.4905]

DIS conference, April 2018