TMD splitting functions in kT factorization

[EPJC 78 (2018) 174, 1711.04587] [JHEP 01 (2016) 181, 1511.08439] [PRD 94, 114013 (2016), 1607.01507]

Aleksander Kusina

Institute of Nuclear Physics PAN, Krakow, Poland

in collaboration with: M. Hentschinski, K. Kutak and M. Serino

XXVI International Workshop on Deep Inelastic Scattering and Related Subjects

16-20 April 2018, Kobe Japan

Introduction

- Parton distribution functions (PDFs) together with parton level matrix elements allow for a very accurate description of 'hard' events in hadron-hadron and hadron-electron collisions.
- The bulk of such analysis is carried out within the framework of collinear factorization.
- However, there exist classes of multi-scale processes where the use of more general schemes is of advantage
 - ▶ E.g. high-energy or low x limit of hard processes $s\gg M^2\gg \Lambda_{\rm QCD}^2$ where $x=M^2/s$.
 - In such a scenario it is necessary to resum terms enhanced by logarithms $\ln 1/x$ to all orders in the α_s , which is achieved by BFKL evolution equation.
 - ▶ The resulting formalism called high energy (or k_T) factorization provides a factorization of such cross-sections into a TMD coefficient or 'impact factor' and an 'unintegrated' gluon density.

0 0 0 0

Introduction

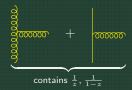
Limitations of high-energy factorization framework:

- \circ valid only in low $x \leq 10^{-2}$ region
 - problems for observables involving fragmentation functions which involve integrals over the full x range of initial state PDFs
 - ▶ limited to exclusive observables which allow to fix x of both gluons
- \circ limited to gluon-to-gluon splittings in the low x evolution, with quarks being absent.
 - omits a resummation of collinear logarithms associated with quark splittings which can provide sizable contributions at intermediate and large x
 - ► For hard processes initiated by quarks the appropriate unintegrated parton density functions are needed

What can we do?

- o Partial solution: use CCFM evolution equation instead of BFKL
 - ✓ based on QCD coherence

 → includes also resummation
 of soft logarithms



- \boldsymbol{x} still limited to low x
- **X** evolution equation for gluons only
- **X** missing collinear logarithms

0 0 0 0 0

1. Introduction

What do we want?

- \circ Resum low x logarithms.
- \circ Smooth continuation to the large x region.
- Reproduce the correct collinear limit (DGLAP).
- <u>Ultimately</u>: a coupled system of evolution equations for unintegrated PDFs
 - ▶ need: k_T -dependent splitting functions

We will try to achieve this goal by extending Curci-Furmanski-Petronzio (CFP) and Catani-Hautmann (CH) formalisms.

1. Introduction

Rest of the talk

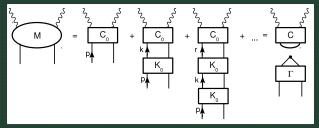
- 1. Basics of Curci-Furmanski-Petronzio method of splitting function calculation in collinear factorization.
- 2. Generalization to the high-energy case and kernel calculation.
- 3. Results: new TMD splitting functions

0 0 0 0 0

1. Introduction

Curci-Furmanski-Petronzio (CFP) methodology [NPB175 (1980) 2792]

 Factorization based on generalized ladder expansion (in terms of 2PI kernels) [Ellis et al. NPB152 (1979), 285]



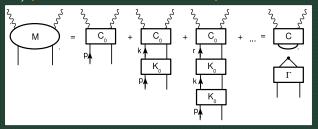
- Axial gauge instrumental
 - ▶ integration over outgoing legs leads to collinear singularities
 - incoming propagators amputated
- \circ 2PI kernels connected only by convolution in x
 - ▶ this is achieved by introducing appropriate projector operators.

0 0 0 0 0

2. The CFP method

Curci-Furmanski-Petronzio (CFP) methodology [NPB175 (1980) 2792]

 Factorization based on generalized ladder expansion (in terms of 2PI kernels) [Ellis et al. NPB152 (1979), 285]



$$M = C^{(0)} \, \mathcal{G}^{(0)} \quad \text{with} \quad \mathcal{G}^{(0)} = \left(1 + K^{(0)} + K^{(0)} \, K^{(0)} + \dots \right) = \frac{1}{1 - K^{(0)}}$$

introduce projectros: $K^{(0)} = (1 - \mathbb{P}) \ K^{(0)} + \mathbb{P} K^{(0)}$

$$M = \underbrace{\left(C_0 \frac{1}{1 - (1 - \mathbb{P})K^{(0)}}\right)}_{C} \underbrace{\left(\frac{1}{1 - \mathbb{P}K}\right)}_{\Gamma} \quad \text{with} \quad K = K^{(0)} \left(\frac{1}{1 - (1 - \mathbb{P})K^{(0)}}\right)$$

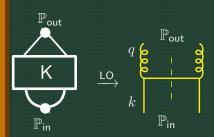
0 0 0 0 0

2. The CFP method

Curci-Furmanski-Petronzio (CFP) methodology

[Nucl. Phys. B175 (1980) 2792]

 $\circ \ \ \mathsf{CFP} \ \mathsf{projector} \ \mathsf{operators:} \ \mathbb{P} = \mathbb{P}^\epsilon \otimes \mathbb{P}^s = \mathbb{P}^\epsilon \otimes \mathbb{P}^s_{\mathsf{in}} \otimes \mathbb{P}^s_{\mathsf{out}}$



$$\begin{cases} \mathbb{P}_{g,\,\mathrm{out}}^{\mu\nu} = -g^{\mu\nu} \\ \mathbb{P}_{q,\,\mathrm{out}}(q) = \frac{\rlap{/}n}{2q\cdot n} \end{cases}$$

$$\begin{cases} \mathbb{P}_{g,\,\mathrm{in}}^{\mu\nu}(k) = \frac{1}{m-2}\left(-g^{\mu\nu} + \frac{k^{\mu}n^{\nu} + n^{\mu}k^{\nu}}{k\cdot n}\right) \\ \mathbb{P}_{q,\,\mathrm{in}} = \frac{k}{2} \\ \mathrm{incoming\ legs\ put\ on\text{-shell}}\ k^2 = 0 \end{cases}$$

- performs integration over $dq^2d^{m-2}\mathbf{q}$
- takes pole part

00000

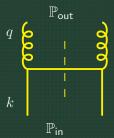
2. The CFP method

Rest of the talk

- Basics of Curci-Furmanski-Petronzio method of splitting function calculation in collinear factorization.
- 2. Generalization to the high-energy case and kernel calculation.
- Results: new TMD splitting functions

Generalization to high energy kinematics

High energy kinematics



$$k^{\mu} = yp^{\mu} + k^{\mu}_{\perp}$$

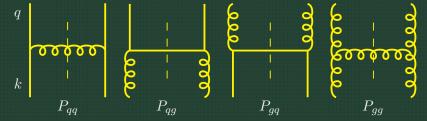
 $q^{\mu} = xp^{\mu} + q^{\mu}_{\perp} + \frac{q^2 + \mathbf{q}^2}{2xp \cdot n}n^{\mu}$

We will define/constrain splitting functions by requiring:

- o gauge invariance/current conservation of vertices
- o correct collinear limit
- o correct high energy limit

Generalization to high energy kinematics

- \circ Partly obtained by Catani and Hautmann for the case of P_{qg} [Catani, Hautmann NPB427 (1994) 475524, hep-ph/9405388]
- We want to extend it to general case including all splittings
 - $ightharpoonup P_{aa}$ and P_{aa} case done in [JHEP 01 (2016) 181, 1511.08439]
 - $ightharpoonup P_{aa}$ done in [EPJC 78 (2018) 174, 1711.04587]



To achieve this goal we need to provide:

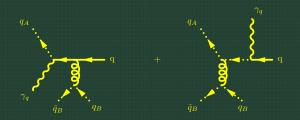
- Appropriate projector operators
- Generalize QCD vertices

Generalization of QCD vertices

We need to ensure gauge invariance of vertices in the presence of off-shell $k,\ q$ momenta.

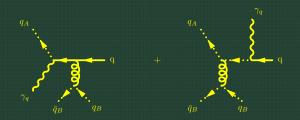
- We use spinor helicity formalism to construct appropriate gauge invariant amplitudes and extracted vertices from them [Kutak, van Hameren, Serino, JHEP 02, 009 (2017)]
 - ▶ Off-shell particles are introduced as pairs of auxiliary on-shell particles → increased no. of Feynman diagrams.
 - ► Sum relevant diagrams to obtain gauge invariant amplitudes.
 - "Deconstruct" amplitude by removing polarisation vectors $(\epsilon^\mu(p)$ for an on-shell particle vs. p^μ for an off-shell particle)
- o Alternatively (but with some ambiguity for P_{gg}) this can be obtained using the reggeized quark formalism (Lipatov high-energy action) [Lipatov, Vyazovsky, NPB 597 (2001) 399]

Generalization of QCD vertices: $\Gamma^{\mu}_{q^*q^*q}$ from $\mathcal{A}(1^*, \bar{q}^{*-}, q^+)$



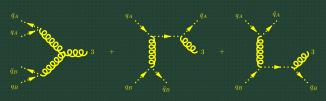
$$\begin{split} \mathcal{A}(q,k,p') &= \frac{\langle p|\gamma^{\mu}|p]}{\sqrt{2}} \frac{d_{\mu\nu}(q)}{q^2} \, \langle p| \frac{\not \epsilon_{p+}}{\sqrt{2}} \frac{\not k}{k^2} \frac{\gamma^{\nu}}{\sqrt{2}} - \frac{\gamma^{\nu}}{\sqrt{2}} \frac{\not p}{2p \cdot p'} \frac{\not \epsilon_{p+}}{\sqrt{2}} |n] \\ &= n^{\mu} \frac{d_{\mu\nu}(q)}{q^2} \left[n| \left\{ \gamma^{\nu} - \frac{p^{\nu}}{p \cdot p'} \not k \right\} \frac{\not k}{k^2} |p] \\ &\equiv n^{\mu} \frac{d_{\mu\nu}(q)}{q^2} \left[n| \Gamma^{\nu}_{g^*q^*q}(q,k,p') |p] \right] \text{ [JHEP 01 (2016) 181, 1511.08439]} \end{split}$$

Generalization of QCD vertices: $\Gamma^{\mu}_{q^*q^*q}$ from $\mathcal{A}(1^*, \bar{q}^{*-}, q^+)$



$$\begin{split} \mathcal{A}(q,k,p') &= \frac{\langle p|\gamma^{\mu}|p]}{\sqrt{2}} \frac{d_{\mu\nu}(q)}{q^2} \, \langle p|\frac{\not\epsilon_{p+}}{\sqrt{2}} \frac{\not k}{k^2} \frac{\gamma^{\nu}}{\sqrt{2}} - \frac{\gamma^{\nu}}{\sqrt{2}} \frac{\not p}{2p \cdot p'} \frac{\not\epsilon_{p+}}{\sqrt{2}} |n] \\ &= \frac{n^{\mu}}{q^2} \left[n| \, \left\{ d_{\mu\nu}(q) \left(\gamma^{\nu} - \frac{p^{\nu}}{p \cdot p'} \, \not k \right) \right\} \frac{\not k}{k^2} |p] \\ &\equiv \frac{n^{\mu}}{q^2} \left[n| \, \Gamma_{g^*q^*q}^{\nu}(q,k,p') \, |p] \end{split}$$
[EPJC 78 (2018) 174, 1711.

Generalization of QCD vertices: $\Gamma^{\mu}_{g^*g^*g}$ from $\mathcal{A}(1^*,2^*,3)$



$$\mathcal{A}(q,k,p') = (\sqrt{2}) \frac{p_{\mu_1} n_{\mu_2} \epsilon_{\mu_3}(p')}{q^2 k^2} \left\{ \mathcal{V}^{\lambda \kappa \mu_3}(q,k,p') d^{\mu_1}_{\lambda}(q) d^{\mu_2}_{\kappa}(k) + d^{\mu_1 \mu_2}(k) \frac{q^2 n^{\mu_3}}{n \cdot p'} - d^{\mu_1 \mu_2}(q) \frac{k^2 p^{\mu_3}}{p \cdot p'} \right\}$$

$$\equiv (\sqrt{2}) \frac{p_{\mu_1} n_{\mu_2} \epsilon_{\mu_3}(p')}{q^2 k^2} \Gamma^{\mu_1 \mu_2 \mu_3}(q,k,p')$$

o $d_{\mu\nu}(q) = -g_{\mu\nu} + \frac{n^{\mu}q^{\nu} + n^{\nu}q^{\mu}}{q^2}$ not invertable in light-cone gauge $(n^2 = 0) \Rightarrow$ it has to be kept everywhere!

0000

Generalization of QCD vertices

The full set of gauge invariant off-shell vertices are:

$$\begin{split} \Gamma^{\mu}_{q^{*}g^{*}q}(q,k,p') &= igt^{a} \, d^{\mu}_{\ \nu}(k) \, \left(\gamma^{\nu} - \frac{n^{\nu}}{k \cdot n} \not q \right) \\ \Gamma^{\mu}_{g^{*}q^{*}q}(q,k,p') &= igt^{a} \, d^{\mu}_{\ \nu}(q) \, \left(\gamma^{\nu} - \frac{p^{\nu}}{p \cdot q} \not k \right) \\ \Gamma^{\mu}_{q^{*}q^{*}g}(q,k,p') &= igt^{a} \, \left(\gamma^{\mu} - \frac{p^{\mu}}{p \cdot p'} \not k + \frac{n^{\mu}}{n \cdot p'} \not q \right) \\ \Gamma^{\mu_{1}\mu_{2}\mu_{3}}_{g^{*}g^{*}g}(q,k,p') &= i \, g \, f^{abc} \, \left\{ \mathcal{V}^{\lambda\kappa\mu_{3}}(q,k,p') \, d^{\mu_{1}}_{\lambda}(q) \, d^{\mu_{2}}_{\kappa}(k) \right. \\ &+ \left. d^{\mu_{1}\mu_{2}}(k) \, \frac{q^{2}n^{\mu_{3}}}{n \cdot p'} - d^{\mu_{1}\mu_{2}}(q) \, \frac{k^{2}p^{\mu_{3}}}{p \cdot p'} \right\} \end{split}$$

Generalization of projector operators 1

Since the incoming momentum is no longer collinear the corresponding projector operators need to be modified.

o Gluon case [Catani, Hautmann NPB427 (1994) 475524]:

$$\mathbb{P}_{g,\,\mathsf{in}}^{\,\mu\nu} = \frac{k_\perp^\mu k_\perp^\nu}{\mathbf{k}^2}$$

Quark case [JHEP 01 (2016) 181]:

$$\mathbb{P}_{q,\,\mathsf{in}} = \frac{y\,\not\!p}{2}$$

✓ Both operators reduce to the CFP projectors in the collinear limit

$$< \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{\mathbf{k}^{2}} >_{\phi} \stackrel{k_{\perp} \to 0}{=} \frac{1}{m-2} \left(-g^{\mu\nu} + \frac{k^{\mu} n^{\nu} + n^{\mu} k^{\nu}}{k \cdot n} \right)$$

$$k \stackrel{k_{\perp} \to 0}{=} un$$

Generalization of projector operators 2

• The form of the CH projectors were derived based on heavy quark production in which case numerators of the gluon propagators factorize [Catani, Ciafaloni, NPB 366 (1991) 135-188]

$$\mathcal{M}^{g^*g^* o qar{q}}(k_1,k_2;p_3,p_4) = rac{2\,x_1\,x_2\,p_1^{\mu_1}\,p_2^{\mu_2}}{\sqrt{k_{1\perp}^2\,k_{2\perp}^2}}\,d_{\mu_1
u_1}(k_1)\,d_{\mu_2
u_2}(k_2)\,\hat{\mathcal{M}}_{\mu_1,\mu_2}^{g^*g^* o qar{q}}(k_1,k_2;p_3,p_4)$$

- Since the numerators of gluon propagators do not factorize in case of $\Gamma_{q^*q^*q}^{\mu_1\mu_2\mu_3}$ we need further modifications.
- The form of the projectors is determined by
 - ightharpoonup condition: $\mathbb{P}^2 = \mathbb{P}$
 - and a proper collinear limit

Final set of projectors:

$$\begin{split} \mathbb{P}_{g,\,\mathsf{in}}^{\mu\nu} &= -y^2\,\frac{p^\mu p^\nu}{k_\perp^2} \qquad \mathbb{P}_{g,\,\mathsf{out}}^{\mu\nu} &= -g^{\mu\nu} + \frac{k^\mu n^\nu + k^\nu n^\mu}{k\cdot n} - k^2\,\frac{n_\mu n_\nu}{(k\cdot n)^2} \\ \mathbb{P}_{q,\,\mathsf{in}} &= \frac{y\,\rlap/p}{2} \qquad \qquad \mathbb{P}_{q,\,\mathsf{out}} &= \frac{\rlap/n}{2\,n\cdot l} \end{split}$$

$$\mathbb{P}_{q,\,\mathsf{in}} = rac{y\,p}{2}$$
 $\mathbb{P}_{q,\,\mathsf{out}} = rac{p}{2\,n\cdot l}$

Rest of the talk

- Basics of Curci-Furmanski-Petronzio method of splitting function calculation in collinear factorization.
- 2. Generalization to the high-energy case and kernel calculation.
- 3. Results: new TMD splitting functions.

0 0 0 0 0

TMD splitting function definition

Angular-dependent splitting function

$$\hat{K}_{ij}\left(z,\frac{\mathbf{k}^2}{\mu^2},\epsilon\right) = z\int\frac{d^{2+2\epsilon}\mathbf{q}}{2(2\pi)^{4+2\epsilon}}\underbrace{\int dq^2\,\mathbb{P}_{j,\,\mathrm{in}}\otimes\hat{K}^{(0)}_{ij}(q,k)\otimes\mathbb{P}_{i,\,\mathrm{out}}}_{\hat{P}^{(0)}_{i;i}(z,\mathbf{k},\tilde{\mathbf{q}},\epsilon)}\Theta(\mu_F^2+q^2)$$

$$\hat{K}_{ij}^{(0)}(q,k) = \begin{cases} q & & & & \\ & \downarrow & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & &$$

Angular-average splitting function

$$\hat{K}_{ij}\left(z, \frac{\mathbf{k}^2}{\mu_F^2}, \epsilon\right) = \frac{\alpha_s}{2\pi} z \int_{0}^{(1-z)(\mu_F^2 - z\mathbf{k}^2)} \frac{d\tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^2} \left(\frac{\tilde{\mathbf{q}}^2}{\mu^2}\right)^{\epsilon} \frac{e^{-\epsilon \gamma_E}}{\Gamma(1+\epsilon)} \bar{P}_{ij}^{(0)}\left(z, \frac{\mathbf{k}^2}{\tilde{\mathbf{q}}^2}, \epsilon\right)$$

Results for splitting functions

With the new projection operators we reproduce our earlier results [JHEP 01

$$\begin{split} \tilde{P}_{qg}^{(0)} &= T_R \left(\frac{\tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^2 + z(1-z)\,\mathbf{k}^2} \right)^2 \left[z^2 + (1-z)^2 + 4z^2(1-z)^2 \frac{\mathbf{k}^2}{\tilde{\mathbf{q}}^2} \right] \\ \tilde{P}_{gq}^{(0)} &= C_F \left[\frac{2\tilde{\mathbf{q}}^2}{z|\tilde{\mathbf{q}}^2 - (1-z)^2\mathbf{k}^2|} - \frac{\tilde{\mathbf{q}}^2(\tilde{\mathbf{q}}^2(2-z) + \mathbf{k}^2z(1-z^2))}{(\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2)^2} \right. \\ &\qquad \qquad + \frac{\epsilon z\tilde{\mathbf{q}}^2(\tilde{\mathbf{q}}^2 + (1-z)^2\mathbf{k}^2)}{(\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2)^2} \right] \\ \tilde{P}_{qq}^{(0)} &= C_F \left(\frac{\tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2} \right) \left[\frac{\tilde{\mathbf{q}}^2 + (1-z^2)\mathbf{k}^2}{(1-z)|\tilde{\mathbf{q}}^2 - (1-z)^2\mathbf{k}^2|} \right. \\ &\qquad \qquad + \frac{z^2\tilde{\mathbf{q}}^2 - z(1-z)(1-3z+z^2)\mathbf{k}^2 + (1-z)^2\epsilon(\tilde{\mathbf{q}}^2 + z^2\mathbf{k}^2)}{(1-z)(\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2)} \right] \end{split}$$

✓ In the collinear limit, $\frac{\mathbf{k}^2}{\tilde{\mathbf{a}}^2} \to 0$, standard DGLAP results are reproduced.

Results for splitting functions

The new result is [EPJC 78 (2018) 174, 1711.04587]

$$\begin{split} \tilde{P}_{gg}^{(0)}(z,\tilde{\mathbf{q}},\mathbf{k}) &= C_A \left(\frac{\tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2} \right)^2 \frac{\tilde{\mathbf{q}}^2}{(\tilde{\mathbf{q}} - (1-z)\mathbf{k})^2} \\ &\times \left[-\frac{4z^2 - 4z + 2}{z(1-z)} - z(1-z)(4z^4 - 12z^3 + 9z^2 + 1) \frac{\mathbf{k}^4}{\tilde{\mathbf{q}}^4} \right. \\ &- 4z(1-z) \frac{\mathbf{k} \cdot \tilde{\mathbf{q}}^2}{\mathbf{k}^2 \tilde{\mathbf{q}}^2} + 2(4z^3 - 6z^2 + 6z - 3) \frac{\mathbf{k} \cdot \tilde{\mathbf{q}}}{\tilde{\mathbf{q}}^2} \\ &- 4z(1-z)^2 (3-5z) \frac{\mathbf{k} \cdot \tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^4} - (4z^4 - 8z^3 + 5z^2 - 3z - 2) \frac{\mathbf{k}^2}{\tilde{\mathbf{q}}^2} \\ &+ 8z(1-z)^2 \frac{\mathbf{k} \cdot \tilde{\mathbf{q}}^3}{\mathbf{k}^2 \tilde{\mathbf{q}}^4} - 2z^2 (1-z)(3-4z)(3-2z) \frac{\mathbf{k}^2 \mathbf{k} \cdot \tilde{\mathbf{q}}}{\tilde{\mathbf{q}}^4} \right] \\ &- \epsilon C_A z(1-z) \frac{\tilde{\mathbf{q}}^2}{\mathbf{k}^2} \left(\frac{(2z-1)\mathbf{k}^2 + 2\mathbf{k} \cdot \tilde{\mathbf{q}}}{\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2} \right)^2 \end{split}$$

0 0 0 0 0

Results for splitting functions

or in an angular integrated form (with $\epsilon = 0$)

$$\begin{split} \bar{P}_{gg}^{(0)} &= \frac{1}{\pi} \int_0^{\pi} d\phi \, \sin^{2\epsilon} \phi \, \tilde{P}_{gg}^{(0)} \\ &= C_A \, \frac{\tilde{\mathbf{q}}^2}{\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2} \bigg[\frac{(2-z)\tilde{\mathbf{q}}^2 + (z^3 - 4z^2 + 3z)\mathbf{k}^2}{z(1-z)|\tilde{\mathbf{q}}^2 - (1-z)^2\mathbf{k}^2|} \\ &+ \frac{(2z^3 - 4z^2 + 6z - 3)\tilde{\mathbf{q}}^2 + z(4z^4 - 12z^3 + 9z^2 + z - 2)\mathbf{k}^2}{(1-z)(\tilde{\mathbf{q}}^2 + z(1-z)\mathbf{k}^2)} \bigg] \end{split}$$

0 0 0 0 0

Kinematic limits of $ilde{P}_{gg}^{(0)}$

o Collinear (DGLAP) limit

$$\lim_{\mathbf{k}^2 \to 0} \bar{P}_{gg}^{(0)} = 2 \, C_A \, \left[\frac{z}{1-z} + \frac{1-z}{z} + z \, (1-z) \right] \qquad \boxed{ 1-z \\ p' = k-q }$$

0 0 0

Kinematic limits of $ilde{P}_{gg}^{(0)}$

o Collinear (DGLAP) limit

$$\lim_{\mathbf{k}^2 \to 0} \bar{P}_{gg}^{(0)} = 2 C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z (1-z) \right]$$

$$k$$

$$\frac{1-z}{p' = k-q}$$

 \circ High-energy limit $(z \to 0)$

$$\lim_{z \to 0} \hat{K}_{gg} \left(z, \frac{\mathbf{k}^2}{\mu^2}, \epsilon, \alpha_s \right) = \frac{\alpha_s C_A}{\pi (e^{\gamma_E} \mu^2)^{\epsilon}} \int \frac{d^{2+2\epsilon} \tilde{\mathbf{p}}}{\pi^{1+\epsilon}} \Theta \left(\mu_F^2 - (\mathbf{k} - \tilde{\mathbf{p}})^2 \right) \frac{1}{\tilde{\mathbf{p}}^2} \\
= \int \frac{d^{2+2\epsilon} \mathbf{q}}{\pi^{1+\epsilon}} \Theta \left(\mu_F^2 - \mathbf{q}^2 \right) \frac{\alpha_s C_A}{\pi (e^{\gamma_E} \mu^2)^{\epsilon}} \frac{1}{(\mathbf{q} - \mathbf{k})^2},$$

0 0 0 0 0

Kinematic limits of $ilde{P}_{gg}^{(0)}$

o Collinear (DGLAP) limit

$$\lim_{\mathbf{k}^2 \to 0} \bar{P}_{gg}^{(0)} = 2 C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z (1-z) \right]$$

$$k$$

$$1 - z$$

$$p' = k - q$$

 \circ High-energy limit $(z \to 0)$

$$\lim_{z \to 0} \hat{K}_{gg} \left(z, \frac{\mathbf{k}^2}{\mu^2}, \epsilon, \alpha_s \right) = \frac{\alpha_s C_A}{\pi (e^{\gamma_E} \mu^2)^{\epsilon}} \int \frac{d^{2+2\epsilon} \tilde{\mathbf{p}}}{\pi^{1+\epsilon}} \Theta \left(\mu_F^2 - (\mathbf{k} - \tilde{\mathbf{p}})^2 \right) \frac{1}{\tilde{\mathbf{p}}^2}
= \int \frac{d^{2+2\epsilon} \mathbf{q}}{\pi^{1+\epsilon}} \Theta \left(\mu_F^2 - \mathbf{q}^2 \right) \frac{\alpha_s C_A}{\pi (e^{\gamma_E} \mu^2)^{\epsilon}} \frac{1}{(\mathbf{q} - \mathbf{k})^2},$$

 \circ Soft (CCFM) limit $(\tilde{\mathbf{p}} = \frac{\mathbf{k} - \mathbf{q}}{1 - \tilde{\mathbf{r}}})$: $\tilde{\mathbf{p}}^2 \to 0$

$$\hat{K}_{gg}\left(z, \frac{\mathbf{k}^2}{u^2}, 0, \alpha_s\right) = z \int_{0}^{z} \frac{d\tilde{\mathbf{p}}^2}{\tilde{\mathbf{p}}^2} \frac{\alpha_s C_a}{\pi} \left[\frac{1}{z} + \frac{1}{1-z} + \mathcal{O}\left(\frac{\tilde{\mathbf{p}}^2}{\mathbf{k}^2}\right) \right]$$

we obtain real/unresummed CFFM kernel "for free"

Summary and Outlook

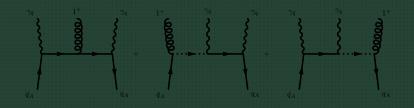
- We successfully extended method of Curci, Furmanski and Petronzio to the TMD case using gauge invariant vertices.
 - ▶ The essential subtleties which prevent the Catani-Hautmann generalisation from being directly extended to the P_{gg} case were uncovered and worked out.
- \circ With the new projectors we have reproduced our earlier results for real emission k_{\perp} -dependent P_{qq} , P_{gq} and P_{qg} splitting functions confirming our formalism.
- \circ We used the formalism to calculate P_{gg} TMD splitting function which feature correct
 - collinear limit (DGLAP kernels)
 - ► high-energy limit (BFKL kernel)
 - ► soft limit (CCFM kernel)
- The next step is to calculate virtual corrections.
- o In a longer perspective construct a complete set of evolution equations.

BACKUP SLIDES

0 0 0 0 0

5. Extras

$$\Gamma^{\mu}_{q^*,q^*,q}$$
 from $\mathcal{A}(g^+,ar{q}^{*+},q^{*-})$



$$\mathcal{A}(1^+, \bar{q}^{*+}, q^{*-}) \to \langle \bar{q} | \frac{k_{\bar{q}}}{k_{\bar{q}}^2} \left\{ \gamma^{\mu} + \frac{p_{\bar{q}}^{\mu}}{p_{\bar{q}} \cdot k_q} k_{\bar{q}} + \frac{p_q^{\mu}}{p_q \cdot k_{\bar{q}}} k_q \right\} \frac{k_q}{k_a^2} |q|$$

00000

5. Extras 26/24