XXVI INTERNATIONAL WORKSHOP ON DEEP INELASTIC SCATTERING AND RELATED SUBJECTS, KOBE, JP

# Recent PHENIX results probing gluon dynamics in p+p and highly asymmetric nuclear collisions

Jin Huang (BNL)

For PHENIX Collaboration



# **Gluon dynamics in hadron collisions**

- Dynamics of gluon fields play important roles in hadron collisions and can be accessed via multiple probes, that includes (not limited to) heavy flavor, hadron production, di-hadron correlation
- Highly asymmetric collision also allow tune up the gluon densities in a controlled manner



• Correlation with initial proton spin : unique handle



## **Relativistic Heavy Ion Collider, NY, USA**

The most versatile hadron collider in the world World's first and only spin-polarized proton collider





## Heavy flavor measurement via di-muons

- Heavy flavor (HF) production in hadron collision provide a clean probe on parton interactions that originates from gluons
- Calculable by pQCD
- New measurement from PHENIX extract HF by decomposition di-muon production in the forward direction via fits on inv. mass-p<sub>T</sub> spectrums



# **Decomposing di-muon cocktail**



# **Extract bottom cross section**

- Extract bottom cross section via fitting of mass- $p_{T}$  distributions
- Measured Cross section about 2x from central FONLL value
- Stay tuned: results coming for 510 GeV p+p and 200 GeV p+A collisions too



# **Angular corrections**

- Decay muons' azimuthal angle  $\rightarrow$  parent heavy quark
- Azimuthal angular correlation sensitive to HF production channels in LO and NLO gluon interactions
- Qualitatively described by Pythia and NLO event generators





# **Drell-Yan cross section**



# Hadron production in *p*+A collisions

- Hadron production in the PHENIX central rapidity is dominated by g+g/g+q interaction and described by NLO calculation for p+p collisions [10.1103/PhysRevD.76.051106, arXiv:1501.01220]
- Modification of hadron production in highly asymmetric collision system gives access to nuclear PDF



# $\pi^0$ production in asymmetric collisions



# Source of the enhancement



- Comparing with models of cold nuclear energy loss
  - Different loss scenario are comparable to data high  $p_{T}$
  - Collision system dependent is not described and location of low  $p_{T}$  peak is shifted
  - Insights from theoretical interpretation welcomed
- Meanwhile, further exploring additional handles revealing interactions between hard parton probes and nuclear matter
  - 2-h correlation and transverse spin asymmetry



# New handle 1: 2-p correlation

- $p_{out}$ : Transverse momentum correlation of two particles that is perpendicular to the trigger  $p_T$
- Gauss-core width of p<sub>out</sub> sensitive nonperturbative effects
  - Much smaller ( $\sigma$ ~0.5 GeV/c) than scales of  $p_{T}$  and is sensitive to minute changes
- Comparing p+A to p+p: probes interaction of parton in nuclear matter
  - e.g. soft gluon exchange and radiative energy loss



# Near side and away side correlations





# **p**<sub>out</sub> Gauss-core difference in pp and pA

- Observed away-side broadening of Gauss-core of p<sub>out</sub>, but not for near side modification
- Suggest parton-nuclear interaction that leads to the broadening
- Consistent with picture that fragmentation outside nuclear and is not strongly modified in p+A collisions



# **p**<sub>out</sub> Gauss-core difference vs N<sub>coll</sub>

- Further correlate the away-side broadening vs path length of parton in nuclear matter, approximated by N<sub>coll</sub>
- Broadening of the Gauss-core of  $p_{out}$  lines up in linear dependence of  $N_{coll}$



### New handle 2: Transverse spin asymmetry

- Hadron production is correlated with in coming proton transverse spin: observed as sine-modulation of transverse spin asymmetry, A<sub>N</sub>
  - One way to generate A<sub>N</sub> is interference of parton through color field (Sivers effect)
- When parton traverse nuclear matter, A<sub>N</sub> may be modified
  - Sensitive to gluon exchange and small change of parton  $p_{T}$  that is  $\perp$  to spin direction
  - Suppress to A<sub>N</sub> presumably proportional to 1/A<sup>1/3</sup> or 1/(path length) in nuclear matter [10.1103/PhysRevD.84.034019, 10.1103/PhysRevD.86.034028, 10.1103/PhysRevD.95.014008]



# **A<sub>N</sub> vs effective path length in nuclei**

- Data is consistent with  $A_N$  suppression of 1/<path length>, which is approximated by  $1/N_{Coll}$
- Strongly reject the scenario of no nuclear modification of A<sub>N</sub>



# Summary 1: HF and $\pi^0$ production

- Measurement of HF production via di-muon production in p+p collisions
  - Favor 2x b-cross section of FONLL central cross section
  - Azimuthal correlation described by Pythia and NLO generators
- $\pi^0$  production in highly asymmetric *p*/<sup>3</sup>He+A collusions:
  - Constraints nPDF. Hints energy loss of in cold nuclear mater.
  - Observed ordering of enhancement with system dependence



# **Summary 2: new handles**

- Additional handles on parton interaction of gluon field in p+A collisions:
  - $\circ$  2-particle correlation ( $p_{out}$  width) and transverse-spin asymmetry ( $A_N$ )
- Data lines up as function of path-length in nuclear, approximated by N<sub>coll</sub>

Stay tuned: final results and more explorations on gluon dynamics to come from PHENIX!



# **Extra Infomation**





Jin Huang <jhuang@bnl.gov>

21

# S/B for di-muon azimuthal angular correction



#### ×10<sup>-6</sup> dN/d∆∳[arbitrary units] $\rightarrow \mu^+\mu^- X \sqrt{s} = 200 \text{ GeV}$ pp 0.25 - raw data Unlike-sign pairs total BG in PHENIX acceptance corr. hadrons 0.2 -2.2 < y < -1.2 comb. BG 1.5 < m<sub>...</sub>[GeV/c<sup>2</sup>] < 2.5 **J**/ψ, ρ, ω, φ **Drell-Yan** 0.15 bb **0.1**⊢ PHENIX preliminary 0.05 <u>..............</u> Rel. contribution 0.8 0.6 0.4 Գ 0.5 1.5 2.5 3 Ιφ<sub>μ,1</sub>- φ<sub>μ,2</sub>Ι[rad] 1 2

### Bottom region

### Charm region



# **Mass-pT fits**



Same sign



### **Opposite sign**



# Pion production in |eta|<0.35





### **Cross section**

### **Production channels**



# Centrality dependence on $\pi^0$

- *p*+Au results show large centrality dependence
- d+Au results agree with p+Au at high-p<sub>T</sub>
- <sup>3</sup>He+Au results agree with *p*+Au and *d*+Au at high-p<sub>T</sub>
- At moderate p<sub>T</sub> an ordering is seen as a function of systems



# p\_out in p+p collisions



Relation with energy loss per unit length DOI: 10.1016/j.physletb.2017.05.090

$$\left\langle \hat{q}L \right\rangle / 2 = \left[\frac{\hat{x}_h}{\langle z_t \rangle}\right]^2 \left[\frac{\left\langle p_{\text{out}}^2 \right\rangle_{AA} - \left\langle p_{\text{out}}^2 \right\rangle_{pp}}{x_h^2}\right]$$

#### **Di-hadron production**





**PH\*ENIX** 

# p\_out in $p + A \rightarrow \pi^0 + h (+ X)$



Wider Gauss core for p<sub>out</sub> in p+A collisions: multiple scattering in A?

Stronger p<sub>T</sub><sup>trig</sup> dependence in peripheral p+Au: Ideas for interpretation?



# Access the Non-Abelian nature of gluon field



Example of TMD-factorized process: DY in Pythia simulation Positive width against scale (M) As expected in CSS evolution





Non-TMD-factorized process:  $\pi^{0}+h$ ,  $\gamma+h$ Data and Pythia simulation: Both show negative width slope against scale ( $p_{T}^{trig}$ ) Opposite to CSS indicate impact from color flow



# **Centrality p+Au**



**PH\***ENIX

# PHENIX hall is being upgraded to sPHENIX

