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WHAT IS SATURATION?



GLUON BRANCHING

Gluon branching – The number of gluons grows as x 
decreases.

Gluon recombination – High density of gluons can lead to 
overlapping of their wave                
functions and two gluons can 
merge into one.

• The more gluons there are in a proton, the more they 
recombine.
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PARTON DISTRIBUTION 
FUNCTIONS

• xS – Sea quark distribution

• xG – Gluon distribution

• xuv –Valence u-quark distribution

• xdv –Valence d-quark distribution
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Fig. 1. Parton distribution functions (PDFs) of a proton at the scale Q2 = 10 GeV2

plotted as functions of Bjorken x. Here xuv and xdv are the valence quark distri-
butions, xS is the sea quark distribution, and xG is the gluon distribution. Note
that the vertical axis is logarithmic.

the saturation scale Qs becomes larger than the QCD confinement scale
⇤QCD, Qs � ⇤QCD such that the strong coupling constant becomes small,

↵s(Q
2
s) ⌧ 1. (2)

Therefore, in the saturation regime we are dealing with a high density of
gluons and quarks inside the proton or nucleus, while at the same time
having a small coupling constant justifying the use of perturbative expansion
in the powers of ↵s.

2. Classical Gluon Fields

The most convenient system to study saturation dynamics appears to
be the small-x wave function of a large nucleus. From now one we will
concentrate on gluons, since they dominate over quarks at small-x as follows
from Fig. 1. The small-x gluons “see” the whole nucleus coherently in the
longitudinal direction, and can be emitted by any of the nucleons at a given
impact parameter. (Note that a gluon with kT � ⇤QCD is localized in the
transverse coordinate space and does not interact with the nucleons at other
impact parameters.) The small-x gluon can originate in any of the ⇠ A1/3

nucleons at a given transverse position. If the nucleus is ultrarelativistic

We can see the contribution of gluon branching effects in parton distribution functions.

Do the gluon recombination effects also contribute?
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WHERE TO LOOK FOR
SATURATION EFFECTS?

• To observe saturation effects, we need to reach low values of x.

• With a fixed collision energy, lower-x corresponds to lower values of kt, the typical

transverse momentum of the process.

• Low kt jets can be however difficult to measure.

𝑥	~	
𝑘%
𝑠�
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WHERE TO LOOK FOR
SATURATION EFFECTS?

Saturation effects suppress distribution functions at low values of kt. Maximum density is at Qs.

Marek Matas, CTU in Prague 4Cyrille Marquet. Open questions in QCD at high parton density. Nucl.Phys. A904-905 (2013). 



SATURATION INSIDE THE 
NUCLEUSkovchegov printed on October 29, 2014 3

this means that the gluon is emitted by the e↵ective color charge density
which is enhanced by a factor of A1/3 compared to that in a single proton.
This is illustrated in Fig. 2.

Boost

Fig. 2. An ultrarelativistic nucleus appears as a “pancake” with the A1/3-enhanced
color charge density.

If we define the saturation scale squared as the gluon density in the
transverse plane, one readily obtainsQ2

s ⇠ A1/3, such that for a large nucleus
Qs � ⇤QCD and ↵s(Q2

s) ⌧ 1. At small coupling the leading gluon field is
classical (since one can neglect quantum loop corrections): hence, to find
the gluon field of a nucleus one has to solve classical Yang-Mills equations

DµF
µ⌫ = J⌫ (3)

with the nucleus providing the source current J⌫ . This is the main concept
behind the McLerran–Venugopalan model [2, 3, 4].

The Yang-Mills equations (3) were solved for a single nucleus source in
[5, 6]. The resulting gluon field could be used to construct the unintegrated
gluon distribution of a nucleus �A(x, k2T ), which counts the number of gluons
at a given values of Bjorken x and transverse momentum kT :

�A(x, k
2
T ) =

CF

↵s 2⇡3

Z
d2b? d2r? eik·r

1

r2?

h
1� e�

1
4 r2? Q2

s(~b?) ln(1/r? ⇤)
i
. (4)

Here the gluon saturation scale is given by

Q2
s(b) = 4⇡ ↵2

s T (b) (5)

with T (b) the nuclear profile function. Transverse vectors are denoted by
x = (x1, x2) and x? = xT = |x|. The unintegrated gluon distribution

If we look at the influence of nuclear effects on saturation, we find out that

Compared to the proton case, the saturation scale inside a nucleus is larger, because of
Lorentz contraction.

The goal is to use forward dijets in pA collisions to look for saturation effects in lead.

𝑄)	*+ ~𝐴-//𝑄)	0+
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WHAT PROCESSES TO FOCUS ON?



STUDIED PROCESSES

For our computation, we focused on back-to-back jets in the forward region of rapidity.

Why?
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STUDIED PROCESSES

We want to reach low values of kt.

Although p1t, p2t >> Qs

If we focus on back-to-back jets in the transverse momentum plane, we can get

𝑘% = |𝑝⃗-% + 𝑝⃗+%| where kt ~ Qs

x2, kt

x1, kt = 0
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STUDIED PROCESSES

Furthermore, it is necessary to reach

the region where x1 is large and x2 << 1.

x2 << 1 is necessary to detect saturation effects; large x1 is required, because in this

region of x, we can use parton distribution functions that are known with great

precision from previous experiments.

x2, kt

x1, kt = 0
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STUDIED PROCESSES

For x1 and x2 holds:

Therefore for y1, y2 >> 1 we obtain x1 ~ 1 and x2 << 1.

That is why we shall focus on studying back-to-back jets in the forward region in

rapidity to detect saturation effects.

a sub-set of o↵-shell matrix elements. The goal of this paper is to provide a numerical
implementation of that new formulation, dubbed improved TMD (ITMD) factorization.

The o↵-shell matrix elements needed to compute the forward di-jet process have all
been calculated in [10], but evaluating all the necessary gluon TMDs is not straightforward.
Very recently, they have been obtained from a numerical simulation of the non-linear QCD
evolution in the leading ln(1/x) approximation [23], that is from the Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner (JIMWLK) [24–28] equation. However, further work is
required before those TMDs can be incorporated into a cross section calculation. Therefore,
in the present work, we shall stick to a mean-field type approach in which all the gluon
distributions needed can be related to each other, and obtained from the simpler Balitsky-
Kovchegov (BK) equation [29, 30]. A detailed comparative study using solutions of the
di↵erent extensions of the original BK equation is left for future work. The version that we
shall use in this work is known as the KS gluon distribution [31]. It incorporates the running
of the QCD coupling, non-singular pieces (at low x) of the DGLAP splitting function, a
sea-quark contribution, and resums dominant corrections from higher orders via a kinematic
constraint [32,33].

By comparing the forward di-jet production cross sections in proton-lead and proton-
proton collisions, we can clearly see the onset of parton saturation e↵ects, as we go from
a kinematical regime in which kt ⇠ Pt towards one where kt ⇠ Qs, and we obtain a good
estimation of the size of those e↵ects where they are the biggest, which is for nearly back-to-
back jets. We note that probing non-linear e↵ects of similar strength with single-inclusive
observables requires to make the only transverse momentum involved in those processes
of the order of the saturation scale, which may not be easy experimentally. With di-jets,
assuming Pt ⇠ 20 GeV and kt ⇠ Qs ⇠ 2 GeV, we can reach RpPb ⇠ 0.5.

The paper is organized as follows. In section 2, we recall the essence and the ingredients
of the ITMD factorization formula for forward di-jets in dilute-dense collisions. In section
3, we introduce the mean-field approximation that allows us to express the various gluon
TMDs in terms of the solution of the BK equation. In section IV, we present numerical
results for the proton and lead gluon TMDs obtained with the KS gluons, and compared
them with analytical expressions obtained in the GBW model. In section V, we present
our results for forward di-jet production in p+p and p+Pb collisions at the LHC, as well as
nuclear modification factors RpPb. Finally, section VI is devoted to conclusions and outlook.

2 The ITMD factorization formula for forward di-jets

in dilute-dense collisions

We consider the process of inclusive forward di-jet production in hadronic collisions

p(pp) +A(pA) ! j1(p1) + j2(p2) +X , (2.1)

where the four-momenta of the projectile and the target are massless and purely longitudinal.
The longitudinal momentum fractions of the incoming parton from the projectile, x1, and the
gluon from the target, x2, can be expressed in terms of the rapidities (y1, y2) and transverse
momenta (pt1, pt2) of the produced jets as

x1 =
p+1 + p+2

p+p
=

1
p
s
(|p1t|e

y1 + |p2t|e
y2) , x2 =

p�1 + p�2
p�A

=
1
p
s

�
|p1t|e

�y1 + |p2t|e
�y2

�
.

(2.2)
By looking at jets produced in the forward direction, we e↵ectively select those fractions to
be x1 ⇠ 1 and x2 ⌧ 1. Since the target A is probed at low x2, the dominant contributions
come from the subprocesses in which the incoming parton on the target side is a gluon

qg ! qg , gg ! qq̄ , gg ! gg . (2.3)

Moreover, the large-x partons of the dilute projectile are described in terms of the usual
parton distribution functions of collinear factorization fa/p(x1) while the small-x gluons of
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HOW DO WE DETERMINE WHETHER 
SATURATION EFFECTS ARE PRESENT?



USE OF NUCLEAR EFFECTS

We use the fact that in nuclei, the saturation scale reaches higher values than in

protons.

For the detection of saturation effects we use:
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this means that the gluon is emitted by the e↵ective color charge density
which is enhanced by a factor of A1/3 compared to that in a single proton.
This is illustrated in Fig. 2.

Boost
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Figure 4: Left plot: di↵erential cross section as a function of the azimuthal angle between the jets
for p+p and p+Pb collisions (rescaled by the number of nucleons). The distributions are identical
everywhere expect near �� ' ⇡, where saturation are the strongest. Right plot: nuclear
modification factors for two values of the nuclear saturation scale, providing an uncertainty
band.

For the various observables O shown below, we also consider the nuclear modification
factors defined as

RpPb =

d�p+Pb

dO

A
d�p+p

dO

. (5.1)

with A = 208 for Pb. In our approach, in the absence of saturation e↵ects, or in the case in
which they are equally strong in the nucleus and in the proton, this ratio is equal to unity.
If, however, the non-linear evolution plays a more important role in the case of the nucleus,
the RpPb ratio will be suppressed below 1.

We start by investigating the azimuthal correlations, with the azimuthal angle between
the jets �� defined to lie within 0 < �� < ⇡. First we compare the new ITMD approach
with previously obtained HEF results in Fig. 3. For the �� distribution in p+p collisions,
we see that at small angles where ideally they should match, there remains a small di↵erence
between the ITMD and HEF curves. As we anticipated, this is due to the initial condition
used to obtain the KS gluons. By contrast, near �� ' ⇡, we observe a large di↵erence, as
expected: the ITMD result is about a factor 3 bigger than the HEF one. The ITMD/HEF
ratio is very similar in the case of p+Pb collisions, resulting in almost identical RpPb for
both approaches, as also shown on the figure. For that comparison, we have parametrized
the strength of the non-linear term in the evolution equation for the Pb gluon distributions
(see (4.13)) with c = 0.5.

Next, we compare the �� distribution in p+p and p+Pb collisions in Fig. 4. After
rescaling the p+Pb cross section by the number of nucleons, we obtain identical distributions
almost everywhere. It is only for nearly back-to-back jets, around �� ' ⇡, that saturation
e↵ects induce a di↵erence. This di↵erence is better appreciated on the nuclear modification
factor, which goes from unity to 0.6, as �� varies from ⇠ 2.7 to ⇡. Two values of the
parameter c have been considered, which makes up an uncertainty band that turns out to
be rather small. This means that the uncertainty related to the value of the saturation scale
of the lead nucleus does not strongly influence the predicted RpPb suppression.

11

We look for suppression of this ratio with 
respect to unity.
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USE OF NUCLEAR EFFECTS

When we take a look at the nuclear modification

factor with respect to the angle between the two

jets, we can see the non-linear effects as a

suppression at about ~180° when p1t ~ p2t.
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dO

. (5.1)

with A = 208 for Pb. In our approach, in the absence of saturation e↵ects, or in the case in
which they are equally strong in the nucleus and in the proton, this ratio is equal to unity.
If, however, the non-linear evolution plays a more important role in the case of the nucleus,
the RpPb ratio will be suppressed below 1.

We start by investigating the azimuthal correlations, with the azimuthal angle between
the jets �� defined to lie within 0 < �� < ⇡. First we compare the new ITMD approach
with previously obtained HEF results in Fig. 3. For the �� distribution in p+p collisions,
we see that at small angles where ideally they should match, there remains a small di↵erence
between the ITMD and HEF curves. As we anticipated, this is due to the initial condition
used to obtain the KS gluons. By contrast, near �� ' ⇡, we observe a large di↵erence, as
expected: the ITMD result is about a factor 3 bigger than the HEF one. The ITMD/HEF
ratio is very similar in the case of p+Pb collisions, resulting in almost identical RpPb for
both approaches, as also shown on the figure. For that comparison, we have parametrized
the strength of the non-linear term in the evolution equation for the Pb gluon distributions
(see (4.13)) with c = 0.5.

Next, we compare the �� distribution in p+p and p+Pb collisions in Fig. 4. After
rescaling the p+Pb cross section by the number of nucleons, we obtain identical distributions
almost everywhere. It is only for nearly back-to-back jets, around �� ' ⇡, that saturation
e↵ects induce a di↵erence. This di↵erence is better appreciated on the nuclear modification
factor, which goes from unity to 0.6, as �� varies from ⇠ 2.7 to ⇡. Two values of the
parameter c have been considered, which makes up an uncertainty band that turns out to
be rather small. This means that the uncertainty related to the value of the saturation scale
of the lead nucleus does not strongly influence the predicted RpPb suppression.
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CROSS SECTION CALCULATION

The cross section is calculated as:

i 1 2
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gg⇤!qq

1
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�

sŝt̂û
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u
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�
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)
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CROSS SECTION CALCULATION

i 1 2

K(i)
gg⇤!gg 2

⇣
s4 + t4 + u4

⌘ �
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)
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• 𝑃%		- Single jet transverse momentum, 𝑘%	- jet pair transverse momentum,                  

y1, y2 – jet rapidities∈ [3.5, 4.5], pt1,pt2 – jet momenta∈ [20, 250] GeV/c

𝑝78 = 	𝑝%7𝑒:;/ 2�𝑃% =
𝑝+8𝑝- 	− 𝑝-8𝑝+
𝑝-8 +	𝑝+8

𝑘% = 𝑝%-+ + 𝑝%++ + 2𝑝%-𝑝%+cos	(∆𝜑)
�

x2, kt

x1

Marek Matas, CTU in Prague 13A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, JHEP 1612 (2016) 034, arXiv:1607.03121



CROSS SECTION CALCULATION

• Running coupling – cancels in the ratio, so we fix it in our computation.
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)
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CROSS SECTION CALCULATION

• x1 corresponds to the projectile particle, x2 to the target particle and s is the energy

of the collision.
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�

⇣
s4 + t4 + u4

⌘ �
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K(i)
qg⇤!qg �

u
�
s2 + u2

�

2tt̂ŝ
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]
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=
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It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):
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=
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CROSS SECTION CALCULATION

• The factor of ½ is included in processes with indistinguishable outgoing particles.
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]
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It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):
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CROSS SECTION CALCULATION

1) Projectile gluon distribution

Is obtained from data from previous experiments.
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sŝt̂û
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�

sŝt̂û
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]
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It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):
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CROSS SECTION CALCULATION

1) Projectile gluon distribution

Is obtained from data from previous experiments.

i 1 2
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2Nc
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�

sŝt̂û

1

2N3
c

⇣
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⌘ �
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�
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K(i)
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u
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�
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s
�
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�
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)

4

2 kovchegov printed on October 29, 2014

10-1

10-1

10-2

10-210-3
10-310-4

1

1

10

 HERAPDF1.0

 experimental uncertainty

 model uncertainty

 parametrization uncertainty

 

x

xf
xuV

xdV

xS 

xG HERA
Q2 = 10 GeV2

Fig. 1. Parton distribution functions (PDFs) of a proton at the scale Q2 = 10 GeV2

plotted as functions of Bjorken x. Here xuv and xdv are the valence quark distri-
butions, xS is the sea quark distribution, and xG is the gluon distribution. Note
that the vertical axis is logarithmic.

the saturation scale Qs becomes larger than the QCD confinement scale
⇤QCD, Qs � ⇤QCD such that the strong coupling constant becomes small,

↵s(Q
2
s) ⌧ 1. (2)

Therefore, in the saturation regime we are dealing with a high density of
gluons and quarks inside the proton or nucleus, while at the same time
having a small coupling constant justifying the use of perturbative expansion
in the powers of ↵s.

2. Classical Gluon Fields

The most convenient system to study saturation dynamics appears to
be the small-x wave function of a large nucleus. From now one we will
concentrate on gluons, since they dominate over quarks at small-x as follows
from Fig. 1. The small-x gluons “see” the whole nucleus coherently in the
longitudinal direction, and can be emitted by any of the nucleons at a given
impact parameter. (Note that a gluon with kT � ⇤QCD is localized in the
transverse coordinate space and does not interact with the nucleons at other
impact parameters.) The small-x gluon can originate in any of the ⇠ A1/3

nucleons at a given transverse position. If the nucleus is ultrarelativistic
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CROSS SECTION CALCULATION

2) Matrix elements

2-to-2 matrix elements with non-zero gluon kt.

i 1 2

K(i)
gg⇤!gg 2

⇣
s4 + t4 + u4

⌘ �
uû+ tt̂

�

t̄t̂ūûs̄ŝ
�
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�
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K(i)
gg⇤!qq

1

2Nc
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uû+ tt̂

�

sŝt̂û

1
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c

⇣
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�

sŝt̂û

K(i)
qg⇤!qg �

u
�
s2 + u2

�
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�
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2tt̂û

Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)
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CROSS SECTION CALCULATION

2) Matrix elements

Matrix elements have been computed in:

i 1 2

K(i)
gg⇤!gg 2

⇣
s4 + t4 + u4
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uû+ tt̂

�
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gg⇤!qq

1

2Nc

⇣
t2 + u2

⌘ �
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sŝt̂û
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�

s
�
s2 + u2

�

2tt̂û

Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)

4

F. Dominguez, C. Marquet, B. -W. Xiao and F. Yuan, Phys. Rev. D 83 (2011) 105005 – with zero gluon kt.

x2, kt

x1

A. van Hameren, P. Kotko, K. Kutak, C. Marquet, E. Petreska and S. Sapeta, arXiv:1607.03121 – with non-zero gluon kt. 
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CROSS SECTION CALCULATION

3) Transverse momentum distributions

Five TMDs are needed to describe this process. These are now process dependent and not

universal, unlike the usual PDFs.

For the computation, we need to undergo several substeps.

i 1 2
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K(i)
gg⇤!qq

1

2Nc

⇣
t2 + u2

⌘ �
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)
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CROSS SECTION CALCULATION

a) Scattering amplitude

• The scattering amplitude corresponds to the cross section of the interaction of a color

dipole with a nucleus. It is a solution of the Balitsky-Kovchegov equation.

• In our approach, we focus on rcBK with factorized b-dependence. (The integral over impact

parameter is represented with a multiplicative factor.)

The derivation of this expression from the CGC framework was done in [22] the in
large-Nc limit, and in [23] for the finite Nc case. However the TMD approach had been
previously extensively studied in the literature [20, 34–40], and in a broader context
than small-x physics.

• Obtaining the HEF formula with a single gluon TMD and o↵-shell matrix elements from
Eq. 2.6 relies on the fact that up to power corrections, all the gluon TMDs coincide in
the large kt limit:

�(i)
ag!cd(x2, kt) ! �g/A(x2, kt) +O(1/k2t ) . (2.9)

Then, denoting

g4s

2X

i=1

K(i)
ag⇤!cd(Pt, kt) = |Mag⇤!cd|

2 (2.10)

the HEF formula is

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

1

16⇡2(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd
|Mag⇤!cd|

2�g/A(x2, kt) . (2.11)

This expression is also obtained from the CGC framework in the dilute target limit [10],
and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted Fg/A = ⇡�g/A due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Qs ⌧ Pt regardless of the value
of kt, any additional term compared to 2.6 should vanish in both limits Qs ⇠ kt ⌧ Pt and
Qs ⌧ kt ⇠ Pt.

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)
qg!qg, also called the dipole gluon distribution and often denoted

x2G(2). In the small-x2 limit, it can be related to the Fourier transform of the fundamental
dipole amplitude NF (x2, r) where r denote the transverse size of the dipole [22, 23]:

�(1)
qg!qg(x2, kt) =

Nc

↵s⇡(2⇡)3

Z
d2b

Z
d2r e�ikt·rr2

r NF (x2, r) ⌘ x2G
(2)(x2, kt) . (3.1)

The amplitude NF is defined through the CGC expectation value of the S-matrix, SF ,
of a quark-antiquark dipole scattering o↵ the dense target: NF (x, r) = 1 � SF (x, r) with
SF (x, r) =

⌦
Tr

⇥
U(r)U †(0)

⇤↵
x
/Nc in terms of fundamental Wilson lines. The dipole gluon

distribution can then be written in a compact form as:

x2G
(2)(x2, kt) =

Nc k2t S?
2⇡2↵s

F (x2, kt) , (3.2)

where F (x2, kt) is a Fourier transform of the fundamental dipole

F (x2, kt) =

Z
d2r

(2⇡)2
e�ikt·rSF (x2, r), (3.3)

and with S? denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be obtained in such a straightforward

manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, denoted x2G(2),
should be obtained in the small-x2 limit from the quadrupole operator hTr [A(x)A(y)]ix2

5
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CROSS SECTION CALCULATION

a) Scattering amplitude

with kernel where

The initial condition at x0 = 0.01 is

We used ΛFGH = 0.241 GeV,𝑄)M+ = 0.6 GeV2 for lead and 𝑄)M+ = 0.2 GeV2 for protons.

∂N (r ,Y )
∂ lnY

= ∫ d r⃗1K ( r⃗ , r⃗1 , r⃗2)(N (r⃗ 1 ,Y )+ N ( r⃗2 ,Y )− N ( r⃗ , Y )− N (r⃗1 ,Y )N (r⃗ 2 ,Y ))

K ( r⃗ , r⃗1 , r⃗2)=
αs(r

2)Nc

2π ( r
2

r1
2 r 2
2+
1
r 1
2 (
α s(r1

2)
α s(r 2

2)
− 1)+ 1

r 2
2 (
αs(r2

2)
αs(r1

2)
− 1))

N MV (r)= 1− exp(
− (r 2Qs0

2 )γ

4 ln ( 1
r2 ΛQCD

2 + e))

r⃗ 2= r⃗− r⃗1

I. Balitsky, Nucl. Phys. B 463, 99 (1996) 
Y. V. Kovchegov, Phys. Rev. D 60, 034008 (1999) 
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CROSS SECTION CALCULATION

a) Scattering amplitude

with kernel where

Initial condition at x0 = 0.01 is

We used ΛFGH = 0.241 GeV,𝑄)M+ = 0.2 GeV2 for protons and 𝑄)M+ = 0.6 GeV2 for lead.
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CROSS SECTION CALCULATION

b) Fourier transform

• We transform the scattering amplitude from the coordinate space to the momentum space

with the Fourier transform:

c) Compute the dipole gluon distribution and Weiszacker-Williams gluon distribution.

where A(x) = U †(x)@xU(x), and in general is not related to F (x2, kt). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)ix/µ2(x,x � y). In addition, for simplicity,
we shall work in the large-Nc limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:
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where now, SA(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write SF = S2CF /CA

BK and SA =
S2
BK , where CF and CA are the Casimirs of the fundamental and adjoint representations of

SU(Nc), respectively, and with SBK denoting the solution of the BK equation. At large Nc,
SA(x, r) = [SF (x, r)]

2, and one can write:
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Then the Laplacian can be inverted as:
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In the large Nc limit, the six gluon distributions �(i)
ag!cd reduce to [10]:
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gg (3.11)

Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F
(2)
qg , F (1)

gg , F (2)
gg , and F

(6)
gg . The WW distribution is

not directly one of them, but in the Gaussian approximation coupled to the large-Nc limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x2G(1) and x2G(2) [22]:
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d2qtd

2q0t x2G
(1)(x2, qt)F (x2, q

0
t)F (x2, kt � qt � q0t) . (3.16)

Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x2, kt), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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The derivation of this expression from the CGC framework was done in [22] the in
large-Nc limit, and in [23] for the finite Nc case. However the TMD approach had been
previously extensively studied in the literature [20, 34–40], and in a broader context
than small-x physics.

• Obtaining the HEF formula with a single gluon TMD and o↵-shell matrix elements from
Eq. 2.6 relies on the fact that up to power corrections, all the gluon TMDs coincide in
the large kt limit:

�(i)
ag!cd(x2, kt) ! �g/A(x2, kt) +O(1/k2t ) . (2.9)

Then, denoting

g4s

2X

i=1

K(i)
ag⇤!cd(Pt, kt) = |Mag⇤!cd|

2 (2.10)

the HEF formula is

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

1

16⇡2(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd
|Mag⇤!cd|

2�g/A(x2, kt) . (2.11)

This expression is also obtained from the CGC framework in the dilute target limit [10],
and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted Fg/A = ⇡�g/A due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Qs ⌧ Pt regardless of the value
of kt, any additional term compared to 2.6 should vanish in both limits Qs ⇠ kt ⌧ Pt and
Qs ⌧ kt ⇠ Pt.

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)
qg!qg, also called the dipole gluon distribution and often denoted

x2G(2). In the small-x2 limit, it can be related to the Fourier transform of the fundamental
dipole amplitude NF (x2, r) where r denote the transverse size of the dipole [22, 23]:

�(1)
qg!qg(x2, kt) =

Nc

↵s⇡(2⇡)3

Z
d2b

Z
d2r e�ikt·rr2

r NF (x2, r) ⌘ x2G
(2)(x2, kt) . (3.1)

The amplitude NF is defined through the CGC expectation value of the S-matrix, SF ,
of a quark-antiquark dipole scattering o↵ the dense target: NF (x, r) = 1 � SF (x, r) with
SF (x, r) =

⌦
Tr

⇥
U(r)U †(0)

⇤↵
x
/Nc in terms of fundamental Wilson lines. The dipole gluon

distribution can then be written in a compact form as:

x2G
(2)(x2, kt) =

Nc k2t S?
2⇡2↵s

F (x2, kt) , (3.2)

where F (x2, kt) is a Fourier transform of the fundamental dipole

F (x2, kt) =

Z
d2r

(2⇡)2
e�ikt·rSF (x2, r), (3.3)

and with S? denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be obtained in such a straightforward

manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, denoted x2G(2),
should be obtained in the small-x2 limit from the quadrupole operator hTr [A(x)A(y)]ix2
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CROSS SECTION CALCULATION

b) Fourier transform

• We transform the scattering amplitude from the coordinate space to the momentum space

with the Fourier transform.

c) Compute the dipole gluon distribution and Weiszacker Williams gluon distribution.

where A(x) = U †(x)@xU(x), and in general is not related to F (x2, kt). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)ix/µ2(x,x � y). In addition, for simplicity,
we shall work in the large-Nc limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:

x2G
(1)(x2, kt) =

CF

2↵s⇡4

Z
d2b

Z
d2r

r2
e�ikt·r [1� SA(x2, r)] , (3.4)

where now, SA(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write SF = S2CF /CA

BK and SA =
S2
BK , where CF and CA are the Casimirs of the fundamental and adjoint representations of

SU(Nc), respectively, and with SBK denoting the solution of the BK equation. At large Nc,
SA(x, r) = [SF (x, r)]

2, and one can write:
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CFS?
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(2)(x2, qt)F (x2, kt � qt). (3.7)

Then the Laplacian can be inverted as:
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0
t � qt) . (3.8)

In the large Nc limit, the six gluon distributions �(i)
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Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F
(2)
qg , F (1)

gg , F (2)
gg , and F

(6)
gg . The WW distribution is

not directly one of them, but in the Gaussian approximation coupled to the large-Nc limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x2G(1) and x2G(2) [22]:
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(2)(x2, qt)F (x2, kt � qt) , (3.15)
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(6)
gg (x2, kt) =

Z
d2qtd

2q0t x2G
(1)(x2, qt)F (x2, q

0
t)F (x2, kt � qt � q0t) . (3.16)

Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x2, kt), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted Fg/A = ⇡�g/A due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Qs ⌧ Pt regardless of the value
of kt, any additional term compared to 2.6 should vanish in both limits Qs ⇠ kt ⌧ Pt and
Qs ⌧ kt ⇠ Pt.

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)
qg!qg, also called the dipole gluon distribution and often denoted

x2G(2). In the small-x2 limit, it can be related to the Fourier transform of the fundamental
dipole amplitude NF (x2, r) where r denote the transverse size of the dipole [22, 23]:
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The amplitude NF is defined through the CGC expectation value of the S-matrix, SF ,
of a quark-antiquark dipole scattering o↵ the dense target: NF (x, r) = 1 � SF (x, r) with
SF (x, r) =
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distribution can then be written in a compact form as:
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and with S? denoting the transverse area of the target.
In full generality, none of the other gluon TMDs can be obtained in such a straightforward

manner. For instance, the Weizsäcker-Williams (WW) gluon distribution, denoted x2G(2),
should be obtained in the small-x2 limit from the quadrupole operator hTr [A(x)A(y)]ix2
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The derivation of this expression from the CGC framework was done in [22] the in
large-Nc limit, and in [23] for the finite Nc case. However the TMD approach had been
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and has also been extensively studied in the literature [13,19,31,41,42] (where the gluon
TMD is denoted Fg/A = ⇡�g/A due to a di↵erent normalization convention).

We would like to point out that the ITMD factorization formula 2.6 was build in order
to contain both the HEF and the TMD expressions as its limiting cases, and as such should
be considered no more than an interpolating formula. We note however, that if one would
be able to directly derive a factorization formula valid for Qs ⌧ Pt regardless of the value
of kt, any additional term compared to 2.6 should vanish in both limits Qs ⇠ kt ⌧ Pt and
Qs ⌧ kt ⇠ Pt.

3 The gluon TMDs in the Gaussian approximation

The goal of this paper is to provide a numerical implementation of the ITMD factorization
formula, which first requires to evaluate all the gluon TMDs that enter Eq. 2.6. Let us start

with the simplest of them, �(1)
qg!qg, also called the dipole gluon distribution and often denoted

x2G(2). In the small-x2 limit, it can be related to the Fourier transform of the fundamental
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CROSS SECTION CALCULATION

d) Compute the transverse momentum distributions as a convolution of the Fourier

transform and the gluon distributions.

where A(x) = U †(x)@xU(x), and in general is not related to F (x2, kt). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)ix/µ2(x,x � y). In addition, for simplicity,
we shall work in the large-Nc limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:

x2G
(1)(x2, kt) =

CF

2↵s⇡4

Z
d2b

Z
d2r

r2
e�ikt·r [1� SA(x2, r)] , (3.4)

where now, SA(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write SF = S2CF /CA

BK and SA =
S2
BK , where CF and CA are the Casimirs of the fundamental and adjoint representations of

SU(Nc), respectively, and with SBK denoting the solution of the BK equation. At large Nc,
SA(x, r) = [SF (x, r)]

2, and one can write:

k2tr
2
kt

x2G
(1)(x2, kt) =

CFS?
2↵s⇡4

k2t

Z
d2r e�ikt·r [SF (x2, r)]

2 (3.5)

=
2CFS?
↵s⇡2

k2t

Z
d2qt F (x2, qt)F (x2, kt � qt) (3.6)

= 2k2t

Z
d2qt
q2t

x2G
(2)(x2, qt)F (x2, kt � qt). (3.7)

Then the Laplacian can be inverted as:

x2G
(1)(x2, kt) =

1

2
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k2
t

dk
02
t ln

✓
k02t
k2t

◆Z
d2qt
q2t

x2G
(2)(x2, qt)F (x2, k

0
t � qt) . (3.8)

In the large Nc limit, the six gluon distributions �(i)
ag!cd reduce to [10]:

�(1)
qg!qg = F

(1)
qg , �(2)

qg!qg ⇡ F
(2)
qg (3.9)

�(1)
gg!qq̄ ⇡ F

(1)
gg , �(2)

gg!qq̄ ⇡ �N2
cF

(2)
gg (3.10)

�(1)
gg!gg ⇡

1

2

⇣
F

(1)
gg + F

(6)
gg

⌘
, �(2)

gg!gg ⇡ F
(2)
gg + F

(6)
gg (3.11)

Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F
(2)
qg , F (1)

gg , F (2)
gg , and F

(6)
gg . The WW distribution is

not directly one of them, but in the Gaussian approximation coupled to the large-Nc limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x2G(1) and x2G(2) [22]:

F
(1)
qg (x2, kt) = x2G

(2)(x2, qt) , (3.12)

F
(2)
qg (x2, kt) =

Z
d2qt x2G

(1)(x2, qt)F (x2, kt � qt) , (3.13)

F
(1)
gg (x2, kt) =

Z
d2qt x2G

(2)(x2, qt)F (x2, kt � qt) , (3.14)

F
(2)
gg (x2, kt) = �

Z
d2qt

(kt � qt) · qt
q2t

x2G
(2)(x2, qt)F (x2, kt � qt) , (3.15)

F
(6)
gg (x2, kt) =

Z
d2qtd

2q0t x2G
(1)(x2, qt)F (x2, q

0
t)F (x2, kt � qt � q0t) . (3.16)

Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x2, kt), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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CROSS SECTION CALCULATION

d) Compute the transverse momentum distributions as a convolution of the Fourier

transform and the gluon distributions.

where A(x) = U †(x)@xU(x), and in general is not related to F (x2, kt). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)ix/µ2(x,x � y). In addition, for simplicity,
we shall work in the large-Nc limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:

x2G
(1)(x2, kt) =

CF

2↵s⇡4

Z
d2b

Z
d2r

r2
e�ikt·r [1� SA(x2, r)] , (3.4)

where now, SA(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write SF = S2CF /CA

BK and SA =
S2
BK , where CF and CA are the Casimirs of the fundamental and adjoint representations of

SU(Nc), respectively, and with SBK denoting the solution of the BK equation. At large Nc,
SA(x, r) = [SF (x, r)]

2, and one can write:
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In the large Nc limit, the six gluon distributions �(i)
ag!cd reduce to [10]:
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⌘
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Therefore, we need an input of five gluon TMDs in our numerical calculations, the dipole

gluon distribution, and four others: F
(2)
qg , F (1)

gg , F (2)
gg , and F

(6)
gg . The WW distribution is

not directly one of them, but in the Gaussian approximation coupled to the large-Nc limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x2G(1) and x2G(2) [22]:
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(2)(x2, qt) , (3.12)
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t)F (x2, kt � qt � q0t) . (3.16)

Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x2, kt), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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CROSS SECTION CALCULATION

e) Redefine the transverse momentum distributions in the large Nc limit as:

where A(x) = U †(x)@xU(x), and in general is not related to F (x2, kt). Therefore, in order
to simplify the evaluation of all the gluon TMDs which we need, we will resort to a mean-field
type approximation.

We shall utilize the so-called Gaussian approximation of the CGC [7,43–48]. The essence
of this approximation is to assume that all the color charge correlations in the target stay
Gaussian throughout the evolution: h⇢(x)⇢(y)ix/µ2(x,x � y). In addition, for simplicity,
we shall work in the large-Nc limit. This Gaussian approximation allows to write, among
other things, the WW gluon distribution in terms of an adjoint dipole:
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where now, SA(x, r) is an S-matrix for the scattering of a gluon dipole involving adjoint

Wilson lines. The Gaussian approximation also allows to write SF = S2CF /CA

BK and SA =
S2
BK , where CF and CA are the Casimirs of the fundamental and adjoint representations of

SU(Nc), respectively, and with SBK denoting the solution of the BK equation. At large Nc,
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gluon distribution, and four others: F
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qg , F (1)

gg , F (2)
gg , and F

(6)
gg . The WW distribution is

not directly one of them, but in the Gaussian approximation coupled to the large-Nc limit,
which ensures the factorization of CGC expectation values into single trace expectation
values, those four gluon distributions can be expressed in terms of x2G(1) and x2G(2) [22]:
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Through (3.2) and (3.8), we have now expressed all the needed gluon TMDs in terms of
F (x2, kt), the solution of the BK equation in the momentum space (or equivalently Fourier
transform of solution of the BK equation in the coordinate space).
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CROSS SECTION CALCULATION

Now we can compute the cross section and from that the nuclear modification factor.

i 1 2

K(i)
gg⇤!gg 2
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s4 + t4 + u4
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Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):
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ag!cd(x2, kt) . (2.8)
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CONCLUSIONS

• The existence of saturation effects can be studied with the use of the
nuclear modification factor in p-Pb collisions.

• Observation of the saturation effects is caused by the fact that the
transverse momentum of the outgoing back-to-back jet pair is similar
to the nuclear saturation scale.

• These studies are all impact parameter independent. Future
incorporation of non-trivial impact parameter dependence in the
scattering amplitude computation is highly desired, because it can
have a major influence on the studied phenomena.

• Measurements at such forward rapidity would be desired. Is it feasible
at the LHC?
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MATRIX ELEMENTS
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uû+ tt̂

�

t̄t̂ūûs̄ŝ
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uû+ tt̂� sŝ
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⌘ �
uû+ tt̂

�

sŝt̂û

1

2N3
c

⇣
t2 + u2

⌘ �
uû+ tt̂� sŝ

�

sŝt̂û

K(i)
qg⇤!qg �

u
�
s2 + u2

�

2tt̂ŝ
�

s
�
s2 + u2

�

2tt̂û

Table 1: The hard factors accompanying the gluon TMDs �(i)
ag!cd in the large-Nc limit. The

finite Nc expressions can be found in [10].

the dense target are described by TMD distributions �g/A(x2, kt) . Indeed, the momentum of
the incoming gluon from the target is not only longitudinal but also has a non-zero transverse
component of magnitude

kt = |p1t + p2t| (2.4)

which leads to imbalance of transverse momentum of the produced jets: k2t = |p1t|2+ |p2t|2+
2|p1t||p2t| cos��. The validity domain of ITMD factorization is

Qs(x2) ⌧ Pt (2.5)

where Pt is the hard scale of the process, related to the individual jet momenta Pt ⇠

|p1t|, |p2t|. By contrast, the value of kt can be arbitrary.
The ITMD factorization formula reads [10]

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag⇤!cd(Pt, kt)�

(i)
ag!cd(x2, kt) . (2.6)

It involves several gluon TMDs �(i)
ag!cd (2 per channel), with di↵erent operator definitions,

that are accompanied by di↵erent hard factors K(i)
ag⇤!cd. Those where computed in [10]

using either Feynman diagram techniques, or color-ordered amplitude methods, and they
are given in Table 1 in terms of the Mandelstam variables of the 2 ! 2 parton level process.
They encompass the improvement over the TMD factorization formula derived in Ref. [22]
where the matrix elements were on-shell and a function of Pt only. The gluon TMDs are
normalized such that Z

d2kt �
(i)
ag!cd(x2, kt) = x2fg/A(x2) , (2.7)

and their precise operator definitions can be found in [10].
As emphasized in the introduction, formula 2.6 coincides with CGC expressions in two

important limits. They both reduce to the TMD factorization formula when Qs ⇠ kt ⌧ Pt

and to the HEF formula when Qs ⌧ kt ⇠ Pt:

• The TMD factorization formula with kt dependent gluon distributions and on-shell

matrix elements is simply obtained form 2.6 after simplifying K(i)
ag⇤!cd(Pt, kt) into

K(i)
ag⇤!cd(Pt, 0) ⌘ K(i)

ag!cd(Pt):

d�pA!dijets+X

d2Ptd2ktdy1dy2
=

↵2
s

(x1x2s)2

X

a,c,d

x1fa/p(x1)

1 + �cd

2X

i=1

K(i)
ag!cd(Pt)�

(i)
ag!cd(x2, kt) . (2.8)
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