

XXVI International Workshop on Deep Inelastic Scattering and Related Subjects

16-20 April 2018 Kobe, Japan

W, Z and top production measurements at LHCb

Patrick Robbe, LAL Orsay, for the LHCb Collaboration, 17 April 2018

Electroweak scale physics at LHCb

- LHCb is specialised in heavy flavour precision physics, beauty and charm:
 - Optimised for low pile-up collisions
 - Instruments fully the forward region: $2 < \eta < 5$
 - <u>Precise vertexing</u>: reconstruction of secondary vertices to tag heavy flavour jets
- Extensive program and precision measurements in electroweak sector by ATLAS and CMS, however LHCb can play an important role:
 - Unique kinematic region, covering asymmetric parton collisions: large or small *x*

The LHCb experiment

[IJMPA 30 (2015) 1530022] [JINST 3 (2008) S08005]

Muon system

 μ identification $\epsilon(\mu \rightarrow \mu) \approx 97 \%$, mis-ID $\epsilon(\pi \rightarrow \mu) \approx 1-3 \%$

Jet reconstruction at LHCb

- Based on particle flow including neutral recovery, anti-*k*T clustering algorithm with *R* = 0.5
- Energy resolution of 10-15% and efficiency >95% above $p_T = 20 \text{ GeV}$
- Calibrated on data, using Z $\rightarrow \mu\mu$ + jets
- Already used in a growing number of analysis, beyond the initial physics program of LHCb : measurements of associated production of W and Z with jets, heavy long-lived particles decaying to jets, J/ψ production in jets, ...
- Heavy flavour (*b* and *c*) tagging of jets:
 - Reconstruct secondary vertices from displaced tracks
 - Kinematic and quality requirements on vertices and tracks,
 - Jet is tagged if the secondary vertex is within $|\Delta R|$ <0.5 of the jet axis
 - Further separation between light and heavy flavour and between charm and beauty provided by Boosted Decision Trees

[arXiv:1803.05188]

tt production measurement

- Top production measurements in LHCb acceptance provide strong constraints on PDF, in particular large-*x* gluon PDF
- *tt* charge asymmetry in *pp* collisions is enhanced in the forward region
- First measurements of top production in the forward region were obtained with 7 and 8 TeV *pp* collisions in the μ*b* [PRL 115 (2015) 112001], μ*b* b and *eb* b [PLB767 (2017) 110] final states.
- New measurement with 2 fb⁻¹ of 13 TeV pp collisions (2015+2016) with μeb final state.

tt production enhanced by factor 10 in the LHCb acceptance compared to 8 TeV

[PLB767 (2017) 110]

t \bar{t} production with *eb* \bar{b} and $\mu b\bar{b}$

- Using 2 fb⁻¹ of 8 TeV data, measuring simultaneously tt, W+bb and W+cc cross-sections:
 - $2.2 < \eta_{jet} < 4.2$, $p_{Tjet} > 12.5$ GeV
 - $p_{T}(e,\mu)$ >20 GeV, 2< η_{μ} <4.5 and 2< η_{e} <4.25
- Simultaneous fit to di-jet mass, MVA classifier and BDT (*c* or *b*) output
- Cross-sections (and predictions) in fiducial region

[arXiv:1803.05188]

tt production with µeb channel

- Two leptons in the final state gives high purity
 - At the cost of efficiency due to limited acceptance: partial reconstruction
 - Requirement of second lepton suppresses background from QCD and W+ $b\bar{b}$
 - Leptons with two different flavours suppress background from Z+ $b\bar{b}$
 - Analysis not possible with Run 1 data because of too low statistics
- Selections:
 - Prompt, isolated μ and e with p_T >20 GeV and 2.0 < η < 4.5
 - *b* jet tagged with secondary vertex in $2.2 < \eta < 4.2$
 - $\Delta R(\text{lepton,jet}) > 0.5, \Delta R(\mu, e) > 0.1$
 - 44 candidates selected with 87% purity
- Contributions to background:
 - Z+jets, with shape taken from simulation and normalized to $Z \rightarrow \mu\mu + b$ -jet from data
 - W+t determined from simulation based on POWHEG
 - QCD determined from data

tt events: kinematic variables

• Shape of various kinematic variables of the different contributions agree well with expectations from simulation

tt production: results

• Cross-section in fiducial region defined by analysis kinematic requirements:

```
\sigma_{t\bar{t}} = 126 \pm 19 \,(\text{stat}) \pm 16 \,(\text{syst}) \pm 5 \,(\text{lumi}) \text{ fb}
```

- Compatible with Standard Model prediction with 15% statistical uncertainty
- Systematic uncertainty determined by jet tagging efficiency, background related uncertainty dominated by QCD background
 - They both will improve with more statistics since their determination is data driven

Source	Efficiency
trigger	0.811 ± 0.016
muon reconstruction	0.930 ± 0.010
electron reconstruction	0.916 ± 0.026
muon identification	0.978 ± 0.008
electron identification	0.918 ± 0.012
jet reconstruction	0.975 ± 0.016
event selection	0.564 ± 0.023
jet tagging	0.556 ± 0.056
total	0.190 ± 0.022

Systematic uncertainties

[JHEP 09 (2016) 136]

Z boson production at 13 TeV

- Using two final states, ee and $\mu\mu$, and 300 pb⁻¹ of pp collisions at 13 TeV
- Fiducial region defined by $2 < \eta(e,\mu) < 4.5$, $p_T(\underline{e},\mu) > 20$ GeV and $60 < M(ee,\mu\mu) < 120$ GeV

• Precise results in good agreement between the two channels and with predictions

10

Z boson production at 13 TeV

• Also measured differentially as a function of y and p_{T} .

[JHEP 09 (2016) 136]

Observation of $Z \rightarrow b\bar{b}$ in forward region

- First observation in the forward region: important validation of jets and *b*-tagging
- Using 2 fb⁻¹ of *pp* collisions at 8 TeV Run 1 data
- *b* jets with p_T >20 GeV and 2.2< η <4.2
- Third jet required to suppress QCD background
- Multivariate analysis with 4 kinematic variables of the 3-jet system
- Measured cross-section in agreement with aMC@NLO prediction

Conclusions

- Interesting measurements in electroweak sector obtained by the LHCb experiment
- Top cross-section measurements benefit from increase of center-of-mass energy and will become more and more precise with increasing statistics: 6 fb⁻¹ of data will be available at end of Run 2
- Measurements of Z/W production can also be obtained in different systems like pPb collisions, where they can put strong constraints on nuclear PDF determinations